
ECE 598 – Advanced Operating
Systems
Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 February 2018

Announcements

• Homework #4 was posted

• Homework #3 was graded

1

HW#3 Overview

• Wasn’t as picky this time, but comment code!

• Serial port: most got value right

forgot to warn about floating point (say you wanted this

to be parameterizable)

Can you use floating point in kernel?

• printk: instead of /10, print remainder plus ’0’ instead

/16 (which converts to shift) and two cases. 0-9 same

as before, but A-F (you can just add ’A’-10 which I think

is 55)

2

Beauty of ASCII. Often complicated use of ternary

operator

technically upper vs lowercase %X vs %x

Can also use lookup table.

Be careful shifting, what if print 0xfffffff? Shift right?

Be sure unsigned! Also in C, shift right by 32?

• Be sure print hardware info (r1)

• Questions

◦ Why serial port?

◦ What is parity? Why is it disabled?

Faster (one fewer bit per byte), much bigger

3

infrastructure to handle, not even that great (only

detect one bit flip). Not that critical for text. What

would a file transfer do? (checksum?)

Some systems might not support? True, but why don’t

they support it?

◦ inline asm lets you write code that’s not possible in C.

Also lets you bypass compiler (if you think you can do

better)

Don’t confuse it with the volatile keyword.

◦ Why no strtok?

string.h is the header, contains no code. Just describes

4

the routine in the C library.

◦ Problems with OSX?

screen, need to plug and unplug? Be sure to turn

off HW flow control. Weird keybindings minicom.

DOS was ALT-whatever, but ALT values don’t go over

connection (and are not easy to get from text console

Linux) so used Control-A first to mean ALT.

5

Things added for HW#4

6

Device Tree

7

include and quotes

• What is the difference between #include <string.h> and

#include "string.h"

• The first looks at the system includes

• The second looks in your local directory (or what you

specify with -I on the command line)

8

string manipulation

• Most C-based OSes quickly obtain string manipulation

functions

• strncmp(), strlen(), strncpy(), memcpy(), memset(),

memcpy()

• What’s the different between strncpy and memcpy?

• How optimized do these routines need to be?

• memcpy() is often short blast of C

9

for(i=0;i<n;i++) { *d=*s; d++; s++;}

but it can be optimized to death.

• Should I mention memmove difference? Why it’s there,

hazard when you don’t use it right? (memmove the areas

can overlap) (what happens if you copy backwards)

10

no more \r

• I’ve modified uart write() so you no longer need to do

\r.

11

writing a shell

• What is a shell, or monitor routine?

• How can you parse a command line?

• Read values into a buffer. When enter pressed, check

for a command. strcmp()? By hand? strtok() if fancy?

• Do whatever the command indicates, then reset buffer

pointer.

• Print an error if unknown command.

12

LED routines

• I added LED routines in led.c along with gpio.c

• This abstracts the code away, so it should work on any

kind of Pi transparently (though very slightly slower than

direct coding it)

• Good for you, but also makes grading easier for me.

13

Interrupt Roundup

Any questions on interrupts?

14

Interrupts Schemes

• More info on nested interrupts

• More info on interrupt priority

15

Interrupts on Linux

• Can look in /proc/interrupts

• Latency matters. Old days had problems where you’d

lose serial interrupts (small FIFOs) if your disk drive took

too long, etc.

• Cannot do anything that might block in an interrupt.

Can you do I/O? Can you do a printk?

• Top Half / Bottom Half

Have interrupt routine be bare minimum short. ACK

16

interrupt, handle super pressing thing (copy data out of

FIFO) Then tell the kernel to handle the rest later.

So you might have a tasklet/kernel thread that runs

occasionally (and is fully interruptible) that will do the

rest.

For example, network packet comes in, important to read

the packet and ACK interrupt. Put it in queue, then later

the code that does longer latency stuff (decodes packet,

does ethernet or TCP/IP stuff, then finally copies the

data to the code waiting)

• Timer interrupt. How often? 100Hz originally. Up to

17

1000Hz (why?) now configurable, often at 250Hz.

18

Userspace

• Why use userspace (why not everything in kernel like

DOS?)

Slower, but has some protections from bad

programs/security

• Can’t access all of CPSR register

Can’t turn off interrupts

Can’t switch to privileged modes

• If virtual memory enabled, can’t access protected/kernel

19

memory

• Can you still access MMIO?

20

Entering User Mode
mov r0 , #0x10

msr SPSR , r0

ldr lr , =first

movs pc , lr

21

System Calls

• If we are running in user mode, how can we get back

into the kernel?

• Interrupts! Timer interrupt is often used to periodically

switch to the kernel and it can then do any accumulated

tasks.

• How can we manually call into the kernel when we need

to?

• System calls!

• Can watch system calls with strace command on Linux

22

ARM System Calls

• On ARM a SWI instruction (sometimes is shown as a

SVC instruction) causes a software interrupt.

• This calls into the kernel SWI Interrupt handler (which

we will have to set up)

• Based on the state of the registers at the time of the

SWI, the kernel will do something useful.

23

Linux ARM System Call Interface

• EABI: Arguments in r0 through r6. System call number

in r7.

swi 0

Return value in r0

• OABI: Arguments in r0 through r6. swi

SYSBASE+SYSCALLNUM. Why bad? No way to get swi

value except parsing back in instruction stream.

24

SWI Interrupt Handler
uint32_t __attribute__ ((interrupt("SVC"))) swi_handler(

uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3) {

register long r7 asm ("r7");

printk("Syscall %d\n",r7);

/* Copy result into place of r0 on return stack */

asm volatile("str %[result],[sp ,#0]\n"

: /* output */

: [result] "r" (result) /* input */

:); /* clobber */

return result;

}

25

Linux System Call Results

• Result is a single value (plus contents of structures

pointed to)

• How can you indicate error?

• On Linux, values between -4096 and -1 are treated as

errors. Usually -1 is returned and the negative value is

made positive and stuck in errno.

• What are the limitations of this? (what if -4000 is a

valid return?)

26

Non-ARM syscalls

• It’s up to the OS and architecture

• x86 it’s int 0x80 on 32-bit and syscall on 64-bit

• Some OSes pass paramaters on stack, Linux it’s usually

in registers for speed.

27

Application Binary Interface

What is an ABI and why is it necessary?

28

Linux GNU EABI

• Procedure Call Standard for the ARM architecture

• ABI, agreed on way to interface with system.

• Arguments to registers. r0 through r3.

• Return value in r0.

• How to return float, double, pointers, 64-bit values?

(There’s a new ABI on ARM, hf (hard floating point)

that’s mostly about how to pass floating point values

around)

• How to pass the above?

29

• What if more than 4 arguments? (stack)

• Is there a stack, how aligned?

• Structs, bitfields, endianess?

• Callee vs Caller saved registers? (A subroutine must

preserve the contents of the registers r4-r8, r10, r11 and

SP)

• Frame Pointer?

30

ABI Purpose

• An ABI is used so that code written by different groups

knows how to communicate (code to c-library, c-library

to kernel, etc)

• If you are writing your own OS from scratch can write

own ABI, but then not compatible with existing code

• Writing in assembly you can ignore the ABI for speed,

but only if you do not call out to anyone else’s code

31

Calling a Syscall
static inline uint32_t syscall3(int arg0 , int arg1 , int arg2 , int which) {

uint32_t result;

asm volatile ("mov r0 , %[arg0]\n"

"mov r1, %[arg1]\n"

"mov r2, %[arg2]\n"

"mov r7, %[which]\n"

"swi 0\n"

"mov %[result], r0\n"

: [result] "=r" (result)

: [arg0] "r" (arg0),

[arg1] "r" (arg1),

[arg2] "r" (arg2),

[which] "r" (which)

: "r0", "r1", "r2", "r7");

return result;

}

32

