
ECE 598 – Advanced Operating
Systems

Lecture 23

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 April 2018

http://web.eece.maine.edu/~vweaver


Announcements

• HW#10 was posted.

Shared memory issue was other cores booting in VM

mode.

Got IPI working.

Stuck trying to get per-core current process

• Projects on Thursday. Last minute volunteers?

Would be nice to have at least one more group.

• Midterm on May 1st (Tuesday). Not cumulative.

1



Project Presentations

• Aim for 8 minutes with maybe 2 min for questions

• Can present with slides if you want

• Mostly just showing off your project idea and what you

accomplished.

• Intro (background), Experimental Setup, Results,

Comments on what worked and what didn’t, Future

Work, Conclusion, Questions

• Feel free to give demo if possible.

2



Midterm Review

• Virtual Memory: what it’s good for, how two addresses

can have the same address

• Filesystems: Fat, ext4, others. Why use fat? Virtual

filesystems like /proc

• Multi-core/Locking/Deadlock

• IPC

• Security

• Maybe a brief graphics question

3



OS Security Continued

4



Users/Passwords

• Multi-user systems — are they needed? How do they

work?

• Linux UID, GID

How big is UID? Was 16 bits (64k) eventually updated

to 32-bits (which broke some things) as some large

universities ran into the limit

• How are users authenticated

◦ /etc/passwd – hashed password, one-way hash

can you crack a password? dictionary attack?

5



◦ /etc/shadow

◦ NSS, LDAP, PAM, NSS

• How enforced? Syscalls such as kill and such, check uid.

Virtual memory usually cannot see any other processes.

Our OS trickier, on ARM with large pages can have up

to 16 different owner/protections but with us it has 1MB

granularity.

6



Escalating Privileges

7



Security Through Obscurity

• KASLR randomization – knowing where parts of a

program are can make exploits easier, so try to randomize

where kernel and executables run

• Doesn’t work well on 32-bit, only so many random places

• Also binaries released with distros are a bit predictable

• Makes debugging harder

8



Hardware Against You

• Side Channel Attacks

◦ Accurate timing (perf, high-res timers, etc)

◦ Meltdown

◦ Spectre

• DRAM Rowhammer – bang on memory cells, can have

nearby bits flip to 0. How can that be an issue

9



Hardware Help You

• VM/Pagetables – provide permissions

• Read/Write permissions to pages

• No-execute, seem obvious, came later (why?) No room

in pages. Added with move to PAE or 64-bit PTEs often

• Newer support (ARM, etc) for kernel-noexec pages, i.e.

to keep kernel from accidentally/on purpose jumping to

and executing user code

• Can kernel just write to user provided addresses?

Bad idea. Linux has copy to user and copy from user

10



that tries to sanitize addresses and inputs before using.

• Newer support for fast hardware bounds checking

11



ROP programming

• Just mark all code as execute only (no read/write)

• What if can chain together series of small code snippets

ending in return, and push onto the stack, then return

from it?

• How to fix that? Somehow enforce code entry points

12



Pi Secure Mode

• Hardware can provide security features

• Pi has separate secure mode. OS can run in unsecure

mode with limitations, separate vectors/page tables

• Only secure code can update important registers

• A pain if you’re trying to do fancy stuff like turn off

caches from userspace

13



DRM

• Can you make truly “secure” machine only running code

you want?

• First you have to trust the hardware and firmware

• Also need to trust the compiler (see: Reflections on

Trusting Trust, Thompson 1984)

• Firmware only runs code signed with key

• Bootloader signed with key, as is operating system and

any drivers

• In theory could also enforce signing of apps

14



• Only code officially blessed by central authority can run

on your machine.

• Might be more secure, but it would spell end to general

purpose computing

• Media companies like it (no stealing movies)

Video game companies (no pirating)

• Where does it go wrong? What if key leaks?

What if you have a buffer-overrun and hackers can get it

to run unsigned code? [this is how jailbreaks for phones

and consoles often work]

15



Sandboxing

• Try to run “safe” subset of instructions

• Google NaCL

• Containers

• Virtualization

16



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

17



Reporting Linux Bugs

• All bugs are potentially security bugs

• Figuring out if any bug (and hundreds are fixed per

week) is a security bug takes time

• False positives/negatives

• Having to manually mark them as such can help black

hats find them easier

18



Fuzzing

• 1988. Barton Miller. Noticed unix programs crash due

to line noise. General case OK, but die if you feed them

out-of-range data.

• Idea is to check for potential crashes in programs by

feeding them random inputs and see how they handle it.

• Trinity for Linux (by Dave Jones) is one current project

• perf fuzzer (by me) is another

19



• Often the best way to get crashes isn’t truly random

inputs, but almost-correct inputs

20



perf fuzzer

• Wrote my fuzzer in response to a perf event bug found

using trinity (I had contributed perf event support to

trinity).

• That bug was a 64-bit config value was only checked

for validity with a 32-bit cast (so only bottom 32-bits).

A user could then use the full 64-bit value to point

to memory and increment values. The clever hacker

managed to increment the IDT instruction vector table,

point the undefined instruction interrupt to root shell

21



code, and then executed an undefined instruction.

• I wanted to see if perf event (a research interest of mine)

had any other vulnerabilities.

22



Fuzzing – Bugs I found

• ARM config too big – the config field was used as an

offset into a (small) array without checking the size.

Kernel Panic

• ARM dangling pointer – a small struct with function

pointers was cast to a larger struct with function

pointers, and one of the function pointers off the end

was called. Kernel Panic

Also, by luck on very specific 3.11-rc kernels the dangling

pointer pointed to 0x80000000, which is user mappable.

23



Put code there to set uid to 0 and exec a shell and

you have root. (Got a CVE, but getting this fixed

took forever. Luckily it’s very unlikely anyone was ever

affected by this).

• Have found other, more boring, bugs. Usually just

computer lockups.

24



Academic Fuzzing

• Just “regular” fuzzing is considered old-news, so despite

being able to find new bugs all the time it’s hard to get

academic funding or research for it

• Linux and hacker conferences are interested, although

those are somehow not counted as exciting by other

academics.

25


