
ECE 598 – Advanced Operating
Systems

Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 February 2018

Announcements

• Homework #5 will be posted

1

Blocking vs Nonblocking Syscall

• Blocking system calls – program stops, waits for reply

before it can continue

• Nonblocking – system call returns right away, although

the result might just be “no data available”

• What if a blocking system call tried to block inside the

kernel with interrupts disabled? Real OS uses queues

and wakeups to put processes to sleep when blocking,

not just busy spinning.

2

Userspace Executables

3

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

4

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

5

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

6

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

7

Linux Virtual Memory Map

We will go over virtual memory in much greater detail

later.

8

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

9

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

10

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

DANGER: MELTDOWN

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

11

Loader

• /lib/ld-linux.so.2

• loads the executable

12

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes

• Lots of debate about what is better: apt-get install vs

the app-store

13

How Dynamic Linking Works

• Can read about how things load on Linux here: https:

//lwn.net/Articles/630727/, https://lwn.net/

Articles/631631/

• ELF executable can have interp section, which says to

load /lib/ld-linker.so first

• This loads things up, then initialized dynamic libraries.

• Links things in place, updates function pointers and

shared variables, offset tables, etc.

• Lazy-Linking is possible. Function calls just call to a

14

stub that calls into linker. Only resolves the link if you

actually use it. Why is this a benefit (faster startup, not

load things not need). Does add indirection every time

you call.

15

How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

Possibly not ELF. Shell scripts, etc.

16

• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

17

UCLinux

Linux typically relies on MMU (virtual memory). You can

run it on systems w/o virtual memory, this version is called

ucLinux (micro-controller Linux).

Our OS in the homework is similar in design to this.

18

Flat File Format

• http://retired.beyondlogic.org/uClinux/bflt.htm

• bFLT or 0x62, 0x46, 0x4C, 0x54

• struct flat_hdr {

char magic [4];

unsigned long rev; /* version */

unsigned long entry; /* Offset of first executable instruction

with text segment from beginning of file */

unsigned long data_start; /* Offset of data segment from beginning of

file */

unsigned long data_end; /* Offset of end of data segment

from beginning of file */

unsigned long bss_end; /* Offset of end of bss segment from beginning

of file */

/* (It is assumed that data_end through bss_end forms the bss segment .) */

19

unsigned long stack_size; /* Size of stack , in bytes */

unsigned long reloc_start; /* Offset of relocation records from

beginning of file */

unsigned long reloc_count; /* Number of relocation records */

unsigned long flags;

unsigned long filler [6]; /* Reserved , set to zero */

};

20

Figuring out how it actually works

• Spec isn’t worth much

Your best bet is various Wikis and blog postings (TI-

nspire?)

• Actual code more useful

• fs/binfmt flat.c in kernel source.

• Making the binaries hard. Not just a simple matter of

telling gcc or linker (no one has bothered yet). Most

21

people use “elf2flt” but not-standard and hard to even

find which code repository to use.

22

Loading a flat binary

• load flat binary()

• adjust stack space for arguments (argv and envp)

– loading header. Uses ntohl(). Why?

Endian issues.

– check for bFLT magic

– check version

– check rlimits() [stack, etc]

– setup new exec()

23

– allocate mem for our binary (separately handle XIP

and compressed format)

– read code()

– put all of our values in mm struct (Start/stop of all

sections)

– RELOCATION – fix up any symbols that changed due

to being moved. (HOW DOES THIS WORK)

– flush icache()

– zero the BSS and STACK areas

• setup shared libraries

24

• install exec creds()

• set binfmt()

• actually copy command line args, etc, at front of stack

• put stack pointer in mm structure

• start thread()

25

PIC/PIE

• Position independent code

• Instead of loading from absolute address, uses an offset,

usually in a register or PC-relative.

• gcc has an option -fPIC to generate

26

Relocation

• List of offsets to pointers

• PIC compiles things with zero offset

• At load time the pointers are fixed up to have the load

address

• Separate relocation for GOT (global offset table) which

is a list of pointers at the beginning of the data segment,

ending with -1

27

Flat Shared Libraries

• Like mini executables, can have up to 256 of them

• Libraries loaded in place, then the callsites are fixed up

to have the right address.

• Also at start time the various library init routines are

called

28

Execute in Place

• Want our text in ROM. Why? Save space, save copying.

Why bad? ROM often slow, more complicated binaries

(data not follow text)

29

RAM Disk

• How to load our code?

• Can we load from disk? No driver yet.

• We can create a RAM disk, will be loaded by our

bootloader right after. Sometimes called an initrd.

30

