
Using Dynamic Binary Instrumentation to
Generate Multi-platform SimPoints:

Methodology and Accuracy

Vincent M. Weaver and Sally A. McKee

School of Electrical and Computer Engineering
Cornell University

{vince,sam}@csl.cornell.edu

Abstract. Modern benchmark suites (e.g., SPECCPU2006) takemonths
to simulate. Researchers andpractitioners thus use partial simulation tech-
niques for efficiency, and hope to avoid sacrificing accuracy. SimPoint is
a popular method of choosing representative parts that approximate an
application’s entire behavior. The approach breaks an application into in-
tervals, generates a Basic Block Vector (BBV) to represent instructions
executed in each interval, clusters the BBVs according to similarity, and
chooses a representative interval from the most important clusters. Unfor-
tunately, tools to generate BBVs efficiently have heretofore been widely
unavailable for many architectures, especially embedded ones.

We develop plugins for both the Qemu and Valgrind dynamic binary
instrumentation (DBI) tools, and compare results to those generated by
the PinPoints utility. All three methods can deliver under 6% average
CPI error on both the SPEC CPU2000 and CPU2006 benchmarks while
running under 0.4% of the total applications. Our tools increase the
number of architectures for which BBVs can be generated efficiently
and easily; they enable simulation points that include operating system
activity; and they allow cross-platform collection of BBV information
(e.g., generating MIPS SimPoints on IA32). We validate our tools via
hardware performance counters on nine 32-bit Intel Linux platforms.

1 Introduction

Cycle-accurate simulators are slow. Using one to run a modern benchmark suite
such as SPEC CPU2006 [16] can take months to complete when full reference
inputs are used. This prohibitive slowdown prevents most modelers from using
the full reference inputs. Yi et al. [18] investigate the six most common ways of
speeding up simulations:
– Representative sampling (SimPoint [13]),
– Statistics based sampling (SMARTS [17]),
– Reduced input sets (MinneSPEC [6]),
– Simulating the first X Million instructions,
– Fast-forwarding Y Million instructions and simulating X Million, and
– Fast-forwarding Y Million, performing architectural warmup, then simulat-

ing X Million.

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 305–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 V.M. Weaver and S.A. McKee

They conclude that SimPoint and SMARTS give the most accurate results. Over
70% of the previous 10 years of HPCA, ISCA, and MICRO papers (ending in
2005) use reduced simulation methods that are less accurate. Most remaining
papers use full input sets. Sampling is thus an under-utilized technique that can
greatly increase the breadth and accuracy of computer architecture research.

Collecting data needed by SimPoint is difficult and time consuming; we
present two tools to more easily generate the Basic Block Vectors (BBVs) that
SimPoint needs. Our tools greatly expand the platforms for which BBVs can
be generated, including a number of embedded platforms. We implement the
tools using dynamic binary instrumentation (DBI), a technique that generates
BBVs much faster than simulation. DBI tools are easier to use than simulators,
removing many barriers to wider SimPoint use. Features inherent in the tools we
extend make it possible to collect data that previous tools cannot.This includes
creating cross-platform BBV files (e.g., generating MIPS BBVs from MIPS bina-
ries on an IA32 host), as well as collecting BBVs that include operating system
information along with normal user-space information.

We validate the generated BBVs and compare them against the PinPoint [10]
BBVs generated by the Pin utility. We validate all three methods using hard-
ware performance counters while running the SPEC CPU2000 [15] and SPEC
CPU2006 [16] benchmark suites on a variety of 32-bit Intel Linux system. Our
website contains source code for our Qemu and Valgrind modifications.

2 Generating Simulation Points

SimPoint exploits phase behavior in programs. Many applications exhibit cyclic
behavior: code executing at one point in time behaves similarly to code running
at some other point. Entire program behavior can be approximated by modeling
only a representative set of intervals (in our case, simulation points or SimPoints).

Figures 1, 2, and 3 show examples of program phase behavior at a granularity
of 100M instructions; these are captured using hardware performance counters
on the CPU2000 benchmarks. Each figure shows two metrics: the top is L1 D-
Cache miss rate, and the bottom is cycles per instruction (CPI). Figure 1 shows
twolf, which exhibits almost completely uniform behavior. For this type of pro-
gram, one interval is enough to approximate whole-program behavior. Figure 2
shows the mcf benchmark, which has more complex behavior. Periodic behavior
is evident: representative intervals from the various phases can be used to ap-
proximate total behavior. The last example, Figure 3, shows the extremely com-
plex behavior of gcc running the 200.i input set. Few patterns are apparent;
this type of program is difficult to approximate with the SimPoint methodol-
ogy (smaller phase intervals are needed to recognize patterns, and variable-size
phases are possible, but choosing appropriate interval lengths is non-trivial). We
run the CPU2000 benchmarks on nine implementations of architectures running
the IA32 ISA, finding that phase behavior is consistent across all platforms when
using the same binaries, despite large differences in hardware process and design.

Using Dynamic Binary Instrumentation 307

0 1000 2000 3000
Instruction Interval (100M)

300.twolf default

0

1

2

C
P

I

0
1
2
3
4
5

L1
 D

-C
ac

he
M

is
s

R
at

e
(%

)

Fig. 1. L1 Data Cache and CPI behavior for twolf: behavior is uniform throughout,
with one phase representing the entire program

0 200 400 600
Instruction Interval (100M)

181.mcf default

0
2
4
6
8

C
P

I

0

10

20

30

L1
 D

-C
ac

he
M

is
s

R
at

e
(%

)

Fig. 2. L1 Data Cache and CPI behavior for mcf: several recurring phases are evident

To generate the simulation points for a program, the SimPoint tool needs a
Basic Block Vector (BBV) describing the code’s execution. Dynamic execution
is split into intervals (often fixed size, although that is not strictly necessary).
Interval size is measured by number of committed instructions, usually 1M-
300M instructions. Smaller sizes enable finer grained phase detection; larger sizes
mitigate warmup error when fast-forwarding (without explicit state warmup) in
a simulator. We use 100M instruction intervals, which is a common compromise.

During execution, a list is kept of all basic blocks executed, along with a count
of how many times each block is executed. The block count is weighted by the
number of instructions in each block to ensure that instructions in smaller basic
blocks are not given disproportionate significance. When total instruction count
reaches the interval size, the basic block list and frequency count are appended
to the BBV file. The SimPoint methodology uses the BBV file to find simulation
points of interest by K-means clustering. The algorithm selects one representa-
tive interval from each phase identified by clustering. Number of phases can be
specified directly, or the tool can search within a given range for an appropriate
number of phases. The final step in using SimPoint is to gather statistics for
all chosen simulation points. For multiple simulation points, the SimPoint tools

308 V.M. Weaver and S.A. McKee

0 200 400 600
Instruction Interval (100M)

176.gcc 200

0

5

10

C
P

I

0

10

20

30

L1
 D

-C
ac

he
M

is
s

R
at

e
(%

)

Fig. 3. L1 Data Cache and CPI behavior for gcc.200: this program exhibits complex
behavior that is hard to capture with phase detection

generate weights to apply to the intervals (and several SimPoints must be mod-
eled for accurate results). By scaling the statistics by the corresponding weights,
an accurate approximation of entire program behavior can be estimated quickly
(within a small fraction of whole-application simulation time).

2.1 BBV Generation

The BBV file format looks like:

T:45:1024 :189:99343
T:11:78573 :15:1353 :56:1
T:18:45 :12:135353 :56:78 314:4324263

A T signifies the start of an interval, and is followed by a series of colon sepa-
rated pairs; the first is a unique number specifying a basic block, and the second
is the scaled frequency count. There are many methods for gathering informa-
tion needed to create such BBV files. Requirements are that the tool count the
number of committed instructions and track entries into every basic block. The
SimPoint website only provides BBV generation tools using ATOM [14] and
SimpleScalar [1] sim-alpha. These are useful for experiments involving the Al-
pha processor, but that architecture has declined in significance. There remains
a need for tools to generate BBVs on a wider range of platforms.

Our first attempt used DynInst [3], which supports many platforms, operating
systems, and architectures. Unfortunately, the tool is not designed for generating
BBVs, and memory overhead for instrumenting some of the benchmarks exceeds
4GB. Furthermore, the tool works with dynamically linked applications. We hope
to use future versions, and work with the DynInst developers to generate BBVs
without undue overheads. In contrast, Qemu [2] and Valgrind [9] already provide
capabilities needed with acceptable overhead, and we modify these two DBI tools
to generate BBVs. To validate our methods, we compare results to those from
the Pin [7] tool. Figure 4 shows architectures supported for each tool; since all
run on Intel platforms, we use them as a common reference.

Using Dynamic Binary Instrumentation 309

Pin Valgrind

Qemu

itanium

arm

x86
x86_64

ppc

m68k
mips

sh4
sparc
hppa

alpha

cris

Fig. 4. Architectures supported by Pin, Qemu, and Valgrind: IA32 is the ideal platform
for comparison, as it is supported by all of three tools

2.2 Pin

Pin [7] is a dynamic binary instrumentation tool that runs on Intel architectures
(including IA32, Intel 64, Itanium, and Xscale), and it supports Linux, Windows,
and Macintosh OSX operating systems. We use the PinPoint [10] BBV gener-
ation tool bundled with version pin-2.0-10520-gcc.4.0.0-ia32-linux. Pin analysis
routines are written in C++, and the instrumentation happens just-in-time, with
the resulting instrumented code cached for performance. The core of Pin is pro-
prietary, so internals must be treated as a black box. PinPoint analyses run from
1.5 (swim) to 20 (vortex) times slower than the binary run on native hardware.

2.3 Qemu

Qemu [2] is a portable dynamic translator. It is commonly used to run a full op-
erating system under hardware emulation, but it also has a Linux user-space em-
ulator that runs stand-alone Linux binaries using system-call translation. Qemu
supports the Alpha, SPARC, PowerPC, sh4, IA32, AMD64, MIPS, m68k, and
ARM architectures. The user-mode translation we use is currently supported on
Linux. Ongoing work will support more operating systems. Qemu uses gcc to
compile code corresponding to each intermediate language micro-operation. At
translation time, these pre-compiled micro-operations are chained together to
create translated basic blocks that are cached.

Qemu is not designed for DBI. Using it for our purposes requires intrusive
changes to Qemu source. Our code is a patch applied on top of the Qemu 0.9.0
release. We add a unique identifier field to the internal TargetBlock basic block
structure, which is set the first time a BB is translated. At translation time, we
instrument every instruction to call our BBV tracking routine to update BBV
counts and total instruction count. Once the interval size is reached, the BBV
file is updated, and all counters are reset. Qemu runs from between 4 (art) to
40 (vortex) times slower than native execution. This makes it slower than Pin
but faster than our Valgrind implementation.

310 V.M. Weaver and S.A. McKee

Note that gcc uses an extremely large stack. By default Qemu only emulates
a 512KB stack, but the -s command-line option enables at least 8MB of stack
space, which allows all gcc benchmarks to run to completion.

2.4 Valgrind

Valgrind [9] is a dynamic binary instrumentation tool for the PowerPC, IA32,
and AMD64 architectures. It was originally designed to detect application mem-
ory allocation errors, but it has developed into a generic and flexible DBI utility.
Valgrind translates native processor code into a RISC-like intermediate code. In-
strumentation occurs on this intermediate code, which is then recompiled back
to the native instruction set. Translated blocks are cached.

Our BBV generation code is a plugin to Valgrind 3.2.3. By default, Val-
grind instruments at a super-block level rather than the basic block level. A
super-block only has one entrance, but can have multiple exit points. We use
the --vex-guest-chase-thresh=0 option to force Valgrind to use basic blocks,
although our experiments show that using super-blocks yields similar results.
Valgrind implements just-in-time translation of the program being run. We in-
strument every instruction to call our BBV generation routine. It would be more
efficient to call only the routine once per block, but in order to work around some
problems with the “rep” instruction prefix (described later) we must instrument
every instruction. When calling our instruction routine, we look up the current
basic block in a hash table to find a data structure that holds the relevant statis-
tics. We increment the basic block counter and the total instruction count. If
we finish an interval by overflowing the committed instruction count, we up-
date BBV information and clear all counts. Valgrind runs from 5 (art) to 114
(vortex) times slower than native execution, making it the slowest of the tools
we evaluate.

3 Evaluation

To evaluate the BBV generation tools, we use the SPEC CPU2000 [15] and
CPU2006 [16] benchmarks with full reference inputs. We compile the benchmarks
on SuSE Linux 10.2 with gcc 4.1 and “-O2” optimization (except for vortex,
which we compile without optimization because it crashes, otherwise). We link
binaries statically to avoid library differences on the machines we use to gather
data. The choice to use static linking is not due to tool dependencies; all three
handle both dynamic and static executables.

We choose IA32 as our test platform because it is widely used and because
all three tools support it. We use the Perfmon2 [5] interface to gather hardware
performance counter results for the platforms described in Table 1.

The performance counters are set to write out the the relevant statistics every
100M instructions. The data collected are used in conjunction with simulation
points and weights generated by SimPoint to calculate estimated CPI. We cal-
culate actual CPI for the benchmarks by using the performance counter data,
and use this as a basis for our error calculations. Note that calculated statistics

Using Dynamic Binary Instrumentation 311

Table 1. Machines used

machine processor memory L1 I/D L2/L3 Cache performance counters used
nestle 400MHz Pentium II 256MB 16KB/16KB 512KB inst retired,

cpu clk unhalted
spruengli 550MHz Pentium III 512MB 16KB/16KB 512KB inst retired,

cpu clk unhalted
itanium 800MHz Itanium 1GB 16KB/16KB 96KB/3MB ia32 inst retired,

cpu cycles
chocovic 1.66GHz Core Duo 1GB 32KB/32KB 1MB instructions retired,

unhalted core cycles
milka 1.733MHz Athlon MP 512MB 64KB/64KB 256KB retired instructions,

cpu clk unhalted
gallais 1.8GHz Pentium 4 256MB 12Kμ/16KB 256KB instr retired:nbogusntag,

global power events:running
jennifer 2GHz Athlon64 X2 1GB 64KB/64KB 512KB retired instructions,

cpu clk unhalted
sampaka12 2.8GHz Pentium 4 2GB 12Kμ/16KB 512KB instr retired:nbogusntag,

global power events:running
domori25 3.46GHz Pentium D 4GB 12Kμ/16KB 2MB instr retired:nbogusntag,

global power events:running

are ideal, with full warmup. If we were analyzing via a simulation, the results
would likely vary in accuracy depending on how architectural state is warmed up
after fast-forwarding between simulation points. We use SimPoint version 3.2,
the newest version from the SimPoint website, to generate our simulation points.

3.1 The Rep Prefix

When validating against actual hardware, total retired instruction counts closely
match Pin results, but Qemu and Valgrind results diverge on certain benchmarks.
We find the cause of this problem to be the IA32 rep prefix. This prefix appears
before string instructions (which typically implement a memory operation fol-
lowed by a pointer auto-increment). The prefix causes the string instruction to
repeat, decrementing the ecx register until it reaches zero. A naive implementa-
tion of the rep prefix treats each repetition as a committed instruction. In actual
hardware, this instruction is grouped in multiples of 4096, so only every 4096th

repetition counts as one committed instruction. The performance counters and
Pin both show this behavior. Our Valgrind and Qemu plugins are modified to
compensate for this, so that we achieve consistent committed instruction counts
across all of the BBV generators and actual hardware.

3.2 The Art Benchmark

Under Valgrind, the art floating point benchmark finishes with half the number
of instructions committed by actual hardware. Valgrind uses 64-bit floating point
arithmetic for portability reasons, but by default on Linux IA32, programs use
80-bit floating point operations. The art benchmark unwisely uses the “==”
C operator to compare two floating point numbers, and due to rounding errors
between the 80-bit and 64-bit versions, the 64-bit version can finish early, while
still generating the proper reference output.

312 V.M. Weaver and S.A. McKee

nestle
Pentium II

spruengli
Pentium III

itanium
Itanium

chocovic
Pentium M

milka
Athlon

gallais
Pentium 4

jennifer
Athlon 64

sampaka12
Pentium 4

domori25
Pentium D

0

10

20

30

40

C
P

I E
rr

or
 (

%
)

first 100M
ffwd 1Billion, 100M

Pin, one SimPoint
Qemu, one SimPoint
Valgrind, one SimPoint

Pin, up to 10 SimPoints
Qemu, up to 10 SimPoints
Valgrind, up to 10 SimPoints

Pin, up to 20 SimPoints
Qemu, up to 20 SimPoints
Valgrind, up to 20 SimPoints

46.7%
40.3%

50.1% 40.6% 44.9% 82.6% 50.8% 69.1% 55.3% 54.4% 54.7% 43.1% 46.2%

Fig. 5. Average CPI error for CPU2000 when using first, blind fast-forward, and Sim-
Point selected intervals on various IA32 machines: when using up to 10 simulation
points per benchmark, average error is 5.3% for Pin, 5.0% for Qemu, and 5.4% for
Valgrind

Having vastly different numbers of completed instructions interferes with sim-
ulation point generation, since it limits SimPoint intervals to only part of the
complete execution. In order to have the benchmark finish with the same number
of instructions, we modify art to execute an IA32 assembly instruction to force
the FPU to use 64-bit arithmetic. This small change makes the performance
counter, Pin, and Valgrind results match. Unfortunately, this does not work for
Qemu, which ignores the settings and always uses 80-bit operations.

There are solutions to this problem. One is to use the -msse2 option of gcc
to use the 64-bit SSE2 unit instead of the 80-bit x87 floating point unit. Not
all of our machines support SSE2, so that workaround is not available. Another
option is to use another compiler, such as the Intel C Compiler, which has specific
compiler options to enable 64-bit floating point. This does not work with Qemu,
which uses 80-bit operations regardless. Therefore we modify the benchmark,
and let Qemu generate skewed results.

4 Results

Figure 5 shows results for the SPEC CPU2000 benchmarks. When allowing
SimPoint to choose up to 10 simulation points per benchmark, the average error
across all machines for CPI is 5.32% for Pin, 5.04% for Qemu, and 5.38% for Val-
grind. Pin chooses 354 SimPoints, Qemu 363, and Valgrind 346; this represents
only 0.4% of the total execution length, making the simulations finish 250 times
faster than if run to completion. It is reassuring that all three BBV methods pick
a similar number of intervals, and in many cases they pick the same intervals.

Figure 5 also shows results when SimPoint is allowed to pick up to 20 simula-
tion points. The results are better: error is 4.96% for Pin, 8.00% for Qemu, and
4.45% for Valgrind. This requires less than twice as much simulation — around
0.7% of the total execution length. The increase in error for Qemu is due to poor
SimPoint choices in the gcc benchmark with the 166.i input: on many of the
architectures, chosen intervals give over 100% error.

Using Dynamic Binary Instrumentation 313

ammp.default

applu.default

apsi.default
art.1

10
art.4

70

equake.default

facerec.default

fma3d.default

galgel.default

lucas.default

mesa.default

mgrid.default

sixtra
ck.default

swim.default

wupwise.default
-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

Pin Qemu ValgrindFP Results, up to 20 SimPoints, Pentium D

-15.5

10.817.5

Fig. 6. Percent error in CPI on a Pentium D when using up to 20 SimPoints on
CPU2000 FP: the error with facerec and fma3d is due to extreme swings in the phase
behavior that SimPoint has trouble capturing

bzip2.graphic

bzip2.program

bzip2.source

crafty.default

eon.cook

eon.kajiya

eon.ru
shmeier

gap.default

gcc.expr

gcc.integrate

gcc.scilab

gcc.166

gcc.200

gzip.graphic

gzip.log

gzip.program

gzip.ra
ndom

gzip.source

mcf.default

parser.d
efault

perlbmk.diffm
ail

perlbmk.makerand

perlbmk.perfe
ct

perlbmk.535

perlbmk.704

perlbmk.957

perlbmk.850

twolf.d
efault

vorte
x.1

vorte
x.2

vorte
x.3

vpr.ro
ute

vpr.p
lace

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

Pin Qemu ValgrindInteger Results, up to 20 SimPoints, Pentium D

19
.8

22
.8

19
.3

10
.7

-1
09

11
.8

12
.9

19
.9

Fig. 7. Percent error in CPI on a Pentium D when using up to 20 SimPoints on
CPU2000 INT: the large error with the gcc benchmarks is due to spikes in the phase
behavior that SimPoint does not capture well

In addition to the degree of error when using multiple simulation points,
Figure 5 shows error for other common methods of interval selection. The first
column shows error when running only the first 100M instructions from each
benchmark. This method of picking points is poor: error averages around 54%
for CPI. Another common method is fast-forwarding 1B instructions and then
simulating an interval beginning there (this is equivalent to always choosing the
10th interval as a single SimPoint). This produces better results than using the
first interval, but at 37%, the error is still large. Using SimPoint analysis but
only choosing one representative interval is a way to use the same amount of
simulation time as the previous two methods, but attempts to make a more
intelligent choice of which interval to run. As the graph shows, this behaves
much better than the blind methods, but the error is twice as large as that from
using up to 10 SimPoints.

Figures 6 and 7 show the CPI error for the individual benchmarks on the
Pentium D system. For floating point applications, facerec and fma3d have
significantly more error than the others. This is because those programs feature
phases which exhibit extreme shifts in CPI from interval to interval, a behavior

314 V.M. Weaver and S.A. McKee

often has trouble capturing. The integer benchmarks have the biggest source of
error, which is the gcc benchmarks. The reason gcc behaves so poorly is that
there are intervals during its execution where the CPI and other metrics spike.
These huge spikes do not repeat, and only happen for one interval; because of
this, SimPoint does not weight them as being important, and they therefore are
omitted from the chosen simulation points. These high peaks are what cause the
actual average results to be much higher than what is predicted by SimPoint.
It might be possible to work around this problem by choosing a smaller interval
size, which would break the problematic intervals into multiple smaller ones that
would be more easily seen by SimPoint.

We also use our BBV tools on the SPEC CPU2006 benchmarks. These runs
use the same tools as for CPU2000, without any modifications. These tools yield
good results without requiring any special knowledge of the newer benchmarks.
We do not have results for the zeusmp benchmark: it would not run under
any of the DBI tools. Unlike the CPU2000 results, we only have performance
counter data from four of the machines. Many of the CPU2006 benchmarks
have working sets of over 1GB, and many of our machines have less RAM than
that. On those machines the benchmarks take months to run, with the operating
system paging constantly to disk. The CPU2006 results shown in Figure 8 are
as favorable as the CPU2000 results. When allowing SimPoint to choose up to
10 simulation points per benchmark, the average error for CPI is 5.58% for Pin,
5.30% for Qemu and 5.28% for Valgrind. Pin chooses 420 simulation points,
Qemu 433, and Valgrind. This would require simulating only 0.056% of the total
benchmark suite. This is an impressive speedup, considering the long running
time of these benchmarks. Figure 8 also shows the results when SimPoint is
allowed to pick up to 20 simulation points, which requires simulating only 0.1%
of the total benchmarks. Average error for CPI is 3.39% for Pin, 4.04% for Qemu,
and 3.68% for Valgrind.

Error when simulating the first 100M instructions averages 102%, showing
that this continues to be a poor way to choose simulation intervals. Fast-
forwarding 1B instructions and then simulating 100M produces an average error
of 31%. Using only a single simulation point again has error over twice that
of using up to 10 SimPoints. Figures 9 and 10 show CPI errors for individual
benchmarks on the Pentium D machine. For floating point applications, there are
outlying results for cactusADM, dealII, and GemsFDTD. For these benchmarks,
total number of committed instructions measured by the DBI tools differs from
that measured with the performance counters. Improving the BBV tools should
fix these outliers.

As with the CPU2000 results, the biggest source of error is from gcc in the
integer benchmarks. The reasons are the same as described previously: Sim-
Point cannot handle the spikes in the phase behavior. The bzip2 benchmarks in
CPU2006 exhibit the same problem that gcc has. Inputs used in CPU2006 have
spiky behavior that the CPU2000 inputs do not. The other outliers, perlbench
and astar require further investigation.

Using Dynamic Binary Instrumentation 315

chocovic - Pentium M sampaka12 - Pentium 4 domori25 - Pentium D jennifer - Athlon 64
0

10

20

30

40

C
P

I E
rr

or
 (

%
)

first 100M
ffwd 1 Billion, 100M

Pin, one SimPoint
Qemu, one SimPoint
Valgrind, one SimPoint

Pin, up to 10 SimPoints
Qemu, up to 10 SimPoints
Valgrind, up to 10 SimPoints

Pin, up to 20 SimPoints
Qemu, up to 20 SimPoints
Valgrind, up to 20 SimPoints

63.7% 110.1% 124.7% 110.0%42.6%

Fig. 8. Average CPI error for CPU2006 on a selection of IA32 machines when using
first, blind fast-forward, and SimPoint selected intervals: when using up to 10 simulation
points per benchmark, average error is 5.6% for Pin, 5.30% for Qemu, and 5.3% for
Valgrind

bwaves

cactusADM
calculix

dealII

gamess.cytosine

gamess.h2ocu2

gamess.tria
zolium

GemsFDTD

gromacs
lbm

leslie3d
milc

namd
povray

soplex.pds-50

soplex.re
f

sphinx3
tonto wrf

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

Pin Qemu ValgrindFP Results, up to 20 SimPoints, Pentium D

-33.25-20.5

Fig. 9. Percent error in CPI on a Pentium D when using up to 20 SimPoints on CPU
2006 FP: the large variation in results for cactusADM, dealII and GemsFDRD are due
to unresolved inaccuracies in the way the tools count instructions

astar.B
igLakes

astar.ri
vers

bzip2.source

bzip2.chicken

bzip2.lib
erty

bzip2.program

bzip2.html

bzip2.combined

gcc.166

gcc.200

gcc.c-typeck

gcc.cp-decl

gcc.expr

gcc.expr2

gcc.g23
gcc.s04

gcc.scilab

gobmk.13x13

gobmk.nngs

gobmk.score2

gobmk.tre
vorc

gobmk.tre
vord

h264ref.fo
re_base

h264ref.fo
re_main

h264ref.sss_main

hmmer.n
ph3

hmmer.re
tro

libquantum mcf

omnetpp

perlbench.checkspam

perlbench.diffm
ail

perlbench.splitm
ail
sjeng

xalancbmk
-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

-10

-5

0

5

10

C
P

I E
rr

or
 (

%
)

Pin Qemu ValgrindInteger Results, up to 20 SimPoints, Pentium D
12.1 10.7

-11.4

11.3

-36.3 -12.8

13.0

-12.6

11.5 13.1 15.6

Fig. 10. Percent error in CPI on a Pentium D when using up to 20 SimPoints on CPU
2006 INT: the large error with the gcc and bzip2 benchmarks is due to spikes in the
phase behavior not captured by SimPoint

316 V.M. Weaver and S.A. McKee

5 Related Work

Sherwood, Perelman, and Calder [12] introduce the use of basic block distribu-
tion to investigate phase behavior. They use SimpleScalar [4] to generate the
BBVs, as well as to evaluate the results for the Alpha architecture. They show
preliminary results for three of the SPEC95 benchmarks and three of the SPEC
CPU2000 benchmarks. They build on this work and introduce the original Sim-
Point tool [13]. They use ATOM [14] to collect the BBVs and SimpleScalar to
evaluate the results for the SPEC CPU2000 benchmark suite. They use an in-
terval of 10M instructions, and find an average 18% IPC error for using one
simulation point for each benchmark, and 3% IPC error using between 6 to 10
simulation points. These results roughly match ours. The benchmarks that re-
quire the most simulation points are ammp and bzip2, which is different from
the gcc bottleneck we find on the IA32 architecture. This is most likely due to
the different ISAs, as well as differences in the memory hierarchy.

Perelman, Hamerly and Calder [11] investigate finding “early” simulation
points that can minimize fast-forwarding in the simulator. This paper does not
investigate early points because that functionality is not available in current
versions of the SimPoint utility. When they look at a configuration similar to
ours, with 43 of the SPEC2000 reference input combinations, 100M instruction
intervals, and up to 10 simulations per benchmark, they find an average CPI
error of 2.6%. This is better than our results, but again this was done on the
Alpha architecture, which apparently lacks the gcc benchmark problems that
appear on the IA32 architectures. They collect BBVs and evaluate results with
SimpleScalar, showing that the results on one architectural configuration track
the results on other configurations while using the same simulation points. We
also find this to be true, but in our case we compare the results from various
real hardware platforms.

While many people use SimPoint in their research, often no mention is made
of how the BBV files are collected. If not specified, it is usually assumed that
the original method described by Sherwood et al. [13] is used, which involves
ATOM [14] or SimpleScalar [4]. Alternatively, the SimPoint website has a known
set of simulation points provided for pre-compiled Alpha SPEC CPU2000 bina-
ries, so that recalculating using SimPoint is not necessary. Other work sometimes
mentions BBV generation briefly, with no indication of any validation. For ex-
ample, Nagpurkar and Krintz [8] implement BBV collection in a modified Java
Virtual Machine in order to analyze Java phase behavior, but do not specify the
accuracy of the resulting phase detection.

Patil et al.’s work on PinPoints [10] is most similar to ours. They use the Pin [7]
tool to gather BBVs, and then validate the results on the Itanium architecture us-
ing performance counters. This work predates the existence of Pin for IA32, so no
IA32 results are shown. Their results show that 95% of the SPEC CPU2000 bench-
marks have under 8% CPI error when using up to ten 250M instruction intervals.
All their benchmarks complete with under 12% error, which is more accurate than
our results. One reason for this is that they use much longer simulation points, so
they are simulating more of each benchmark. They also investigate commercial

Using Dynamic Binary Instrumentation 317

benchmarks, and find that the results are not as accurate as the SPEC results.
These Itanium results, as in other previous studies, do not suffer from the huge
errors we find in the gcc benchmarks. This is probably due to the vastly different
architectures and memory hierarchies. Even for the minimally configured machine
they use, the cache is much larger than on most of our test machines. The bene-
fit of our study is that we investigate three different methods of BBV generation,
whereas they only look at Itanium results generated with Pin.

6 Conclusions and Future Work

We have develop two new BBV generation tools and show that they deliver
similar performance to that of existing BBV generation methods. Our Valgrind
and Qemu code can provide an average of under 6% CPI error while only running
0.4% of the total SPEC CPU2000 suite on full reference inputs. This is similar
to results from the existing PinPoints tool. Our code generates under 6% CPI
error when running under 0.06% of SPEC CPU2006 (excepting zeusmp) with full
reference inputs. The CPU2006 results are obtained without any special tuning
for those benchmarks, which indicates that these methods should be adaptable
to other benchmark workloads.

We show that our results are better than those obtained with other common
sampling methods, such as simulating the beginning of a program, simulating
after fast-forwarding 1B instructions, or only simulating one simulation point. All
of our results are validated with performance counters on a range of IA32 Linux
systems. In addition, our work vastly increases the number of architectures for
which efficient BBV generation is now available. With Valgrind, we can generate
PowerPC BBVs. Qemu makes it possible to generate BBVs for m68k, MIPS,
sh4, CRIS, SPARC, and HPPA architectures. This means that many embedded
platforms can now make use of SimPoint methodologies.

The potential benefits of Qemu should be further explored, since it can sim-
ulate entire operating systems. This enables collection of BBVs that include
full-system effects, not just user-space activity. Furthermore, Qemu enables sim-
ulation of binaries from one architecture directly on top of another. This allows
gathering BBVs for architectures where actual hardware is not available or is
excessively slow, and for experimental ISAs that do not exist yet in hardware.

Valgrind has explicit support for profiling MPI applications. It would be inter-
esting to investigate whether this can be extended to generate BBVs for parallel
programs, and to attempt to use SimPoint to speed up parallel workload de-
sign studies. Note that we would have to omit synchronization activity from the
BBVs in order to capture true phase behavior.

The poor results for gcc indicate that some benchmarks lack sufficient phase
behavior for SimPoint to generate useful simulation points. It might be neces-
sary to simulate these particular benchmarks fully in order to obtain sufficiently
accurate results, or to decrease the interval size. Determining why the poor re-
sults only occur on IA32, and do not occur on Alpha and Itanium architectures,
requires further investigation.

318 V.M. Weaver and S.A. McKee

Overall, these tools show great promise in encouraging use of SimPoint for
architectural studies. Our tools make generating simulation points fast and easy,
and will help others in generating more accurate results in their experiments.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grants 0509406, 0444413, and 0325536.

References

1. Austin, T.: Simplescalar 4.0 release note http://www.simplescalar.com/
2. Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proc. 2005 USENIX

Annual Technical Conference, FREENIX Track, pp. 41–46 (April 2005)
3. Buck, B., Hollingsworth, J.: An API for runtime code patching. The International

Journal of High Performance Computing Applications 14(4), 317–329 (2000)
4. Burger, D., Austin, T.: The simplescalar toolset, version 2.0. Technical Report

1342, University of Wisconsin (June 1997)
5. Eranian, S.: Perfmon2: A flexible performance monitoring interface for Linux. In:

Proc. of the 2006 Ottawa Linux Symposium, pp. 269–288 (July 2006)
6. KleinOsowski, A., Lilja, D.: MinneSPEC: A new SPEC benchmark workload for

simulation-based computer architecture research. Computer Architecture Letters 1
(June 2002)

7. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 190–200 (June 2005)

8. Nagpurkar, P., Krintz, C.: Visualization and analysis of phased behavior in Java
programs. In: Proc. ACM 3rd international symposium on Principles and practice
of programming in Java, pp. 27–33 (2004)

9. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 89–100 (June 2007)

10. Patil, H., Cohn, R., Charney, M., Kapoor, R., Sun, A., Karunanidhi, A.: Pin-
pointing representative portions of large Intel Itanium programs with dynamic
instrumentation. In: Proc. IEEE/ACM 37th Annual International Symposium on
Microarchitecture, pp. 81–93 (December 2004)

11. Perelman, E., Hamerly, G., Calder, B.: Picking statistically valid and early simu-
lation points. In: Proc. IEEE/ACM International Conference on Parallel Architec-
tures and Compilation Techniques, pp. 244–256 (September 2003)

12. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: Proc. IEEE/ACM In-
ternational Conference on Parallel Architectures and Compilation Techniques, pp.
3–14 (September 2001)

13. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing
large scale program behavior. In: Proc. 10th ACM Symposium on Architectural
Support for Programming Languages and Operating Systems, pp. 45–57 (October
2002)

http://www.simplescalar.com/

Using Dynamic Binary Instrumentation 319

14. Srivastava, A., Eustace, A.: ATOM: A system for building customized program
analysis tools. In: Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 196–205 (June 1994)

15. Standard Performance Evaluation Corporation. SPEC CPU benchmark suite
(2000), http://www.specbench.org/osg/cpu2000/

16. Standard Performance Evaluation Corporation. SPEC CPU benchmark suite
(2006), http://www.specbench.org/osg/cpu2006/

17. Wunderlich, R., Wenish, T., Falsafi, B., Hoe, J.: SMARTS: Accelerating microar-
chitecture simulation via rigorous statistical sampling. In: Proc. 30th IEEE/ACM
International Symposium on Computer Architecture, pp. 84–95 (June 2003)

18. Yi, J., Kodakara, S., Sendag, R., Lilja, D., Hawkins, D.: Characterizing and com-
paring prevailing simulation techniques. In: Proc. 11th IEEE Symposium on High
Performance Computer Architecture, pp. 266–277 (February 2005)

http://www.specbench.org/osg/cpu2000/
http://www.specbench.org/osg/cpu2006/

	Introduction
	Generating Simulation Points
	BBV Generation
	Pin
	Qemu
	Valgrind

	Evaluation
	The Rep Prefix
	The Art Benchmark

	Results
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

