
The Feasibility of 8-bit Load Value Prediction

Vincent Weaver
hppa13
ECE575

6 May 2004, Minor Revisions 12 January 2009

1 Project Summary

This project investigates the tradeoffs in using an 8-bit load value predictor
on modern CPUs in cases where a full 64-bit load value predictor would not
be feasible.

I used ATOM [3] to instrument all 8-bit loads for four different bench-
marks (two from SPEC CPU 2000 [4]). I simulated eight different value
predictors, including some that would not be implementable on 64-bit ma-
chines due to size constraints.

The results show that while the 8-bit values are indeed more predictable,
8-bit loads are only a small fraction of the total amount of loads. This
unfortunately means that any increase in performance would most likely be
negligible.

2 Project Description

On modern architectures most loads tend to be 64-bit or 32-bit values. De-
spite this, many CPUs still support 8-bit and 16-bit loads. A normal load
value predictor treats these shorter loads as a full-sized load, but this is
wasteful; it throws away the knowledge that the top 56 bits are zero.

8-bit values should be easier to predict than larger loads because there
are only 256 possible values. A common use of 8-bit loads on UNIX based
systems is the processing of ASCII text files, and since ASCII text has low
entropy this should make these types of loads more predictable.

1



The goal of this project is to find an 8-bit predictor with a 90% or higher
accuracy rate. A small effective predictor of this sort would greatly speed
certain types of processor behavior, especially text and legacy applications.
If such a simple and small predictor could be found, and if it was obvious that
performance would greatly increase, then it might open the door to further
value predictor use in industry.

3 Setup

3.1 Benchmarks

I used two of the SPEC CPU 2000 benchmarks: equake, cc1. Two other
benchmarks were investigated, that while in SPEC CPU 2000, were not the
official SPEC versions: gcc, and gzip.

The machine used for the test was dual-processor Alpha 21264 machine.
equake and cc1 are the precompiled SPEC 2000 benchmarks provided for

the ECE575 class by Professor Burtscher. The test inputs were used.
gcc is the Alpha cc1 binary from version 3.3 of gcc installed on our test ma-

chine. For input the tbo.c file is compiled, which is a short video game written
in very dense and obfuscated C (http://deater.net/weave/vmwprod/tb1/tbo.html).

gzip is gzip version 1.2.4 compiled from source (using the “-arch host”
compiler option) on the Alpha. For benchmarking the gzip-1.2.4.tar file is
used as the input.

3.2 Instrumentation

Instrumentation was not a trivial task. The instrumentation files used (freq.inst.c

and proj6.inst.c) are similar to standard load-value prediction instrumenta-
tion files from other projects.

Finding 8-bit loads is surprisingly hard. The Alpha instruction to load a
byte is LDBU. This instruction is relatively new; the initial Alpha implemen-
tation did not support 8-bit reads. Originally 8-bit reads were implemented
by a series of three instructions: LDQ U, LDA, then EXTBL.

Experiments by DEC showed this overhead on 8-bit loads was a perfor-
mance bottleneck, especially on legacy code (and especially when running
Windows NT) [2]. The LDBU instruction was introduced on newer CPUs

2



such as the Alpha 21264 and the EXTBL way of loading bytes is deprecated
[1] in favor of LDBU.

Unfortunately, on closer inspection, the old EXTBL load method is still
used in many of the binaries on our Alpha test system (including cc1 and
equake). These uses seem to be in the C library routines.

Proper detection of EXTBL based loads is not easy, it requires finding
three instructions which may have been scattered all over by the compiler.

It would be nearly impossible to build 8-bit load-value prediction circuitry
that used EXTBL-based 8-bit loads. All benefits from 8-bit prediction would
be lost if you first had to load the 64-bit value from memory before the
byte-extraction took place. It could be possible to treat all 64-bit loads as
speculative and then predicting 8-bit values based on that, but that would
add a lot of needless complexity.

For the purposes of this project an EXTBL instruction is treated the
same as a LDBU. This is how a modern Alpha system would work, and it
is similar to how other RISC designs with dedicated 8-bit load instructions
work.

Both equake and cc1 were disassembled and investigated to make sure this
assumption was sane, and it does seem EXTBL is used almost exclusively to
handle 8-bit loads. Unfortunately doing things this way limited some of the
analysis that could be done on hybrid 64-bit/8-bit predictors.

gcc and gzip were atomized with the “-a” option which also atomized all
relevant shared libraries, and the results from those libraries are included
with the runs.

4 Results

4.1 Frequency of 8-bit Loads

The relative mix of 64-bit and 8-bit loads in the various benchmarks is shown
in Table 1. The dynamic percentage of 8-bit loads varies widely, from below
3% up to 31%! This does not bode well for 8-bit values having an overwhelm-
ing impact in program execution speed with the possible exception of gzip

(and we will find later that gzip has poor 8-bit predictability).
It makes sense that equake, a floating point program, has the least number

of 8-bit loads whereas the programs that do a lot of text parsing and text
disk I/O have much higher ratios.

3



Program Static Loads % 8-bit Dynamic Loads % 8-bit

equake 12889 4.52% 360250863 2.78%

cc1 93053 6.37% 376933000 8.00%

gcc 185425 6.33% 1771232 9.26%

gzip 55816 6.43% 11144290 31.05%

Table 1: Ratio of loads that are 8-bit

4.2 Frequent Value Results

Figure 1 shows the frequent load value results for the various benchmarks.
This is simple for 8-bit values, as only 256 values are possible so a simple set
of counters suffices.

We see that for cc1 there are only a few spikes of frequent values: various
lowercase letters and a few other symbols you would expect in a C file. The
one unexpected result is 0x4 which appears often for unknown reasons.

In equake besides the NUL value, all of the 8-bit loads are related to
reading the text input from disk. The ASCII values for 0-9 and the decimal
point are prominent as would be expected for floating point values. The
other values can be accounted for by %lf and such format specifiers in scanf
and printf statements. This is hardly surprising as equake has no other need
for 8-bit values.

The gcc results are what one would expect for something parsing C code.
The distribution of characters looks similar to an English language distribu-
tion. Of curious note are the loads of 1, 2, 4 and 5 which would not normally
be expected.

The gzip results unsurprisingly match more or less the distribution of
characters in the tar file being processed.

All values above 128 were ignored for plotting purposes; in no case were
there any significant results with the top bit set. This indicates the reads
were largely ASCII values.

The files freq.inst.c and freq.anal.c were used to gather this data.

4.3 Predictor Results

We explored the use of various types of predictors to see which had the best
performance.

4



01 4 ESC , = c e i mo r wx
0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 8

-b
it 

Lo
ad

s Frequently Loaded Bytes in cc1

0 2 \n ’ ’ % . 0 9 d f l x
0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 8

-b
it 

Lo
ad

s Frequently Loaded Bytes in equake

0 2 5 \n 25 ’ ’ , 0 9 A Z a e i o r x
0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 8

-b
it 

Lo
ad

s Frequently Loaded Bytes in gcc

0 \n ’ ’ a e o t
0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 8

-b
it 

Lo
ad

s Frequently Loaded Bytes in gzip

Figure 1: 8-bit load frequencies. For the C compilers this represents primarily
the input C file. For equake it corresponds to the C scanf string (“%lf”) as
well as the ASCII representation of the floating point values in the input file.

5



M
os

t P
op

ula
r

Stri
de

La
st 

8,
 R

an
do

m

La
st 

Valu
e

La
st 

Stri
ng

La
st 

8,
 M

os
t R

ec
en

t C
or

re
ct

La
st 

2 
Stri

ng

La
st 

3 
Stri

ng
 H

as
h

La
st 

4 
Stri

ng
 H

as
h

La
st 

Stri
ng

 4
 O

ra
cle

La
st 

Stri
ng

 8
 O

ra
cle

64
-b

it s
tri

de

64
-b

it L
as

t V
alu

e

64
-b

it L
as

t 4
 O

ra
cle

0

20

40

60

80

100

C
or

re
ct

 P
re

di
ct

io
n 

P
er

ce
nt

ag
e

cc1
equake
gcc
gzip

Figure 2: Results of various predictors

Popularity Predictor The popularity predictor has 256 counters and keeps
track of the load popularity of each possible 8-bit value. The most popular
value is tracked, and this value is predicted. This predictor did poorly, never
much better than 20%. This is not surprising, as the frequency graphs in
Figure 1 show that no one value ever appeared more than 22% of the time.

Space-wise, the popularity predictor uses 256 8-bit counters and one 8-bit
most-popular value for a total of 257 bytes.

Stride Predictor This predictor behaved poorly except for gcc. Stride
predictors are best for loops and pointer traversing, and 8-bit values are
rarely used in such cases.

This predictor uses num entries 8-bit values (holding last value) and
num entries 8-bit values (assuming up to 8-bit strides) for a total of 1k of
memory if num entries is 512.

Last Value Predictor. This predictor does well for its small size. This

6



type of predictor will only work if there are stretches where values repeat
(such as spaces in a text file) or if the same value is repeatedly read from
memory multiple times.

This predictor uses num entries 8-bit values for a total of 512 bytes if
num entries is 512.

Last 8 Byte Value Predictors When operating on 8-bit values, you can
hold 8 previous values in the same amount of memory that a 64-bit load
would require. Thus you can hold 8 times as much history in the same
amount of space.

The Last 8 Oracle Predictor has the best performance out of any
tested, but of course it is not physically realizable. Two achievable selection
methods are tried, random and most-recently-correct. Random was not
optimal, though it performed better than the stride predictor. The “most
recently correct” method of choosing from the last 8 loads did well except
for the gzip case.

The random predictor uses num entries*8 bytes to hold the table of last
used values, for a total of 4096 bytes if 512 entries are used. The most recently
correct predictor needs an additional 3bits per entry to hold the pointer to
most recently correct, for a total of 4288 bytes.

String Predictors String predictors use the past history of characters se-
quences to predict the next byte.

First I use last-string where you look up the last value for that index in
a lookup table to see what followed that character last time. This predictor
takes num entries last values plus a 256 byte table for a total of 768 bytes if
512 entries are used.

Next I look at last2-string which uses the last two characters in the
history to see what the next one would predict. This is a 16bit value so it
takes a 64kB table plus num entries times two bytes for a total of 65kB. This
predictor is good, although very large.

The last3-hash-string attempts to improve on last2-string without in-
creasing the size much. It is the same as last2-string but an extra byte of
history is used. In order to not make the tables bigger, the lookup is based
on a hash where the third byte in the history is shifted left by 4 bits and
xor’d on top of the other two bytes. This gives a small improvement over
last2-string with an increase of only num entries (to store the extra byte of
history per index) of size.

7



A more complicated hash involving four bytes is used in last4-hash-

string. Each of the four bytes is shifted left by 4 and then xor’d, with the
top 4 bits being dropped. This increases performance on all but equake.
The size is that of last3-hash-string with an increase of num entries (again
to store the extra byte of history per index).

Entry sizes (that the address of the load instruction is hashed into) of
256, 512, and 1024 were simulated. Unlike the 64-bit case, with 8-bit there
is very little performance difference between the various history sizes. This
is probably because there are so few 8-bit load locations there is not much
aliasing even with a small working set. The results assume an entry size of
512 where applicable.

The results of the various predictors is shown in Figure 2. In addition to
the 8-bit predictors, Figure 2 also has standard 64-bit load value predictor
results for comparison. The 8-bit predictors obtain much better performance
than the overall 64-bit predictor at a fraction of the size. One must remember
that even at best only 30% of the loads are represented, and that’s only
with gzip which sadly does not predict well at all in the 8-bit case. The
improvements in prediction are lost when you realize that the 8 bit loads are
only a small fraction of total loads.

Figure 3 shows the results for cc1 with bytes needed (roughly correspond-
ing to needed on-chip real estate). The best part of the chart to be in is the
upper left, which indicates the optimal size/performance ratio. Somewhat
surprisingly the last-value predictor behaves best for this metric, although
its prediction success rate is probably still not enough to justify the added
complexity.

5 Conclusion and Future Work

More analysis can be done to determine if the 8-bit loads occur in perfor-
mance critical code. If these reads are a bottleneck it might make sense to
add an 8-bit load value predictor when a 64-bit predictor could not be jus-
tified. Especially as a very capable and fast 8-bit “last-value” predictor can
be implemented with just 512 bytes of storage.

More advanced 8-bit predictors can also be imagined, especially when
the input to the benchmarks is written-language. In that case a language-
specific pre-built letter frequency table might be imagined that does better
than dynamic methods.

8



100 1000 10000 100000
Bytes Needed for Implementation (log)

0

20

40

60

80

100

P
er

ce
nt

 o
f L

oa
ds

 P
re

di
ct

ed
 C

or
re

ct
ly

 Popularity

 Stride

 Last 8 Random
 Last Value

 Last 8 Most Recent Correct
 Last String

Last 2 String 
Last 3 String Hash 
Last 4 String Hash 

 64-bit stride

 64-bit Last Value

Figure 3: Size vs Performance Tradeoff cc1

9



A wider variety of benchmarks needs to be investigated, to determine if
these results are indicative of a normal workload, or if they overstate the
cause of 8-bit value prediction.

Other architecture should be investigated, such as the x86 architecture
which is much more friendly to 8-bit operations.

While one can predict 8-bit loads with much better accuracy than 64-bit
loads, in most cases the performance gain would go almost unnoticed because
8-bit loads do not occur frequently. Therefore the added complexity and die
area needed for 8-bit value prediction is not worth the performance gain, at
least on the Alpha architecture.

References

[1] Compaq Computer Corporation. Alpha Architecture Handbook, 1998.

[2] D. P. Hunter and E. B. Betts. Measured effects of adding byte and
word instructions to the Alpha architecture. Digital Technical Journal,
8(4):89–106, 1996.

[3] A. Srivastava and A. Eustace. ATOM: a system for building customized
program analysis tools. In Proc. ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 196–205, June
1994.

[4] Standard Performance Evaluation Corporation. SPEC CPU benchmark
suite. http://www.specbench.org/osg/cpu2000/, 2000.

10


