
ECE 598 – Advanced Operating
Systems

Lecture 14

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 March 2018



Announcements

• HW#6 was due.

• HW#7 will be posted eventually.

• Project posted. See course website for details.

Topics due 29 March.

• Midterms not graded yet.

1



Pi-3B+ Notes

• Pi3B+ released over break (on Pi day)

• Ordered one

• Not sure if it will make a difference in this class

• Bigger difference for Pi cluster. Gigabit ethernet (still

not staturate), better thermal support.

• Still only 1GB of RAM. Partly SoC limitation, but also

they said it’s because of high DRAM prices

2



HW#6 Notes

• Sorry for the delay getting it out. Part of it was finally

getting device tree support (it detects memory properly

now, as well as should tell you pi2/pi3)

• Processes

◦ Meant to have you do more work on the scheduling

side. Getting A/B working is always a huge milestone

in making your own OS

◦ Took me weeks the first time, thought I could simplify

it down. But no, still a huge mass of assembly and

3



had trouble sorting it out (lack of comments and code

2 years old!)

◦ Each process has a structure that holds info on it, plus

the save state.

• Userspace/Executables

◦ Entering into userspace for first time is a pain.

◦ Previous homework just called a function and treated

as an exe, but that a bit of a hack.

◦ So had to implement executables (right now, bare

code/data blob. A problem as working on HW#7

issue with BSS not actually being allocated so program

4



crashes) Working on bFLT support.

• Filesystem

◦ But, needed a place for them to live. So a simple

ramdisk and romfs (we’ll talk about filesystems soon)

• Fork/Exec

◦ How to executables start? Unix we mentioned

fork/exec. However a true fork requires virtual memory

and we don’t have that yet.

◦ So there’s a stripped-down version of fork called vfork()

you use in this case. The way it works is that as soon

as you fork, the parent goes to sleep and the child

5



is running inside the parent and the *only* thing the

child it is allowed to do is either call exec or exit()

(not even plain exit() as that would exit the parent)

◦ execve you pass in the program you want to run, as

well as the command line arguments. It loads from disk

the executable, allocates memory, sets up the process,

marks as ready to run.

• Scheduler/Idle Thread

◦ How does the scheduler work? Simple, nothing fancy.

There’s a doubly linked-list of all processes and when

a timer interrupt happens the list is walked to find the

6



next one that’s runnable.

◦ What if none available? Then run the idle thread.

• Waitqueues

◦ Also implements wait queues. If you are sleeping

(because of a vfork) or waiting on I/O (waiting for

keypress) you get put to sleep and put on a linked-list

waitqueue. Then when I/O comes in, you are woken

up, removed from the queue, and marked as ready.

◦ This is tricky as in theory you are sort of sleeping in

the kernel and that’s how we implement it, so we need

to save our kernel register state as well as the user

7



space. There’s probably better ways to do this.

• Waitpid

◦ In UNIX like operating systems once you have children

via fork, if they die they don’t go away. zombies. You

can wait using waitpid() to see when they die, and

once you use waitpid they are finally freed.

◦ So how do you wait in the background like in the HW?

Had to implement waitpid(NOHANG) which means

check to see if any children have died. If not, continue.

Otherwise handle them so they can die.

◦ So in the shell after every command is typed it does

8



a waitpid(NOHANG) to see if any of the background

tasks finished.

9



Virtual Memory Redux

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection

10



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

11



Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...

12



Page Table

• Collection of Page Table Entries (PTE)

• Some common components: ID of owner, Virtual Page

Number, valid bit, location of page (memory, disk, etc),

protection info (read only, etc), page is dirty, age (how

recent updated, for LRU)

13



Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.

14



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

15



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

16



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

17



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

• TLB shootdown – when change a setting on a mapping

18



and TLB invalidated on all other processors

19



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out (ASID=Address Space ID)

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux

20



What happens on a memory access

• If in TLB, not a problem, right page fetched from

physical memory, TLB updated

• If not in TLB, then the page tables are walked

• It no physical mapping in page table, then page fault

happens

21



What happens on a page fault

• Walk the page table and see if the page is valid and

there

• ”minor” – page is already in memory, just need to point a

PTE at it. For example, shared memory, shared libraries,

etc.

• ”major” – page needs to be created or brought in from

disk. Demand paging.

Needs to find room in physical memory. If no free space

22



available, needs to kick something out. Disk-backed

(and not dirty) just discarded. Disk-backed and dirty,

written back. Memory can be paged to disk. Eventually

can OOM. Memory is then loaded, or zeroed, and PTE

updated. Can it be shared? (zero page)

• ”invalid” – segfault

23



Uses of VM in an operating system

• Process separation, security

• Each process own view of memory

• Kernel mapped into each process address space

• Auto-growing stack

• zero page?

• Memory overcommit

• Demand paging

• Copy-on-write with fork

24



What happens on a fork?

• Do you actually copy all of memory?

Why would that be bad? (slow, also often exec() right

away)

• Page table marked read-only, then shared

• Only if writes happen, take page fault, then copy made

Copy-on-write (COW)

25



Virtual Memory Wrapup

26



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

• Compromise: multiple page sizes.

Complicate O/S and hardware. OS have to find free

blocks of contiguous memory when allocating large page.

27



• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

28



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Linus Torvalds hates this.

29



• Hit an upper limit around 16-32GB because entire low

4GB of kernel addressable memory fills with page tables

30



ARMv7 Virtual Memory

• Our OS we set up a 1:1 Virtual to Physical ”Section”

Mapping with 1MB pages

• Set up a pagetable, 4k table that is 14-bit aligned

• ARMv7 supports two pagetables, one for kernel-type

thing that’s fixed and always there, one for process that

you can swap in/out

• Pagetable has lots of fields

◦ Address (31-20)

◦ NS - not secure

31



◦ nG - not global

◦ S - shared

◦ AP[2:0] access permissions (kernel r/w, kernel r/o,

anyone r/w, anyrone r/o, no access)

◦ TEX - caching (cachable, no cache)

◦ Domain - up to 16 domains with different checking

permissions

• Setup pagetable, point to it

• Setup domains (want 0x55555555 not 0xffffffff or won’t

check)

• Flush TLB/Caches?

32



• Enable MMU

33



ARMv7 Caches

• Caches are small, fast memories that mirror parts of

DRAM for speed

• Important for performance, really hard to set up on

ARMv7

34



Devices

• Character devices – read a sequence of characters

incoming, like a serial connection

open/read/write

• Block devices – read chunks of data with random access,

can seek back and forth

open/read/write/lseek

• /dev, mknod

35



Block Devices

• Disks?

• Ramdisk?

36


