
ECE 598 – Advanced Operating
Systems

Lecture 7

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 February 2018 (!)

http://web.eece.maine.edu/~vweaver

Announcements

• Homework #3 was assigned, due Thursday

• Be sure you have a serial cable if you need it.

1

HW#2 Review

• Code: everyone’s code blinked fine

Sorry for the confusion, the C code should have specified

to blink GPIO18, not ACT

Timing of the blinking was not consistent, but possibly

that was due to Pi2/Pi3 differences.

• Size: C about 200 bytes, assembly 68 bytes?

Can look at .dis files for disassembly

C: 60 bytes of initialization, asm: 12 bytes for delay loop,

on C is 56 bytes (due to pessimization from volatile, etc)

2

also saves/restores LR and registers to maintain calling

convention. can’t explain some of it

stdint.h shouldn’t add anything, just defines. Usually in

C you shouldn’t include code in header files. Loo for

self, /usr/include/stdint.h (though often includes other

files and lots of #defines

• volatile – have C compiler not optimize away stores

• C array of 32-bit ints vs actually byte-wise access

• SPI1 CEN 0. Bonus SPI ports

3

What are interrupts?

• A way to let hardware/software interrupt execution to

let the CPU know something important has happened.

• Notified immediately of something happening (as

opposed to polling, checking occasionally)

• Without interrupts processes can get stuck/greedy and

never let go of what they are doing.

• Do you need precise interrupts?

• Are interrupts good or bad?

◦ Can reduce latency... or make it worse (real-time, slow

4

handler)

◦ Can add overhead. On OoO need to flush entire

pipeline, then enter kernel. Slow slow slow.

◦ Some HPC or virtual turn off interrupts if possible.

5

What generates interrupts?

• What types of hardware generate interrupts?

Keyboard, timers, Network, Disk I/O, serial etc.

• Some can be critical. Not empty UART FIFO fast

enough can drop data on floor.

• What is most frequent interrupt on typical OS? Timer

interrupt. regular timer. What is used for?

◦ Context switching

◦ Timekeeping, time accounting

6

Typical Interrupts

• Tell pointless 6502/Mockingboard example

• Set up interrupt source (Timer at 50Hz?)

• Install interrupt handler (usually vector at address that

jumps to your code to handle things)

◦ Handler should be fast, do whatever it needs to do (my

case, load up 14 registers with data) or even schedule

more work than later

◦ Disable interrupts if HW didn’t for us. Save/restore

any registers we’re going to change so when we return

7

no one notices

◦ Handler should ACK the interrupt (let hardware know

we handled things so it doesn’t retrigger as soon as we

exit)

• Enable interrupts on device (often a flag to set)

• Enable (unmask) interrupts on your CPU. Often a

processor flag.

8

Exceptions and Interrupts

• All architectures are different

• ARM does it a little differently from others.

9

How to find out?

• ARM ARM for ARMv7 (2700+ pages)

• Look at Linux source code

• Look at Raspberry Pi Forums

10

ARM has various Modes

• Modes:

• States

◦ ISA: ARM (normal), Thumb, Jazelle, ThumbEE

◦ Execution state (?)

◦ Security: Secure and Non-secure

• Privlege Level

◦ If secure: PL0 = user, PL1 = kernel

◦ If non-secure: PL0 = user, PL1 = kernel, PL2 =

hypervisor

11

ARM Modes

User PL0

FIQ PL1 fast interrupt

IRQ PL1 interrupt

SVC PL1 supervisor

MON PL1 monitor (only if security extensions)

ABT PL1 abort

HYP PL2 hypervisor (only if virtual extensions)

UND PL1 undefined instruction

SYS PL1 system

12

ARM Modes – continued

• User mode – unprivledged, restricted. Can only move to

higher level by exception.

• System Mode – like USER, but no restrictions on

memory/registers. Sort of like running as root, cannot

enter by exception.

• Supervisor – kernel mode. SVC (syscall) instructions

take you here. Also at reset (boot).

• Abort – called if a memory or prefetch causes an

exception

13

why is this useful? Virtual memory.

• Undefined – called when undefined instruction happens

why is this useful? Emulator?

• FIQ/IRQ – fast or normal interrupt

• HYP – hypervisor, for virtualization. A bit beyond this

class.

• Secure – secure mode, can lock things down.

14

ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Thumb

Processor
Mode

Condition

 Flags

2527 2324

Q IT J A

8

E

91015

IT

1619

GE[3..0]
RESERVED

RAZ/SBZP

Interrupt Masks

EndianThumb If/Then

Saturation

Jazelle Greater/Equal

SIMD

• Current Program Status Register

• Contains flags in addition to processor mode

• Six privileged modes

• One non-privileged: user (cannot write CPSR), now

APSR?

• Interrupts and exceptions automatically switch modes

15

ARM Interrupt Registers

User/Sys Hyp Fast IRQ Supervisor Undefined Abort Monitor

r0
r1
r2
r3
r4
r5
r6
r7

r8 r8 fiq
r9 r9 fiq

r10 r10 fiq
r11 r11 fiq
r12 r12 fiq

r13/sp SP hyp SP fiq SP irq SP svc SP und SP abt SP mon
r14/lr LR fiq LR irq LR svc LR und LR abt LR mon
r15/pc

apsr

cpsr spsr hyp spsr fiq spsr irq spsr svc spsr und spsr abt spsr mon
ELR hyp

16

Unlike other architectures, when switching modes the ARM

hardware will preserve the status register, PC and stack and

give you mode-specific versions (register bank switching).

Also for Fast Interrupts r8-r12 are saved as well, allowing

fast handlers that do not have to save registers to the

stack.

17

ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table

18

Vector Table

Type Type Offset LR Priority

Reset SVC 0x0 – 1

Undefined Instruction UND 0x04 lr-4/2 6

Software Interrupt SVC 0x08 lr 6

Prefetch Abort ABT 0x0c lr-4 5

Data Abort ABT 0x10 lr-8 2

UNUSED – 0x14 – –

IRQ IRQ 0x18 lr-4 4

FIQ FIQ 0x1c lr-4 3

19

• See ARM ARM ARMv7 documentation for details.

• Defaults to 0x000000, is SCTL.V is 1 “high-vector”

0xffff0000

• If security mode implemented more complex, separate

vectors for secure/nonsecure, and on nonsecure the

SCTL.V lets you set it anywhere via VBAR

• Interrupts: IRQ = general purpose hardware,

FIQ = fast interrupt for really fast response (only 1),

SWI = syscalls, talk to OS

• FIQ mode auto-saves r8-r12.

20

Complications

• What about thumb or endian mode when call into

interrupt? Depends on flags in SCTLR register

• Stack pointer changes when handle interrupt (why?)

Need to set that up in advance.

21

Ways to return from IRQ

• subs pc,r14,#4

Sneakily branches and gets the right status register (due

to S in SUBS)

• sub r14,r14,#4

. . .

movs pc,r14 (or rfe)

• Another stores lr and other things to stack, then restores

sub r14,r14,#4

stmbd r13!,{r0-r12,r14}

22

. . .

ldmfd r13!,{r0-r12,pc}^
The caret means to loast cpsr from spsr

Exclamation point means to update r13 after popping.

23

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with

an attribute. Automatically restores to right address.
void function () __attribute__ ((interrupt ("IRQ")));

/* Can be IRQ , FIQ , SWI , ABORT and UNDEF */

void __attribute__ ((interrupt("UNDEF"))) undefined_instruction_vector(void) {

while (1) {

/* Do Nothing */

}

}

24

