ECE 598 — Advanced Operating

Systems
Lecture 7

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

13 February 2018 (!)

http://web.eece.maine.edu/~vweaver

Announcements

e Homework #£3 was assigned, due Thursday

e Be sure you have a serial cable if you need it.

HW#2 Review

e Code: everyone's code blinked fine
Sorry for the confusion, the C code should have specified
to blink GP1O18, not ACT
Timing of the blinking was not consistent, but possibly
that was due to Pi2/Pi3 differences.

e Size: C about 200 bytes, assembly 68 bytes?
Can look at .dis files for disassembly
C: 60 bytes of initialization, asm: 12 bytes for delay loop,
on C is 56 bytes (due to pessimization from volatile, etc)

-y)

also saves/restores LR and registers to maintain calling
convention. can't explain some of it
stdint.h shouldn’t add anything, just defines. Usually in
C you shouldn’t include code in header files. Loo for
self, /usr/include/stdint.h (though often includes other
files and lots of #defines

e volatile — have C compiler not optimize away stores

e C array of 32-bit ints vs actually byte-wise access
e SPI1_CEN_O. Bonus SPI ports

What are interrupts?

e A way to let hardware/software interrupt execution to
let the CPU know something important has happened.

e Notified immediately of something happening (as
opposed to polling, checking occasionally)

e Without interrupts processes can get stuck/greedy and
never let go of what they are doing.

e Do you need precise interrupts?

e Are interrupts good or bad?
o Can reduce latency... or make it worse (real-time, slow

-y 4

handler)

o Can add overhead. On OoO need to flush entire
pipeline, then enter kernel. Slow slow slow.

o Some HPC or virtual turn off interrupts if possible.

What generates interrupts?

e \What types of hardware generate interrupts?
Keyboard, timers, Network, Disk 1/0, serial etc.

e Some can be critical. Not empty UART FIFO fast
enough can drop data on floor.

e What is most frequent interrupt on typical OS? Timer
interrupt. regular timer. What is used for?
o Context switching
o Timekeeping, time accounting

Typical Interrupts

e Tell pointless 6502/Mockingboard example

e Set up interrupt source (Timer at 50Hz?)

e Install interrupt handler (usually vector at address that
jumps to your code to handle things)

o Handler should be fast, do whatever it needs to do (my
case, load up 14 registers with data) or even schedule
more work than later

o Disable interrupts if HW didn’t for us. Save/restore
any registers we're going to change so when we return

-y 7

no one notices
o Handler should ACK the interrupt (let hardware know
we handled things so it doesn't retrigger as soon as we
exit)
e Enable interrupts on device (often a flag to set)
e Enable (unmask) interrupts on your CPU. Often a
processor flag.

Exceptions and Interrupts

e All architectures are different

e ARM does it a little differently from others.

How to find out?

e ARM ARM for ARMv7 (27004 pages)
e Look at Linux source code

e Look at Raspberry Pi Forums

10

ARM has various Modes

e Modes:
e States
o ISA: ARM (normal), Thumb, Jazelle, ThumbEE
o Execution state (7)
o Security: Secure and Non-secure
e Privlege Level
o If secure: PLO = user, PL1 = kernel
o If non-secure: PLO = user, PL1 = kernel, PL2 =
hypervisor

/Y 11

ARM Modes

User

FIQ

IRQ
SVC

MON
ABT
HYP
UND
SYS

Jg U U U U U U U U

fast interrupt
Interrupt
Supervisor
monitor (only if security extensions)
abort
hypervisor (only if virtual extensions)
undefined instruction
system

12

ARM Modes — continued

e User mode — unprivledged, restricted. Can only move to
higher level by exception.

e System Mode — like USER, but no restrictions on
memory /registers. Sort of like running as root, cannot
enter by exception.

e Supervisor — kernel mode. SVC (syscall) instructions
take you here. Also at reset (boot).

e Abort — called if a memory or prefetch causes an
exception

-y 13

why is this useful? Virtual memory.

e Undefined — called when undefined instruction happens
why is this useful? Emulator?

e FIQ/IRQ — fast or normal interrupt

e HYP — hypervisor, for virtualization. A bit beyond this
class.

e Secure — secure mode, can lock things down.

-y 14

ARM CPSR Register

31 30 29 28 27 25 24 23 19 16 15 10 9 8 7 6 5 4 0
RESERVED
N(Z|C|V|Q| IT |J|gazisgzp | GEI3-0] IT E|A|I|F|T Mode
Condition \ Jazelle Greater/Equal Thumb If/Then Endian >~ | Processor
Flags Saturation SIMD Interrupt Masks Thumb Mode

e Current Program Status Register

e Contains flags in addition to processor mode

e Six privileged modes

e One non-privileged: user (cannot write CPSR), now
APSR?

e Interrupts and exceptions automatically switch modes

-y 15

ARM Interrupt Registers

User/Sys Hyp Fast IRQ Supervisor | Undefined Abort Monitor
r0
rl
r2
r3
rd
rb
ré
rf
r8 r8_fiq
r9 r9_fiq
r10 r10_fiq
r1l r11_fiq
r12 r12_fiq
r13/sp SP_hyp SP_fiq SP_irq SP_svc SP_und SP_abt SP_mon
r14/Ir LR_fiq LR_irq LR_svc LR_und LR_abt LR_mon
r15/pc
apsr
cpsr spsr_hyp spsr_fiq spsr_irq Spsr_svc spsr_und spsr_abt | spsr_mon
ELR_hyp

16

Unlike other architectures, when switching modes the ARM
hardware will preserve the status register, PC and stack and
give you mode-specific versions (register bank switching).
Also for Fast Interrupts r8-r12 are saved as well, allowing
fast handlers that do not have to save registers to the

stack.

-y 17

ARM Interrupt Handling

e ARM core saves CPSR to the proper SPSR

e ARM core saves PC to the banked LR (possibly with an
offset)

e ARM core sets CPSR to exception mode (disables
interrupts)

e ARM core jumps to appropriate offset in vector table

-y 18

Vector Table

Type Type | Offset | LR | Priority
Reset SVC | 0x0 — 1
Undefined Instruction | UND | 0x04 | Ir-4/2 0
Software Interrupt | SVC | 0x08 Ir 6
Prefetch Abort ABT | Ox0Oc | Ir-4 5
Data Abort ABT | O0x10 | Ir-8 2
UNUSED — Ox14 — —
IRQ IRQ | 0x18 | Ir-4 4
FIQ FIQ | Oxlc | Ir-4 3

19

e See ARM ARM ARMv7 documentation for details.

e Defaults to 0x000000, is SCTL.V is 1 “high-vector”
Oxffff0000

o If security mode implemented more complex, separate
vectors for secure/nonsecure, and on nonsecure the
SCTL.V lets you set it anywhere via VBAR

e Interrupts: IRQ = general purpose hardware,
FIQ = fast interrupt for really fast response (only 1),
SWI = syscalls, talk to OS

e FIQ mode auto-saves r8-r12.

/Y 20

Complications

e What about thumb or endian mode when call into
interrupt? Depends on flags in SCTLR register

e Stack pointer changes when handle interrupt (why?)
Need to set that up in advance.

/Y 21

Ways to return from IRQ

e subs pc,rl4, #4
Sneakily branches and gets the right status register (due
to S in SUBS)

e sub rl14,ri14, #4

movs pc,rl4 (or rfe)

e Another stores Ir and other things to stack, then restores
sub rl1l4,r14,#4
stmbd r13!,{r0-r12,r14}

-y 2

1dmfd r13!,{r0-r12,pc}"
The caret means to loast cpsr from spsr
Exclamation point means to update r13 after popping.

/Y 23

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with
an attribute. Automatically restores to right address.

void function () attribute__ ((interrupt ("IRQ")));

/* Can be IRQ, FIQ, SWI, ABORT and UNDEF x*/

void __attribute__((interrupt ("UNDEF"))) undefined_instruction_vector (void) {

while (1) {
/* Do Nothing */
+

