
ECE 598 – Advanced Operating
Systems

Lecture 11

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

27 February 2018

http://www.eece.maine.edu/~vweaver

Announcements

• Homework #5 Posted

• Some notes:

◦ Review of C string handling, strcmp/strncmp and

srcpy/strncpy/strlcpy

◦ Be careful with the sizeof() operator, especially with

strings. sizeof(char[BUFSIZ]) vs sizeof(char *)

◦ Talk about software engineering best practices. Unit

tests for printf. Code commenting. Source code

versioning (git). We have been a bit lazy in this class.

1

HW#4 Review

• Note: timer running at 1MHz which is 10e6 Hz, not

2e20 Hz.

• Questions

◦ FIQ vs IRQ difference? FIQ banks some registers, so

is faster (no saving), higher priority, only one so don’t

have to search for source.

◦ BASIC PENDING bit 19 is interrupt 57 which is UART.

Manual is unclear, says it’s in the GPU interrupt table

but that’s probably a typo.

2

◦ How to change modes? Write to the mode field of

CPSR register.

Can we trigger a hardware interrupt to get us into the

hardware interrupt mode?

What about jumping directly to the interrupt vector?

◦ Subtract 4 because it offsets by four when saving the

PC. Historical reasons?

3

Context switching

• First time you get it working you get excited about

having an AAA program and BBB programing printing

ABABABA

4

Setting up the First Process

• First set up user registers. How do you do this from

kernel/supervisor mode? Tricky, ARM created a special

“system” mode (user+permissions) to make this easier.

• Set up stack

• Set the SPSR and link register to act as if we were

returning from an exception, but with the return address

the start of our user program.

• Return

5

Starting a Process and Context switching
r14 the process LR

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0 PCB pointer points here (for stm instruction)

lr pc from process to return to

spsr

6

Process Control Block

• PCB – process control block. One for each process

• r0-r14 saved. PC. cpsr

• Pid, uid

• Memory ranges

• Process accounting

• Ready, sleeping, waiting, etc

7

Entering User Mode
mov r0 , #0x10

msr SPSR , r0

ldr lr , =first

movs pc , lr

8

ARM Context Switch

r12 = new process PCB, r13 = old
STM sp ,{R0 -lr}^ ; Dump user registers above R13.

; ^ means get user register

MRS R0 , SPSR ; get the saved user status

STMDB sp , {R0 , lr} ; and dump with return address below.

; lr is the handler lr, pointing

; to pc we came fom

LDR sp , [R12], #4 ; Load next process info pointer.

CMP sp , #0 ; If it is zero , it is invalid

LDMDBNE sp , {R0 , lr} ; Pick up status and return address.

MSRNE SPSR_cxsf , R0 ; Restore the status.

LDMNE sp , {R0 - lr}^ ; Get the rest of the registers

NOP

SUBSNE pc, lr, #4 ; and return and restore CPSR.

; Insert "no next process code" here.

9

Storing
ldmfd r13!,{r0-r3,r12 ,r14}

ldr r13 ,= PCB_PtrCurrentTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

stmia r13 ,{r0 -r14}^

mrs r0 ,spsr

stmdb r13 ,{r0 ,r14}

10

Loading
ldr r13 ,=PCB_PtrNextTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

ldmdb r13 ,{r0 ,r14}

msr spsr_cxsf ,r0

ldmia r13 ,{r0=r14}^ ; ^ means update user regs

ldr r13 ,= PCB_IRQstack

ldr r13 ,[r13]

movs pc,r14

11

Scheduling

• Picks which jobs to run when

• Complex problem

• Simple: batch scheduling. Each run to completion.

• Multi-tasking.

• Computation often mixed with slow I/O

• Avoid context switching if possible

12

• Can switch when task voluntarily yields, if kernel blocks

on I/O, or if timeslice runs out

• Simple round-robin scheduling

• Different type of processes. Long-running CPU bound

where extra latency doesn’t matter? Interactive things

like GUI interfaces, video games, music playing where

too much delay is bad? Real time constraints?

13

Scheduling Goals

• All: fairness, balance

• Batch: throughput (max jobs/hour), turnaround (time

from submission to completion), CPU utilization (want

it busy)

• Interactive: fast response, doesn’t annoy users

• Real-time: meet deadlines, determinism

14

Batch Scheduling

• First-come-first-served (what if 2-day long job submitted

first)

• Shortest job first

• Many others

15

Interactive Scheduling

• Round-robin

• Priority – “nice” on UNIX

• Multiple Queues

• Others (shortest process, guaranteed, lottery)

• Fair scheduling – per user rather than per process

16

Real-time Scheduling

• Complex, more examples in 471 or real time OS course

17

The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

18

• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs,

each get 20%). Per user? (5 users, each get 20%).

19

Per-process? Per-thread? Multi-processors? Hyper-

threading? Heterogeneous cores? Thermal issues?

20

Process States

• Running – on CPU

• Ready – ready but no CPU available

• Blocked – waiting on I/O or resource

• Terminated

21

Linux Scheduler Details

22

Threads

• Each process has one address space and single thread of

control.

• It might be useful to have multiple threads share one

address space

GUI: interface thread and worker thread?

Game: music thread, AI thread, display thread?

Webserver: can handle incoming connections then pass

serving to worker threads

Why not just have one process that periodically switches?

23

• Lightweight Process, multithreading

• Implementation:

Each has its own PC

Each has its own stack

• Why do it?

shared variables, faster communication

multiprocessors?

mostly if does I/O that blocks, rest of threads can keep

going

allows overlapping compute and I/O

24

• Problems:

What if both wait on same resource (both do a scanf

from the keyboard?)

On fork, do all threads get copied?

What if thread closes file while another reading it?

25

Common Thread Routines

• pthreads

thread init()

thread create() – specify function

thread exit()

thread yield() – if cooperative

26

Thread Implementations

• Cause of many flamewars over the years

27

User-Level Threads (N:1 one process many
threads)

• Benefits

– Kernel knows nothing about them. Can be

implemented even if kernel has no support.

– Each process has a thread table

– When it sees it will block, it switches threads/PC in

user space

– Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

28

kernel context switch)

– Can have own custom scheduling algorithm

– Scale better, do not cause kernel structures to grow

• Downsides

– How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

– Co-operative, threads won’t stop unless voluntarily give

up.

Can request periodic signal, but too high a rate is

inefficient.

29

– Can’t take advantage of multiple CPUs

30

Kernel-Level Threads (1:1 process to
thread)

• Benefits

– Kernel tracks all threads in system

– Handle blocking better

• Downsides

– Thread control functions are syscalls

– When yielding, might yield to another process rather

than a thread

31

– Might be slower

32

Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

33

Green Threads

• Managed by virtual machine

• Java

34

Misc

• Pop-up threads? Thread created for incoming message?

• adding multithreading to code?

How to handle global variables (errno?)

Thread-safe functions. Is strtok thread-safe? malloc?

any routine that might not be re-entrant

How are multiple stacks handled? One option each

thread gets own copy of global variables. This can’t

be expressed by default in C, you need special routines,

thread-local variables.

35

POSIX Threads (pthreads)
#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define NUM_THREADS 10

void *perform_work(void *argument) {

int value;

value = *((int *) argument);

printf("Thread with argument %d!\n", value);

return NULL;

}

int main(int argc , char **argv) {

pthread_t threads[NUM_THREADS];

int thread_args[NUM_THREADS];

36

int result , i;

/* create threads one by one */

for (i = 0; i < NUM_THREADS; i++) {

thread_args[i]=i;

printf("Main: creating thread %d\n", i);

result = pthread_create (& threads[i],

NULL , perform_work , (void *) &thread_args[i]);

if (result !=0) {

fprintf(stderr ,"ERROR!\n");

return -1;

}

}

/* wait for each thread to complete */

for (i = 0; i < NUM_THREADS; i++) {

/* block until each thread completes */

result = pthread_join(threads[i], NULL);

printf("MAIN: thread %d has completed\n", i);

if (result !=0) {

fprintf(stderr ,"ERROR!\n");

return -1;

}

}

37

printf("MAIN: All threads completed successfully\n");

return 0;

}

38

POSIX Threads (pthreads) programming

• Pass -pthread to gcc

• Thread management

– pthread create (thread,attr,start routine,arg)

– pthread exit (status)

– pthread cancel (thread)

– pthread attr init (attr)

– pthread attr destroy (attr)

– pthread join (threadid,status) – blocks thread

39

until specified thread finishes

– pthread detach (threadid)

– pthread attr setdetachstate (attr,detachstate)

– pthread attr getdetachstate (attr,detachstate)

– pthread attr getstacksize (attr, stacksize)

– pthread attr setstacksize (attr, stacksize)

– pthread attr getstackaddr (attr, stackaddr)

– pthread attr setstackaddr (attr, stackaddr)

• Mutexes (synchronization)

– pthread mutex init (mutex,attr)

40

– pthread mutex destroy (mutex)

– pthread mutexattr init (attr)

– pthread mutexattr destroy (attr)

– pthread mutex lock (mutex)

– pthread mutex trylock (mutex)

– pthread mutex unlock (mutex)

• Condition Variables – another way to synchronize

• Synchronization

41

Linux

• Posix Threads

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads – use clone syscall, SIGUSR1 SIGUSR2 for

communicating.

Could not implement full POSIX threads, especially with

signals. Replaced by NPTL

Hard thread-local storage

42

Needed extra helper thread to handle signals

Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processed, not clear they are subthreads

• NPTL – New POSIX Thread Library

Kernel threads

Clone. Add new futex system calls. Drepper and Molnar

at RedHat

Why kernel? Linux has very fast context switch

compared to some OSes.

Need new C library/ABI to handle location of thread-

43

local storage

On x86 the fs/gs segment used. Others need spare

register.

Signal handling in kernel

Clone handles setting TID (thread ID)

exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

44

Misc

• adding multithreading to code?

How to handle global variables (errno?)

Thread-safe functions. Is strtok thread-safe? malloc?

any routine that might not be re-entrant

How are multiple stacks handled? One option each

thread gets own copy of global variables. This can’t

be expressed by default in C, you need special routines,

thread-local variables.

45

IPC – Inter-Process Communication

• Processes want to communicate with each other.

Examples?

• Two issues:

getting the message across

synchronizing

• signals

• network, message passing (send, receive)

46

• shared memory (mmap)

47

Linux

• Signals and Signal handlers

Very much like interrupts

Concurrency issues much like threading

• Pipes

stdout of one program to stdin of another

one-way (half duplex)

ls — sort

pipe system call / dup

48

C library has popen()

• FIFOs (named pipes)

exist as file on filesystem

• SystemV IPC

shared memory, semaphores ipcs

• Just use mmap

• Unix domain sockets

Can send file descriptors across

49

• Splice – move data from fd to pipe w/o a copy? VM

magic?

• Sendfile. zero copy?

50

