
ECE 598 – Advanced Operating
Systems

Lecture 20

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 April 2018

http://web.eece.maine.edu/~vweaver


Announcements

• Project topics were due

• HW#10 might be delayed

1



Project Notes

• Unknown interrupt errors caused by power-sag,

noticeable when stressing processor(s)

• Varying levels of project difficulty.

• If you get stuck, don’t stress too much.

• Also understand that the OS we’re using is very limited,

so for something like decoding a filesystem just getting

files dumped from it is an accomplishment, let alone

hooking up all the hooks in the OS.

• Old fashioned PS/2 keyboard. IBM PS/2, not

2



playstation. PC standard for keyboards until USB took

over. Much simpler than USB, mostly just a serial

port, sort of vaguely like SPI. The keyboard has a

micrcontroller that does the scanning. Doesn’t return

ASCII, but scancodes which you might have to decode

(more fun, different countries keyboards return different

scancodes for letters)

• Writing C programs in userspace. Hard to use the subset

that can be handled (imagine if doing C++). gcc is too

clever, will do things like map

printf("%s","Hello World");

3



to

puts("Hello World");

which is trouble if we don’t implement puts.

4



Multi-Processing

5



Hardware Concerns

• Multi-processing

Symmetric, Asymmetric

SMP vs CMP (Symmetric and Chip Multi-processing)

• Multi-threading

(Hyperthreading, SMT)

• Shared memory vs Distributed

Shared memory, a CPU can write a value to memory,

read it back and it will be different (another CPU can

6



write to it)

• UMA, NUMA, CC-NUMA (cache-coherent)

Non-uniform memory access

• How many copies of the OS? One per core or single

image? One per core is more like a cluster.

7



Multi-Processor Resource Sharing

• How are resources shared in SMP system?

• Any core can access any of the devices. Need locking.

• What about interrupts?

◦ Have one core handle all interrupts?

Might have better cache behavior

◦ Round-robin interrupts to each core?

Reduces load on core0 but hurts others.

◦ Balance interrupt load across processors?

8



OS Support for SMP

• How can we have multiple cores share one OS-image?

• Big-kernel-lock, but poor performance

• Only parts of OS happen at once. Scheduler can run

at same time as serial driver or filesystem read or page

fault

• Split up with fine-grained critical sections.

• Suddenly deadlocks are a problem.

• What kinds of locks?

◦ Spinning easiest, but poor performance.

9



◦ Switch threads. Multi-threading OS?

◦ Linux has kernel threads (look in top for things starting

with k or rcu). Interrupt handlers have fast handler

and worker threads.

10



SMP Scheduling

• 4 processors, 5 jobs

How to avoid ping-ponging? Better to make two

processes slow or all of them?

• Gang scheduling – if you have processes that are using

IPC (or multithreads) you want to schedule all at the

same time so can communicate without having to wait

through multiple context switches.

• Keeping jobs on same CPU started on (why is this

good?) Cache behavior. TLB, NUMA.

11



Why might you want to move them?

• When might you want to run everything on one core

even though lots available? Power! Can put rest of

CPUs to sleep.

• How do you online/offline hotswap processors.

12



Initializing Multicore on Raspberry Pi

• Bare Metal

◦ Detect which processor you are on

mrc p15 , 0, r3 , c0 , c0 , 5

ands r3, #3 /* CPU ID is Bits 0..1 */

bne wait_forever /* If not CPU zero , go to sleep */

◦ “park” the extra CPUs. Put in tight loop, wfe (wait

for exception) when wake, check a flag to see if they

should start and jump to address if true. Otherwise,

back to sleeping.

◦ To wake, use SEV to send event

13



• Raspberry Pi booth firmware does this for you

It copies some code to 0x0 and executes it before jumping

to your code at 0x8000

◦ This code parks the other cores

◦ each process has a mailbox, if you write an address

there it will jump to it core 1: 0x4000009C core 2:

0x400000AC core 3: 0x400000BC

◦ They are waiting in WFE so have to send SEV too

• Other things you will need to do:

◦ Set up stacks for each CPU (why can’t they all share

the CPU0 stack?)

14



◦ Start up virtual memory and caches

Locking depends on the caches working

◦ Start them into idle thread

◦ Start scheduling jobs?

15



Multicore Concerns

16



Race Conditions

• Shared counter address

RMW on ARM

Thread A reads value into reg

Context switch happens

Thread B reads value into reg, increments, writes out

Context switch back to A

increments value, writes out

What happened?

What should value be?

17



Critical Sections

• Want mutual exclusion, only one can access structure at

once

1. no two processes can be inside critical section at once

2. no assumption can be made about speed of CPU

3. no process not in critical section may block other

processes

4. no process should wait forever

18



How to avoid

• Disable interrupts. Heavy handed, only works on single-

core machines.

• Locks/mutex/semaphore

19



Mutex

• mutex lock: if unlocked (0), then it sets lock and returns

if locked, returns 1, does not enter.

what do we do if locked? Busy wait? (spinlock) re-

schedule (yield)?

• mutex unlock: sets variable to zero

20



Semaphore

• Up/Down

• Wait in queue

• Blocking

• As lock frees, the job waiting is woken up

21



Locking Primitives

• fetch and add (bus lock for multiple cores), xadd (x86)

• test and set (atomically test value and set to 1)

• test and test and set

• compare-and-swap

◦ Atomic swap instruction SWP (ARM before v6,

deprecated)

◦ x86 CMPXCHG

◦ Does both load and store in one instruction!

◦ Why bad? Longer interrupt latency (can’t interrupt

22



atomic op)

◦ Especially bad in multi-core

• load-link/store conditional

◦ Load a value from memory

◦ Later a store to same memory address.

◦ Only succeeds if no other stores to that memory

location in interim

◦ ldrex/strex (ARMv6 and later)

• Transactional Memory

23



Locking Primitives

• can be shown to be equivalent

• how swap works:

◦ lock is 0 (free). r1=1; swap r1,lock

◦ now r1=0 (was free), lock=1 (in use)

◦ lock is 1 (not-free). r1=1, swap r1,lock

◦ now r1=1 (not-free), lock still==1 (in use)

24



Memory Barriers

• Not a lock, but might be needed when doing locking

• Modern out-of-order processors can execute loads or

stores out-of-order

• What happens a load or store bypasses a lock instruction?

• Processor Memory Ordering Models, not fun

• Technically on BCM2835 we need a memory barrier any

time we switch between I/O blocks (i.e. from serial

to GPIO, etc.) according to documentation, otherwise

loads could return out of order

25



Resources

• If you do not give exclusive access, bad things can

happen. Imagine one process printing a document, half

done and another task switched in and also starts writing

to the printer.

• Pre-emptible resource

• Non-preemptible resource.

• Usually protected by locks.

• More complex if protected by two or more locks (need

two resources)

26



Deadlock

• Two processes both waiting for the other to finish, get

stuck

• One possibility is a bad combination of locks, program

gets stuck

• P1 takes Lock A. P2 takes Lock B. P1 then tries to take

lock B and P2 tries to take Lock A.

27



Livelock

• Processes change state, but still no forward progress.

• Two people trying to avoid each other in a hall.

• Can be harder to detect

28



Starvation

• Not really a deadlock, but if there’s a minor amount

of unfairness in the locking mechanism one process

might get “starved” (i.e. never get a chance to run)

even though the other processes are properly taking and

freeing the locks.

29



How to avoid Deadlock

• Don’t write buggy code

• Reboot the system

• Kill off stuck processes

• Pre-emption (let one of the stuck processes run anyway)

• Rollback (checkpoint occasionally)

30



Priority Inversion

• Low-importance task interrupts a high-priority one

• Say you have a camera. Low-priority job takes lock to

take picture.

• High-priority task wants to use the camera, spins waiting

for it to be free. But since it is high-priority, the low

priority task can never run to free the lock.

31



Locking in your OS

• When?

• Interrupts

• Multi-processor

• Pre-emptive kernel (used for lower latencies)

• Big-kernel lock? Fine-grained locking? Transactional

memory?

• Semaphores? Mutexes

• Linux futexes?

32



Where does our OS need locks?

• Does a single-core operating system need locks?

Yes, interrupts can cause similar troubles

• Any shared resources

• What if multiple processes try to write the console at

the same time?

• What if try to update the memory allocation/free list at

same time?

33


