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Abstract

When creating architectural tools, it is essential to know
whether the generated results make sense. Comparing a
tool’s outputs against hardware performance counters on
an actual machine is a common means of executing a quick
sanity check. If the results do not match, this can indi-
cate problems with the tool, unknown interactions with the
benchmarks being investigated, or even unexpected behav-
ior of the real hardware. To make future analyses of this
type easier, we explore the behavior of the SPEC bench-
marks with both dynamic binary instrumentation (DBI)
tools and hardware counters.

We collect retired instruction performance counter data
from the full SPEC CPU 2000 and 2006 benchmark suites
on nine different implementations of the x86 architecture.
When run with no special preparation, hardware counters
have a coefficient of variation of up to 1.07%. After analyz-
ing results in depth, we find that minor changes to the exper-
imental setup reduce observed errors to less than 0.002%
for all benchmarks. The fact that subtle changes in how
experiments are conducted can largely impact observed re-
sults is unexpected, and it is important that researchers us-
ing these counters be aware of the issues involved.

1 Introduction

Hardware performance counters are often used to char-
acterize workloads, yet counter accuracy studies have
seldom been publicly reported, bringing such counter-
generated characterizations into question. Results from
counters are treated as accurate representations of events oc-
curring in hardware, when, in reality, there are many caveats
to the use of such counters.

When used in aggregate counting mode (as opposed to
sampling mode), performance counters provide architec-
tural statistics at full hardware speed with minimal over-
head. All modern processors support some form of coun-
ters. Although originally implemented for debugging hard-

ware designs during development, they have come to be
used extensively for performance analysis and for validat-
ing tools and simulators. The types and numbers of events
tracked and the methodologies for using these performance
counters vary widely, not only across architectures, but also
across systems sharing an ISA. For example, the Pentium
IIT tracks 80 different events, measuring only two at a time,
but the Pentium 4 tracks 48 different events, measuring up
to 18 at a time. Chips manufactured by different compa-
nies have even more divergent counter architectures: for in-
stance, AMD and Intel implementations have little in com-
mon, despite their supporting the same ISA. Verifying that
measurements generate meaningful results across arrays of
implementations is essential to using counters for research.

Comparison across diverse machines requires a common
subset of equivalent counters. Many counters are unsuitable
due to microarchitectural or timing differences. Further-
more, counters used for architectural comparisons must be
available on all machines of interest. We choose a counter
that meets these requirements: number of retired instruc-
tions. For a given statically linked binary, the retired in-
struction count should be the same on all machines imple-
menting the same ISA, since the number of retired instruc-
tions excludes speculation and cache effects that complicate
cross-machine correlation. This count is especially relevant,
since it is a component of both the Cycles per Instruction
(CPI) and (conversely) Instructions per Cycle (IPC) metrics
commonly used to describe machine performance.

The CPI and IPC metrics are important in computer ar-
chitecture research; in the rare occasion that a simulator is
actually validated [19, 5, 7, 24] these metrics are usually
the ones used for comparison. Retired instruction count and
IPC are also used for vertical profiling [10] and trace align-
ment [16], which are methods of synchronizing data from
various trace streams for analysis.

Retired instruction counts are also important when gen-
erating basic block vectors (BBVs) for use with the popu-
lar SimPoint [9] tool, which tries to guide statistically valid
partial simulation of workloads that, if used properly, can
greatly reduce experiment time without sacrificing accuracy



in simulation results. When investigating the use of DBI
tools to generate BBVs [26], we find that even a single extra
instruction counted in a basic block (which represents the
code executed in a SimPoint) can change which simulation
points the SimPoint tool chooses to be most representative
of whole program execution.

All these uses of retired instruction counters assume that
generated results are repeatable, relatively deterministic,
and have minimal variation across machines with the same
ISA. Here we explore whether these assumptions hold by
comparing the hardware-based counts from a variety of ma-
chines, as well as comparing to counts generated by Dy-
namic Binary Instrumentation (DBI) tools.

2 Related Work

Black et al. [4] use performance counters to investigate
the total number of retired instructions and cycles on the
PowerPC 604 platform. Unlike our work, they compare
their results against a cycle-accurate simulator. The study
uses a small number of benchmarks (including some from
SPEC92), and the total number of instructions executed is
many orders of magnitude fewer than in our work.

Patil et al. [18] validate SimPoint generation using CPI
from Itanium performance counters. They compare differ-
ent machines, but only the SimPoint-generated CPI values,
not the raw performance counter results.

Sherwood et al. [20] compare results from performance
counters on the Alpha architecture with SimpleScalar [2]
and the Atom [21] DBI tool. They do not investigate
changes in counts across more than one machine.

Korn, Teller, and Castillo [11] validate performance
counters of the MIPS R12000 processor via microbench-
marks. They compare counter results to estimated
(simulator-generated) results, but do not investigate the
instructions_graduated metric (the MIPS equiva-
lent of retired instructions). They report up to 25% er-
ror with the instructions_decoded counter on long-
running benchmarks. This work is often cited as motivation
for why performance counters should be used with caution.

Maxwell et al. [14] look at accuracy of performance
counters on a variety of architectures, including a Pen-
tium IIT system. They report less than 1% error on the re-
tired instruction metric, but only for microbenchmarks and
only on one system. Mathur and Cook [13] look at hand-
instrumented versions of nine of the SPEC 2000 bench-
marks on a Pentium III. They only report relative error of
using sampled versus aggregate counts, and do not investi-
gate overall error. DeRose et al. [6] look at variation and
error with performance counters on a Power3 system, but
only for startup and shutdown costs. They do not report
total benchmark behavior.

3 Experimental Setup

We run experiments on multiple generations of x86 ma-
chines, listed in Table 1. All machines run the Linux
2.6.25.4 kernel patched to enable performance counter col-
lection with the perfmon2 [8] infrastructure. We use the
entire SPEC CPU 2000 [22] and 2006 [23] benchmark
suites with the reference input sets. We compile the SPEC
benchmarks on a SuSE Linux 10.1 system with version
4.1 of the gcc compiler and —02 optimization (except for
vortex, which crashes when compiled with optimization).
All benchmarks are statically linked to avoid variations due
to the C library. We use the same 32-bit, statically linked
binaries for all experiments on all machines.

We gather Pin [12] results using a simple instruction
count utility via Pin version pin-2.0-10520-gcc.4.0.0-1a32-
linux. We patch Valgrind [17] 3.3.0 and Qemu [3] 0.9.1 to
generate retired instruction counts. We gather the DBI re-
sults on a cluster of Pentium D machines identical to that
described in Figure 1. We configure pfmon [8] to gather
complete aggregate retired instruction counts, without any
sampling. The tool runs as a separate process, enabling
counting in the OS; it requires no changes to the application
of interest and induces minimal overhead during execution.
We count user-level instructions specific to the benchmark.

We collect at least seven data points for every bench-
mark/input combination on each machine and with each
DBI method (the one exception is the Core2 machine,
which has hardware problems that limit us to three data
points for some configurations). The SPEC 2006 bench-
marks require at least 1GB of RAM to finish in a reason-
able amount of time. Given this, we do not run them on the
Pentium Pro or Pentium II, and we do not run bwaves,
GemsFDTD, mcf, or zeusmp on machines with small
memories. Furthermore, we omit results for zeusmp with
DBI tools, since they cannot handle the large 1GB data seg-
ment the application requires.

4 Sources of Variation

We focus on two types of variation when gathering per-
formance counter results. One is inter-machine variations,
the differences between counts on two different systems.
The other is intra-machine variations, those found when
running the same benchmark multiple times on the same
system. We investigate methods for reducing both types.

4.1 The f1dcw instruction

For instruction counts to match on two machines, the in-
structions involved must be counted the same way. If not,
this can cause large divergences in total counts. On Pen-
tium 4 systems, the instr_retired:nbogusntag per-



. L1 1/D L2 Retired Instruction Counter /
Processor ‘ Speed ‘ Bits ‘ Memory ‘ Cache ‘ Cache ‘ Cycles Counter
. inst_retired
Pentium Pro 200MHz 32 256MB 8KB/8KB 512KB cpu_clk_unhalted
) inst_retired
Pentium Il 400MHz 32 256MB 16KB/16KB 512KB cpu_clk_unhalted
- inst_retired
Pentium Ill 550MHz 32 512MB 16KB/16KB 512KB cpu_clk_unhalted
) instr_retired:nbogusntag
Pentium 4 2.8GHz 32 2GB 12Kp/16KB | 512KB global_power_events:running
) instr.completed:nbogus
Pentium D 3.46GHz 64 4GB 12Ku/16KB 2MB global_power_events-running
Athlon XP | 1.733GHz | 32 | 768VMB | 64KB/64KB | 256KB refired.instructions
cpu_clk_unhalted
AMD Phenom | 22GHz | 64 | 2GB | 64KB/64KB | 512KB refired.instructions
cpu-clk_unhalted
instructions_retired
Core Duo 1.66GHz 32 1GB 32KB/32KB 1MB unhalted_core_cycles
Core2 Q6600 | 24GHz | 64 | 2GB | 32KB/32KB | 4MB instructions.refired

unhalted_core_cycles

Table 1. Machines used for this study.

benchmark fldcw instructions | % overcount
482.sphinx3 23,816,121,371 0.84%
177.mesa 6,894,849,997 2.44%
481.wrf 1,504,371,988 0.04%
453.povray 1,396,659,575 0.12%
456.hmmer retro 561,271,823 0.03%
175.vpr place 405,499,739 0.37%
300.twolf 379,247,681 0.12%
483.xalancbmk 358,907,611 0.03%
416.gamess cytosine 255,142,184 0.02%
435.gromacs 230,286,959 0.01%
252.eon kajiya 159,579,683 0.15%
252.eon cook 107,592,203 0.13%

Table 2. Dynamic count of £ 1dcw instructions,
showing all benchmarks with over 100 mil-
lion. This instruction is counted as two in-
structions on Pentium 4 machines but only as
one instruction on all other implementations.

formance counter counts £ 1dcw as two retired instructions;
on all other x86 implementations £1dcw counts as one.
This instruction is common in floating point code: it is used
in converting between floating point and integer values. It
alone accounts for a significant divergence in the me sa and
sphinx3 benchmarks. Table 2 demonstrates occurrences
in the SPEC benchmarks where the count is over 100 mil-
lion. We modify Valgrind to count the £ 1dcw instructions,
and use these counts to adjust results when presenting Pen-
tium 4 data. It should be possible to use statistical methods
to automatically determine which type of opcode causes di-
vergence in cases like this; this is part of ongoing work.
We isolated the £ 1dcw problem by using a tedious binary
search of the mesa source code.

4.2 Using the Proper Counter

Pentium 4 systems after the model 6 support a
instr_completed:nbogus counter, which is more ac-
curate than the instr_retired:nbogusntag counter
found on previous models. This newer counter does not
suffer the £1dcw problem described in Section 4.1. Unfor-
tunately, all systems do not include this counter; our Pen-
tium D can use it, but our older Pentium 4 systems can-
not. This counter is not well documented, and thus it was
not originally available within the per fmon infrastructure.
We contributed counter support that has been merged into
the main per fmon source tree.

4.2.1 Virtual Memory Layout

It may seem counterintuitive, but some benchmarks behave
differently depending on where in memory their data struc-
tures reside. This causes much of the intra-machine varia-
tion we see across the benchmark suites. In theory, memory
layout should not affect instruction count. In practice, both
parser and perlbench exhibit this problem. To under-
stand how this can happen, it is important to understand the
layout of virtual memory on x86 Linux. In general, pro-
gram code resides near the bottom of memory, with initial-
ized and uninitialized data immediately above. Above these
is the heap, which grows upward. Near the top of virtual
memory is the stack, which grows downward. Above that
are command line arguments and environment variables.
Typical programs are insensitive to virtual address as-
signments for data structures. Languages that allow point-
ers to data structures make the virtual address space “visi-
ble”. Different pointer values only affect instruction counts
if programs act on those values. Both parser and
perlbench use pointers as hash table keys. Differing ta-
ble layouts can cause hash lookups to use different num-



bers of instructions, causing noticeable changes in retired
instruction counts.

There are multiple reasons why memory layout can vary
from machine to machine. On Linux the environment vari-
ables are placed above the stack; a differing number of en-
vironment variables can change the addresses of local vari-
ables on the stack. If the addresses of these local variables
are used as hash keys then the size and number of environ-
ment variables can affect the total instruction count. This
happens with perlbench; Mytkowicz et al. [15] docu-
ment the effect, finding that it causes execution time differ-
ences of up to 5%.

A machine’s word size can have unexpected effects on
virtual memory layout. Systems running in 64-bit mode can
run 32-bit executables in a compatibility mode. By default,
however, the stack is placed at a higher address to free extra
virtual memory space. This can cause inter-machine varia-
tions, as local variables have different addresses on a 64-bit
machine (even when running a 32-bit binary) than on a true
32-bit machine. Running the Linux command 1inux32
-3 before executing a 32-bit program forces the stack to be
in the same place it would be on a 32-bit machine.

Another cause of varied layout is due to virtual memory
randomization. For security reasons, recent Linux kernels
randomize the start of the text, data, bss, stack, heap, and
mmap() regions. This feature makes buffer-overrun attacks
more difficult, but the result is that programs have different
memory address layouts each time they are run. This causes
programs (like par ser) that use heap-allocated addresses
as hash keys to have different instruction counts every time.
This behavior is disabled system wide by the command:

echo 0 >
/proc/sys/kernel/randomize_va_space

It is disabled at a per-process level with the —R option to
the 1inux32 command. For our final runs, we use the
linux32 -3 —-R command to ensure consistent virtual
memory layout, and we use a shell script to force environ-
ment variables to be exactly 422 bytes on all systems.

4.3 Processor Errata

There are built-in limitations to performance counter ac-
curacy. Some are intended, and some are unintentional by-
products of the processor design. Our results for our 32-bit
Athlon exhibit some unexplained divergences, leading us to
investigate existing errata for this processor [1]. The errata
mention various counter limitations that can result in incor-
rect total instruction counts. Researchers must use caution
when gathering counts on such machines.

4.3.1 System Effects

Any Operating System or C library call that returns non-
deterministic values can potentially lead to divergences.
This includes calls to random number generators; anything
involving the time, process ID, or thread synchronizations;
and any I/O that might involve errors or partial returns. In
general, the SPEC benchmarks carefully avoid most such
causes of non-determinism; this would not be the case for
many real world applications.

OS activity can further perturb counts. For example, we
find that performance counters for all but the Pentium 4 in-
crease once for every page fault caused by a process. This
can cause instruction counts to be several thousands higher,
depending on the application’s memory footprint. Another
source of higher instruction counts is related to the number
of timer interrupts incurred when a program executes; this
is possibly proportional to the number of context switches.
The timer based perturbation is most noticeable on slower
machines, where longer benchmark run times allow more
interrupts to occur. Again, the Pentium 4 counter is not af-
fected by this, but all of the other processors are. In our
final results, we account for perturbations due to timer in-
terrupt but not for those related to page faults. There are
potentially other OS-related effects which have not yet been
discovered.

4.4 Variation from DBI Tools

In addition to actual performance counter results, com-
puter architects use various tools to generate retired instruc-
tion counts. Dynamic Binary Instrumentation (DBI) is a
fast way to analyze benchmarks, and it is important to know
how closely tool results match actual hardware counts.

4.4.1 The rep Prefix

An issue with the Qemu and Valgrind tools involves the
x86 rep prefix. The rep prefix can come before string in-
structions, causing the the string instruction to repeat while
decrementing the e cx register until it reaches zero. A naive
implementation of this prefix counts each repetition as a
committed instruction, and Valgrind and Qemu do this by
default. This can cause many excess retired instructions to
be counted, as shown in Table 3. The count can be up to
443 billion too high for the SPEC benchmarks. We modify
the DBI tools to count only the rep prefixed instruction as
a single instruction, as per the relevant hardware manuals.

4.4.2 Floating Point Rounding

Dynamic Binary Instrumentation tools can make floating
point problematic, especially for x86 architectures. Default
x86 floating point mode is 80-bit FP math, not commonly



found in other architectures. When translating x86 instruc-
tions, Valgrind uses 64-bit FP instructions for portability.
In theory, this should cause no problems with well writ-
ten programs, but, in practice, it occasionally does. The
move to SSE-type FP implementations on newer machines
decreases the problem’s impact, although new instructions
may also be sources of variation.

The art benchmark. The art benchmark uses many
fewer instructions on Valgrind than on real hardware. This
is due to the use of the “==" C operator to compare floating
point numbers. Rounding errors between 80-bit and 64-bit
versions of the code cause the 64-bit versions to finish with
significantly different instruction counts (while still gener-
ating the proper reference output). This is because a loop
waiting for a value being divided to fall below a certain limit
can happen faster when the lowest bits are being truncated.
The proper fix is to update the DBI tools to handle 80-bit
floating point properly. A few temporary workarounds can
be used: passing a compiler option to use only 64-bit float-
ing point, having the compiler generate SSE rather than x87
floating point instructions, or adding an instruction to the
offending source code to force the FPU into 64-bit mode.

The dealII benchmark. The dealII SPEC CPU
2006 benchmark is problematic for Valgrind, much like
art. In this case, the issue is more critical: the program
enters an infinite loop. It waits for a floating point value to
reach an epsilon value smaller than can be represented with
64-bit floating point. The authors of dealIT are aware of
this possibility, since source code already has a #define
to handle this issue on non-x86 architectures.

benchmark rep counts | % overcount
464.h264ref sss_main 443,109,753,850 15.7%
464.h264ref fore_main 45,947,752,893 14.2%
482.sphinx3 33,734,602,541 1.2%
403.gcc s04 33,691,268,130 18.8%
403.gcc c-typeck 30,532,770,775 21.7%
403.gcc expr2 26,145,709,200 16.3%
403.gcc g23 23,490,076,359 12.1%
403.gcc expr 18,526,142,466 15.7%
483.xalancbmk 15,102,464,207 1.2%
403.gcc cp-decl 14,936,880,311 13.6%
450.soplex pds-50 11,760,258,188 2.5%
453.povray 10,303,766,848 0.9%
403.gcc 200 10,260,100,762 6.1%

Table 3. Potential excesses in dynamic
counted instructions due to the rep prefix
(only benchmarks with more than 10 billion
are shown).

4.4.3 Virtual Memory Layout

When instrumenting a binary, DBI tools need room for their
own code. The tools try to keep layout as close as possible
to what a normal process would see, but this is not always
possible, and some data structures are moved to avoid con-
flicts with memory needed by the tool. This leads to pertur-
bations in the instruction counts similar to those exhibited
in Section 4.2.1.

5 Summary of Findings

Figure 1 shows the coefficient of variation for SPEC
CPU 2000 benchmarks before and after our adjustments.
Large variations in mesa, perlbmk, vpr, twolf, and
eon are due to the Pentium 4 £1dcw problem described in
Section 4.1. Once adjustments are applied, variation drops
below 0.0006% in all cases. Figure 2 shows similar re-
sults for SPEC CPU 2006 benchmarks. Larger variations
for sphinx3 and povray are again due to the fldcw
instruction. Once adjustments are made, variations drop be-
low 0.002%. Overall, the CPU 2006 variations are much
lower than for CPU 2000; the higher absolute differences
are counterbalanced by the much larger numbers of total
retired instructions. These results can be misleading: a
billion-instruction difference appears small in percentage
terms when part of a three trillion instruction program, but
in absolute terms it is large. When attempting to capture
phase behavior accurately using SimPoint with an interval
size of 100 million instructions, a phase’s being offset by
one billion instructions can alter final results.

5.1 Intra-machine results

Figure 3 shows the standard deviations of results across
the CPU 2000 and CPU 2006 benchmarks for each machine
and DBI method. DBI results are shown, but not incorpo-
rated into standard deviations. In all but one case the stan-
dard deviation improves, often by at least an order of mag-
nitude. For CPU 2000 benchmarks, perlbmk has large
variation for every generation method. We are still investi-
gating the cause. In addition, the Pin DBI tool has a large
outlier with the par ser benchmark, most likely due to is-
sues with consistent heap locations. Improvements for CPU
2006 benchmarks are less dramatic, with large standard de-
viations due to high outlying results. On AMD machines,
perlbench has larger variation than on other machines,
for unknown reasons. The povray benchmark is an out-
lier on all machines (and on the DBI tools); this requires
further investigation. The Valgrind DBI tool actually has
worse standard deviations after our methods are applied due
to a large increase in variation with the per 1bench bench-
marks. For the CPU 2006 benchmarks, similar platforms
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Figure 3. Intra-machine results for SPEC CPU 2000 (above) and CPU 2006 (below). Outliers are indicated
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tries to make the graphs as readable as possible. Horizontal lines summarize results for remaining bench-
marks (they’re all similar). The message here is that most platforms have few outliers, and there’s much
consistency with respect to measurements across benchmarks; Core Duo and Core2 Q6600 have many
more outliers, especially for SPEC 2006. Our technical report provides detailed performance information
— these plots are merely intended to indicate trends. Standard deviations decrease drastically with our
updated methods, but there is still room for improvement.

have similar outliers: the two AMD machines share out-
liers, as do the two Pentium 4 machines.

5.2 Inter-machine Results

Figure 4 shows results for each SPEC 2000 benchmark
(DBI values are shown but not incorporated into standard
deviation results). We include detailed plots for five rep-
resentative benchmarks to show individual machine contri-
butions to deviations. (Detailed plots for all benchmarks
are available in our technical report [25].) Our variation-
reduction methods help integer benchmarks more than float-
ing point. The Pentium III, Core Duo and Core 2 machines
often over-count instructions. Since they share the same
base design, this is probably due to architectural reasons.
The Athlon frequently is an outlier, often under-counting.

DBI results closely match the Pentium 4’s, likely because
the Pentium 4 counter apparently ignores many OS effects
that other machines cannot.

Figure 5 shows inter-machine results for each SPEC
2006 benchmark. These results have much higher variation
than the SPEC 2000 results. Machines with the smallest
memories (Pentium 3, Athlon, and Core Duo) behave sim-
ilarly, possibly due to excessive OS paging activity. The
Valgrind DBI tool behaves poorly compared to the others,
often overcounting by at least a million instructions.

6 Conclusions and Future Work

Even though originally included in processor architec-
tures for hardware debugging purposes, when used cor-
rectly, performance counters can be used productively for
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Figure 4. Inter-machine results for SPEC CPU 2000. We choose five representative benchmarks and
show the individual machine differences contributing to the standard deviations. Often there is a
single outlier affecting results; the outlying machine is often different. DBI results are shown, but
not incorporated into standard deviations.
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many types of research (as well as application performance
debugging). We have shown that with some simple method-
ology changes, the x86 retired instruction performance
counters can be made to have a coefficient of variation of
less than 0.002%. This means that architecture research us-
ing this particular counter can reasonably be expected to
reflect actual hardware behavior. We also show that our
results are consistent across multiple generations of pro-
cessors. This indicates that older publications using these
counts can be compared to more recent work.

Due to time constraints, several unexplained variations
in the data still need to be explored in more detail. We have
studied many of the larger outliers, but several smaller, yet
significant, variations await explanation. Here we examine
only SPEC; other workloads, especially those with signifi-
cant I/O, will potentially have different behaviors. We also
only look at the retired instruction counter; processors have
many other useful counters, all with their own sets of vari-
ations. Our work is a starting point for single-core perfor-
mance counter analysis. Much future work remains involv-
ing modern multi-core workloads.
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A Extended Results

This Appendix includes expanded results that could not
be included with the original paper.

A.1 Miscounts due to Virtual Memory

In Section 4.2 we discuss various ways that changes in
virtual memory addresses can affect the amount of retired
instructions. We have found at least one additional cause of
variation, which is optimized memory copy routines.

Many processors offer means of copying large blocks of
memory at once, which is faster than doing individual word-
sized loads and stores. Often these block memory copies
are done using the SIMD or floating point units. These
copies often have strict memory alignment rules, often of
relatively large power-of-two (64 or 128) byte alignments.
These alignment rules are stricter than the stack alignment
rules which are often only 8 or 16 byte aligned. Thus when
copying memory on the stack, the stack offset can affect
how many instructions are retired, especially if extra code
is needed at the beginning or end to take care of values that
are not properly aligned.

A.2 Algorithmic Variations

Some of the SPEC benchmarks have code paths that
cause variation in the retired instruction count, leading the
results to be non-deterministic. We attempt to determine the
causes of these variations in order to compensate for them.

A.2.1 perlbench

The SPEC CPU 2006 benchmark per 1bench uses the ad-
dress of a local variable as a key into a hash table, introduc-
ing dependencies on stack addresses (which cause depen-
dencies on stack alignment and environmental variables, as
described in Section 4.2.1).

This occurs in the code in
Perl_gv_fetchpv () in the file gv. c:

the function

char xtmpbuf;

gvp=(GVxx*)hv_fetch(stash, tmpbuf, len, add) ;

The variable tmpbuf is local, so is allocated on the stack,
and it is passed as a key to the hv_fetch hash function.

A.2.2 parser

The SPEC CPU 2000 benchmark par ser uses the address
of a heap address as a key into a hash table. This can cause
variation between runs if heap randomization is turned on,
as described in Section 4.2.1.
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This occurs in parse.c where the function hash ()
has the following code:

int hash(int 1lw, int rw,
Connector =*re,

Connector =*1le,
int cost) {

i =1 4+ (i<<l) + randtable]
(((long) le + i) %
(table_size+l)) &

(

RTSIZE - % 1)1;

The variable 1e is on the heap, and the pointer to it is
cast to a long and used as a hash table index.

A.2.3 Others

There are variations in other benchmarks that need further
investigation: povray, gcc, and perlbmk. The gcc
based variation is eliminated by the methods described in
this paper, but povray and per lbmk need further analy-
sis.

A.3 Interrupt Related Overcounts

We investigate how interrupts affect the retired instruc-
tion counts on various machines. We are still determining
the root cause of this source of variation: is it inherent in the
counters, an artifact of the perfmon2 interface, or caused by
the operating system itself? The fact that the Pentium 4 is
immune indicates it might be a hardware issue.

Possibly all interrupts, both software and hardware,
cause this variation. It is difficult to obtain per-process in-
terrupt statistics under Linux. On most x86 systems the
timer interrupt generates an order of magnitude more in-
terrupts than any other sources, so we use it as a base for
evaluating interrupt-caused variation. Current Linux devel-
opments, such as dynamic frequency scaling and tickless
timers (no periodic clock interrupt) potentially affect this
analysis.

Figure 6 shows the results of our investigation. In Linux,
the timer interrupt is programmed to happen at an interval
known as HZ, which is typically 100, 250, or 1000. We
ran the SPEC CPU 2000 benchmarks on machines config-
ured with those values. We then created a baseline using the
100Hz results, and attempted to estimate the Hz value for
the others solely using the excess retired instruction counts.
For all of the machines except the Pentium 4 the instruction
overhead closely follows the HZ value, indicating that this
should be accounted for when determining retired instruc-
tion count.

A4 Cycles Performance Counter

In addition to retired instructions, each processor inves-
tigated also has a total cycles performance counter. We un-
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Machine Actual Derived Standard % Error
MHz Mean MHz Deviation
Pentium Pro 199 196 2 1.2%
Pentium I 401 397 5 0.9%
Pentium Il 547 541 11 1.2%
Pentium 4 2800 2760 70 1.4%
Pentium D 3467 3435 67 0.9%
Athlon XP 1665 1645 30 1.2%
Phenom 9500 2200 2111 281 4.1%
Core Duo 1663 1635 61 1.7%
Core2 Q6600 2400 2353 113 1.9%

Table 4. Estimated cycle counts based on full
SPEC 2000 and 2006 results. The Phenom
was undergoing unrelated frequency scaling
experiments (where some cores were clocked
to 1.1GHz) during this preliminary study,
which potentially accounts for the larger er-
ror.

dertook preliminary investigations of this counter, as it can
be used in conjunction with retired instructions to calculate
the CPI and IPC metrics. Table 4 shows our findings.

We found that the cycle count divided by time closely
matched the actual clock cycle of the processor, with less
than 2% error in all cases but the Phenom chip. The Phenom
results are off, most likely due to unrelated research being
done on the same machine by another researcher that oc-
casionally forced various cores to run at a slower (1.1GHz)
frequency.

These results, in conjunction with the retired instruction
results shown earlier, show that CPI and IPC calculated with
performance counters can be expected to be reasonably ac-
curate.

A.5 Complete Final Results (Graphical)

Due to space limitations, the IISWC version of this paper
only had detailed plots for a limited number of the inter-
machine results. Figures 7 through 10 contain the complete
results.

A.6 Complete Results (Tabular)

In addition to the graphical results, we generate tabular
results which show more detail. Tables 5 through 12 contain
these detailed results.
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176.gcc scilab 39,175,3083,719 -562k M 2M -155k -118k -186k 757k 292k 716k -232k -474k -598k
164.gzip graphic 73,929,764,146 -74k -71k -70k 64k 25k 15k -25k -24k -16k -21k 1k -18k
164.9zip log 29,339,120,362 -57k -54k -54k 26k 12k 7k -9k -8k -6k -9k -4k -8k
164.gzip program 105,592,114,915 -90k -87k -87k 88k 53k 30k -42k -41k -28k -34k 5k -31k
164.gzip random 60,368,112,438 -67k -64k -63k 50k 21k 13k -18k -18k -11k -16k -6k -14k
164.9zip source 56,026,965,586 -69k -66k -66k 49k 28k 16k -20k -20k -13k -17k -6k -14k
189.lucas 299,121,290,857 -1M -1M 20M -732k -1M -1M 6M 6M -7M -1M -1M -1M
181.mcf 69,384,664,851 415k 418k 418k 288k 20k 21k 420k -241k 55k -192k -171k -201k

177.mesa 284,456,293,470

172.mgrid 502,690,704,775 -382k -379k 95k 896k 275k 244k -257k -361k -118k -306k -67k -304k
197.parser 372,122,213,309 -17M -21M -OM 5M -1M 33M -42M -4M -8M 21M 13M -17M
253.perlbmk 535 54,501,662,824 -546k M -6M -382k -416k -555k M 2M -541k -216k -548k -703k
253.perlbmk 704 57,747,126,088 -482k M -4M -1M -291k -388k 2M 2M -884k -240k -959k -1M
253.perlbmk 957 95,768,874,544 -586k M -10M -866k -708k -1M 3M 4M -1M -86k -1M -1M
253.perlbmk 850 110,761,427,791 -1M 914k -12M -922k -1M -931k 3M 4M -980k -989k -1M -655k
253.perlbmk diffmail 32,818,634,327 -9M -11M -11M 5M -5M 3M -11M -6M 5M -1M 4M 5M
253.perlbmk mkrnd 1,266,339,997 -1M -1M -1M -1M -1M -1M 4M 4M -1M -1M -1M -1M
253.perlbmk perfect 21,366,930,787 -8M -7TM -8M -7M -OM -7M 26M 25M -7M -5M -7M -7M
200.sixtrack 907,226,974,641 -128k -125k -136k 732k 801k 741k 529k 422k -4M 379k 567k 443k
171.swim 301,164,029,263 -169k -166k -135k M 389k 405k -149k -162k -1M -58k 39k -51k
300.twolf 311,952,993,905 -84M -84M -84M -83M -84M -84M 294M 294M -84M -84M -84M -84M
255.vortex 1 144,373,990,150 -107k -104k -3M 112k 57k 39k -54k -54k -14k -35k -18k -31k
255.vortex 2 162,519,469,808 -107k -103k -2M 130k 57k 39k -58k -58k -19k -40k -16k -35k
255.vortex 3 160,888,183,904 -117k -114k 1M 128k 62k 42k -63k -61k -18k -42k -10k -37k
175.vpr place 110,384,628,255 -90M -90M -90M -90M -90M -90M 315M 315M -90M -89M -90M -90M
175.vpr route 93,441,470,424 -61k -58k -29k 133k 55k 44k -44k -44k 34k -26k -126k -26k
168.wupwise 502,204,722,870 -221k -218k -218k 422k 121k 97k -219k -218k -51k -145k 138k -144k

Table 5. Initial retired instruction counts for SPEC CPU 2000 before taking actions described in
the text. The individual machine results are shown as deltas against the global mean. Light grey
indicates differences of 1 million to 10 million, medium grey differences of 10 million to 1 billion,
dark grey indicates over 1 billion. The Valgrind difference with art is due to floating point issues
(described in Section 4.4.2). The extra differnces with the Pentium 4 and Pentium D with the mesa,
twolf, vpr and eon benchmarks are due to the £ 1dcw instruction problem (described in Section 4.1).
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188.ammp 10 9 0 1k 8k 1k 21 8 2k 3k 2k,4
173.applu 1 1 0 1k 2k 2k 3 4 1k 209 58k 330,4
301.apsi 10 9 0 5k 4k 1k 9 5 1k 636 3k,4
179.art 110 0 6 0 28k 5k 12k 8 6 2k 11k 230,4
179.art 470 0 6 0 22k 4k 12k 6 6 1k 11k 79k 250,4
256.bzip2 graphic 1 1 0 932 1k 240 2 3 531 52 22k 98,4
256.bzip2 program 1 1 0 1k 1k 159 2 3 276 58 20k 85,4
256.bzip2 source 4 4 0 1k 1k 157 1 1 338 56 19k 87,4
186.crafty 10 9 0 1k 3k 495 83 41 50 682 - 1224
252.eon cook 140 34 19 3k 1k 630 273 269 262 250 14k 1k.4
252.eon kajiya 21 30 16 971 2k 436 288 201 287 430 18k 1k.4
252.eon rushmeier 162 35 127 1k 696 327 230 188 241 264 8k 2494
183.equake 36 33 0 1k 3k 1k 3 4 2k 592 20,4
187.facerec 3 5 6 2k 4k 1k 33 16 5k 6k 57k 6k,4
191.fma3d 1 6 0 2k 2k 2k 120 87 4k 4k 11k,4
178.galgel 10 13 5 3k 7k 1k 10 3 526 658 1k.4
254.gap 13 12 0 1k 3k 1k 17 19 609 213 398,4
176.gcc 166 47 51
176.gcc 200 70 87
176.gcc expr 57 67 60k 94k 85k 99k 48k
176.gcc integrate 42 56 76k
176.gcc scilab 55 83
164.gzip graphic 7 6 0 1k 1k 337 11 16 32 42 32k 2k,4
164.9zip log 7 6 259 721 119 11 10 8 8 4k 19,4
164.9zip program 47k 7 6 0 1k 3k 381 6 7 28 52 61k 108,4
164.gzip random 4 4 0 1k 1k 135 13 14 22 19 71,4
164.9zip source 4 4 0 569 1k 240 12 17 16 47 1k.4
189.lucas 4 1 5 946 3k 443 5 3 2k 340 56,4
181.mcf 10 9 0 1k 2k 1k 8 2k 701 9294
177.mesa 7 6 0 630,4
172.mgrid 1 1 0 505,4
197.parser 0 0
253.perlbmk 535
253.perlbmk 704
253.perlbmk 957
253.perlbmk 850
253.perlbmk diffmail 5 1k
253.perlbmk mkrnd 7 2 6 800 24
253.perlbmk perfect 9 34 25 325 444 1k 47 19 10k 461,4
200.sixtrack 8 7 0 1k 6k 41 345 1k
171.swim 10 9 0 19k 6k 6 2k 3k
300.twolf 1 1 0 8k 5k 6 1k 3k
255.vortex 1 9 8 0 971 1k 101 103 100 68k
255.vortex 2 9 8 0 1k 750 44 54 40 83k 56,4
255.vortex 3 9 8 0 2k 667 1k 163 57 84k 89,4
175.vpr place 10 9 0 2k 1k 11 552 615 46k 106,4
175.vpr route 10 10 0 1k 558 14 805 204 80k 2294
168.wupwise 3 3 0 2k 8k 6 686 284 |S28KN  6k4

Table 6. Initial overall and per-machine standard deviations for SPEC CPU 2000. Most benchmarks
are run 7 times; if fewer runs exist than the total number is listed after the variation. Light grey
indicates deviation of 1k to 10k, medium grey 10k to 100k, dark grey over 100k. The slower machines
are more sensitive to run-time related variation (due to number of interrupts). parser’s high variation
is due to the heap-location issues described in Section 4.2.1. per1bmk and gcc variation might be
due to programming issues, we are still investigating. The Core Duo machine consistently has high
variation, we are still investigating.
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473.astar BigLakes 435,525,622,608 -14M -14M 45M -14M 35M 35M -14M -14M -14M -14M
473.astar rivers 870,946,649,357 -3M -3M -1M -2M 6M 6M -2M -3M -2M -3M
410.bwaves 2,494,425,851,533
401.bzip2 chicken 199,232,705,385 -77k -74k -74k 95k -51k -50k 58k -22k -680 -28k
401.bzip2 combined 364,136,194,713 -265k -262k -261k 235k -105k -104k 73k -49k 5k -55k
401.bzip2 html 706,417,217,673 -420k -417k -416k 383k -201k -200k 166k -91k 49k -105k
401.bzip2 liberty 346,361,904,358 -139k -136k -135k 210k -112k -112k 152k -59k -9k -69k
401.bzip2 program 593,333,246,889 -381k -378k -377k 309k -162k -161k 111k -90k 88k -96k
401.bzip2 source 452,012,760,241 -374k -371k -370k 281k -152k -152k 131k -82k 65k -90k
436.cactusADM 3,150,039,559,978 -124M 124M | -124M -120M -376M | -122M -122M | -123M
454.calculix 8,687,234,268,125 24M 25M 211M 33M 41M 41M | -215M 36M 31M 29M
447 dealll 2,334,571,013,694 1M M 4M 3M 3M -21M 3M 3M 3M
416.gamess cytosine 1,143,080,276,304 -65M -65M | -222M -64M 189M 189M | -119M -65M -64M -65M
416.gamess h2ocu?2 867,682,160,546 626k 634k -300k 1M 854k 881k -5M 892k M 828k
416.gamess triazolium 4,215,218,572,760 -21M -21M -35M -18M 61M 61M -42M -21M -20M -21M
403.gcc 166 85,717,377,824 -880k M 10M 916k -1M -86k M 92k -637k -772k
403.gcc 200 166,629,701,342 -1M 212k -3M -2M 5M 2M -1M -5M M -531k
403.gcc c-typeck 140,813,669,344 -7™M 16k 4M M -468k 1M 4M -943k -4M -1M
403.gcc cp-decl 109,536,887,364 -304k 4M 15M -1M M -43k 4M 716k -2M -3M
403.gcc expr 118,135,701,275 -5M -4M 26M 45k -63k -284k 155k M -224k -947k
403.gcc expr2 160,293,781,230 -OM -5M 19M 710k M -2M -223k 331k -518k 779k
403.gcc g23 193,775,636,958 -6M -6M 20M 655k -610k -951k 551k -607k 120k 842k
403.gcc s04 179,205,608,854 -6M -3M 11M 2M 1M =792k -303k -1M 634k -2M
403.gcc scilab 64,699,183,368 338k -2M -1M -129k 411k 30k -1M 623k 317k -77k
445.gobmk 13x13 238,223,728,722 -3M -3M -3M -3M 8M 8M -3M -3M -3M -3M
445.gobmk nngs 631,500,778,072 -13M -13M -13M -12M 33M 33M -13M -13M -13M -13M
445.gobmk score2 345,180,118,022 -26M -26M -26M -26M 66M 66M -26M -26M -26M -26M
445.gobmk trevorc 236,510,344,415 -4M -4M -4M -4M 11M 11M -4M -4M -4M -4M
445.gobmk trevord 340,197,007,561 -8M -8M -8M -7M 20M 20M -8M -8M -8M -8M
459.GemsFDTD 2,511,629,771,597 -85M -85M -84M -89M -82M 329M -75M -81M
435.gromacs 2,929,336,245,188 -64M -64M -64M -60M 166M 166M -81M -63M -62M -63M
464.h264ref forebase 564,686,760,152 -7M -7M -6M -6M 17M 17M -6M -6M -6M -6M
464.h264ref foremain 323,104,250,969 -2M -2M -3M -2M 6M 6M -2M -2M -2M -2M
464.h264ref sss 2,814,699,342,583 -26M -26M -26M -23M 62M 62M -25M -25M -25M -25M
456.hmmer nph3 1,039,885,071,862 -419k -416k -415k 374k 1M 1M -825k -192k -1M -174k
456.hmmer retro 2,212,959,503,256 -160M 160M | -160M -159M 400M 400M | -160M | -160M [ -160M | -160M
470.lbm 1,495,738,692,277 -1M -1M -2M 1M -1M -1M M -685k 566k -512k
437 .leslie3d 2,534,172,444,247 -2M -2M -2M 2M -1M -1M 687k -747k 38k -546k
462.libquantum 3,884,594,828,362 -1M -1M -1M 4M -1M -1M 1M -1M 112k -1M
429.mcf 449,896,007,119 -773k -770k -769k | [N 766k | -1M -881k 3M -970k
433.milc 1,386,819,554,851 -18M -18M -19M ™ -18M -18M 17M 3M 4M 3M
444.namd 2,895,739,443,120 281k 285k 289k M 302k 302k -4M 577k M 577k
471.omnetpp 764,012,914,003 -554k -551k 476k 110k -23k 125k -296k -92k -300k
400.perlbench checkspam 148,058,875,551 8M -15M -62M 2M -9M -14M 2M 5M 4M 10M
400.perlbench diffmail 401,941,912,714 -53M -25M -99M -21M 6M -684k -4M -20M -1M 42M
400.perlbench splitmail 714,310,897,663 -23M -24M 155M -1M 35M 476k -2M -13M -6M -12M
453.povray 1,204,553,566,871
458.sjeng 2,530,950,917,182
450.soplex pds-50 450,971,154,301
450.soplex ref 459,069,286,338

482.sphinx3
465.tonto
481.wrf
483.xalancbmk
434.zeusmp

2,834,665,823,811
2,895,396,300,252
4,117,369,090,579
1,313,537,753,450
2,397,598,208,777

-188M

-102M 263M
-533M

210M 134M 227M

254M | -103M
-309M

Table 7. Initial retired instruction counts for SPEC CPU 2006 before taking actions described in
the text. The individual machine results are shown as deltas against the global mean. Light grey
indicates differences of 1 million to 10 million, medium grey differences of 10 million to 1 billion,
dark grey indicates over 1 billion. Entries marked N/A are benchmarks that could not be run due to
memory constraints.

20




416.gamess cytosine
416.gamess h2ocu2
416.gamess triazolium
403.gcc 166

403.gcc 200

403.gcc c-typeck
403.gcc cp-decl
403.gcc expr
403.gcc expr2
403.gcc g23

403.gcc s04

403.gcc scilab
445.gobmk 13x13
445.gobmk nngs
445.gobmk score2
445.gobmk trevorc
445.gobmk trevord
459.GemsFDTD
435.gromacs
464.h264ref forebase
464.h264ref foremain
464.h264ref sss
456.hmmer nph3
456.hmmer retro
470.lbm

437 leslie3d
462.libquantum
429.mcf

433.milc

444 .namd
471.omnetpp
400.perlbench checkspam
400.perlbench diffmail
400.perlbench splitmail
453.povray

458.sjeng

450.soplex pds-50
450.soplex ref
482.sphinx3
465.tonto

481.wrf
483.xalancbmk
434.zeusmp
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Benchmark (mean) a 8 g &8 & 2 & :r’ < :‘—) o x 8 :‘—) 8 :
473.astar BigLakes 4 0 Bk 20 20 2k 17k 975,3
473.astar rivers 4 0 1k 28 9,6 2k 41k 7k,3
410.bwaves 1 0 28 18 631,3
401.bzip2 chicken 1 0 382 5 7 685 7k 12k 168,3
401.bzip2 combined 1 0 2k 15 12 812 15k 47k 294,3
401.bzip2 html 1 0 1k 20 11 2k 32k 59k 22k,3
401.bzip2 liberty 1 0 771 5 5 1k 13k 27k 396,3
401.bzip2 program 4 0 1k 8 13 1k 21k 48k 50,3
401.bzip2 source 1 0 1k 19 16 877 20k 60k 1k,3
436.cactusADM 6 0
454 calculix 1 0
447 dealll 7 | NA |
1
9
9

o)

W)
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Table 8. Initial overall and per-machine standard deviations for SPEC CPU 2006. Most benchmarks
are run 7 times; if fewer runs exist than the total number is listed after the variation. Light grey
indicates deviation of 1k to 10k, medium grey 10k to 100k, dark grey over 100k. The slower machines
are more sensitive to run-time related variation (due to number of interrupts). Variation in per1bench
is due to stack-related issues described in Section 4.2.1. gcc variation might be due to programming
issues, we are still investigating. The Core Duo machine consistently has high variation, we are still
investigating.
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188.ammp 333,166,801,392 2M M M M 2M 2M 2M 2M -20M 2M M 2M
173.applu 554,510,063,746 -85k -85k -84k -26k -12k 57k -26k -30k 16k -30k 82k -30k
301.apsi 648,604,012,858 3M 3M 3M 3M 3M 3M 3M 3M | -26M 3M 3M 3M
179.art 110 117,967,850,842 -11k -11k -7k 367 41k -12k -10k -5k -10k 11k -6k
179.art 470 121,326,013,826 -13k -13k -9k 515 41k -9k -12k -7k -11k 14k -7k
256.bzip2 graphic 117,528,986,436 -50k -50k -50k -3k -1k 10k -6k -2k -2k -2k 7k 1k
256.bzip2 program 103,252,294,950 -50k -50k -49k -2k -648 9k -5k -2k -1k -1k 4k 1k
256.bzip2 source 86,640,103,449 -50k -50k -49k -2k -902 8k -5k -2k -1k -2k 4k 1k
186.crafty 215,657,884,928 -70k -69k -69k -68k 4k 22k -107 | -907 -638 -10k 48k 5k
252.eon cook 85,145,647,912 997k 997k 999k 997k 1™ 1LY 1M 1M -8M 1M 1M 1M
252.eon kajiya 109,341,034,194 M ™ ™ ™ ™ ™M M M -11M M ™ M
252.eon rushmeier 62,973,164,545 530k 531k 531k 530k | 538k 545k 537k | 537k -4M 536k 537k | 539
183.equake 144,982,069,897 3M 3M 3M 3M 3M 3M 3M 3M -30M 3M 3M 3M
187 .facerec 309,913,035,961 -15M -15M -15M -13M -12M -12M -281M -12M -12M 370M -12M -12M
191.fma3d 320,970,437,842 -23M -23M -23M -23M -23M -23M -100M -23M -23M 265M -23M -23M
178.galgel 370,730,834,889 -232k | -232k 185M -11k 13k 80k -169k -2k 78k 1k 9k 53
254.gap 221,616,777,789 -127k | -127k | -127k -78k 15k 37k -27k 10k 11k -1k 16k 16k
176.gcc 166 22,310,934,566 -92k -91k 129k -25k 7k 13k 5k 6k 7K 2k -24k 7K
176.gcc 200 72,618,408,814 -208k | -208k 483k -156k 48k 60k 40k 43k 53k 26k | -165k 47k
176.gcc expr 7,287,033,719 -41k -41k 67k -28k 7k 7k 4k 6k 6k 1k -12k 6k
176.gcc integrate 7,295,128,587 -28k -28k 75k -11k 3k 4k 885 2k 2k 993 -7k 3k
176.gcc scilab 39,177,380,041 -197k | -197k | -933k -154k 39k 45k 31k 36k 41k 9k -87k 38k
164.9zip graphic 73,929,737,445 -47k -47k -47k -2k -987 5k -992 -1k -1k -1k 1k 1k
164.9zip log 29,339,109,169 -46k -46k -46k -1k -190 2k -284 -701 -727 -563 1k 419
164.9zip program 105,592,072,365 -48k -48k -47k -3k -1k 10k -1k -2k -2k -2k 1k 1k
164.gzip random 60,368,092,367 -47k -47k -46k -2k -922 4k -960 -1k -1k -1k 3k 684
164.9zip source 56,026,943,532 -47k -47k -47k -3k -981 5k -968 -1k -1k -1k 2k 876
189.lucas 299,119,239,955 620k 620k 22M 670k 678k 720k 627k 668k -5M 694k 679k 668k
181.mcf 69,384,512,278 567k 567k 568k -73k -64k -28k 570k -72k -67k -71k | -128k -64k
177.mesa 282,923,956,697 5k 5k 6k 6k 25k 58k 15k 17k 15k 16k | -182k 26k
172.mgrid 502,690,381,546 -59k -59k 415k -23k -7k 76k 63k -27k -10k -27K -17k -26k
197 parser 372,094,065,184 21M 45M 6M 1M 1M 1M -13M M M M ™M 1M
253.perlbmk 535 54,500,597,555 565k | -179k -6M -47k -26k 361k -257k 201k | -335k 19k | -236k 319k
253.perlbmk 704 57,746,243,838 M 222k -6M -45k -97k -27k 109k -18k 160k 22k -65k -38k
253.perlbmk 957 95,767,667,750 212k 197k -10M -38k -22k | -190k -84k 92k 90k 67k 2k 82k
253.perlbmk 850 110,760,317,639 310k 131k -11M -72k -57k -80k -64k 29k 164k 61k -7k 27k
253.perlbmk diffmail 32,815,554,959 -6M -4M -10M -61k -45k M -1M -47k -39k -48k | -123k -45k
253.perlbmk mkrnd 1,265,083,274 42k 35k 39k -752 -393 -253 2k -292 -398 -278 -189 -298
253.perlbmk perfect 21,360,587,472 -2M -1M -1M -1k 53 2k -823 -466 -418 -546 225 310
200.sixtrack 907,226,745,184 100k 100k 89k 135k 622k 673k 708k 608k -4M 543k 545k 628k
171.swim 301,163,730,733 129k 129k 159k 185k 214k 272k 146k 181k -1M 184k 163k 200k
300.twolf 311,868,486,658 -14k -14k -14k -11k 7k 51k -9k -8k -4k -8k -24k 6k
255.vortex 1 144,373,937,241 -54k -54k -3M -23k 7k 20k -4k 5k 5k 1k -23k 10k
255.vortex 2 162,519,411,996 -49k -49k -2M -23k 7k 20k -3k 4k 5k 1k -23k 9k
255.vortex 3 160,888,123,221 -57k -57k 1™ -23k 7k 21k -4k 5k 5k 1k -22k 10k
175.vpr place 110,294,461,470 -54k -54k -53k -52k -48k -33k -110k -51k -50k 474k -78k -46k
175.vpr route 93,441,411,107 -2k -2k 26k 8k 19k 32k 9k 16k 26k 16k | -151k 21k
168.wupwise 502,204,554,585 -53k -53k -53k -6k 1k 38k -53k -8k 28k -8k 12k -4k

Table 9. Final average retired instruction counts for SPEC CPU 2000 after taking actions described
in the text. The individual machine results are shown as deltas against the global mean. Light grey
indicates differences of 1 million to 10 million, medium grey differences of 10 million to 1 billion,
dark grey indicates over 1 billion. The Valgrind difference with art is due to floating point issues

(described in section 4.4.2). Remaining error in eon and facerec are still unexplained.
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Benchmark (mean) a (@] g 8 £e &1 & o Lo <~ oo o~ O ai
188.ammp 0 0 0 2k 3k 1k 26 772 631 2k 31k 2k,6
173.applu 42k 3 0 0 1k 8k 705 7,6 54 716 101 59,6
301.apsi 0 0 0 1k 14k 1k 500 164 872 254 77,6
179.art 110 0 6 0 1k 4k 1k 6 56 1k 136 12k 96,6
179.art 470 0 6 0 1k 9k 1k 5 87 1k 166 16k 154,6
256.bzip2 graphic 3 0 0 544 297 281 4 44 209 35 7k 691,6
256.bzip2 program 0 0 0 197 1k 197 5 81 160 187 6k 139,6
256.bzip2 source 0 0 0 965 936 195 4 77 230 111 5k 606,6
186.crafty 1 0 0| st2 3k | 254 26 18 | 118 94 |ERN 606
252.eon cook 23 158 142 379 636 182 182 284 233 296 5k 295,6
252.eon kajiya 23 118 108 290 587 191 241 171 234 244 6k 298,6
252.eon rushmeier 51 166 34 121 284 232 316 240 180 303 3k 263,6
183.equake 0 0 0|l o972 2 | 425 10 | 370 | 880 41 |gisgEml 5.6
187.facerec 7 0 0 1k 3k 570 42 1k 1k 6k 61k 4k,6
191.fma3d 3 0 0 1k 3k 428 217 1k 991 4k 47k 4k,6
178.galgel 72k 16 2 2 1k 6k 1k 10 131 726 61 14k 491,6
254.gap 34k 4 0 0 449 2k 345 11 62 219 543 8k 175,6
176.gcc 166 14k 107 29 62 190 774 251 162 80 122 207 7k 203,6
176.gcc 200 91k 55 58 99 367 1k 284 108 324 685 7K 14k 708,6
176.gcc expr 12k 62 53 35 150 908 159 45 68 106 131 2k 74,6
176.gcc integrate 5k 42 54 77 107 415 139 92 30 95 55 3k 57,6
176.gcc scilab 71k 83 53 94 421 1k 390 139 122 1k 1k 15k 427,6
164.9zip graphic 2k 0 0 0 158 199 65 20 8 42 48 4k 188,6
164.9zip log 1k 3 0 0 48 928 74 16 3 9 26 1k 100,6
164.9zip program 4k 3 0 0 249 314 183 19 7 47 112 5k 120,6
164.9zip random 2k 5 0 0 131 240 59 17 7 200 92 3k 13,6
164.9zip source 2k 6 0 0 228 223 65 17 19 24 34 3k 67,6
189.lucas 3 0 0 757 4k 650 4 32 481 59 13k 60,6
181.mcf 2 0 0 952 4k 742 17 135 600 934 9k 596,6
177.mesa 69k 3 0 0 786 2k 551 47 51 211 528 9k 2k,6
172.mgrid 40k 3 0 0 1k 8k 877 5 22 638 114 15k 127,6
197.parser 0 0 720 3k 892 14 129 341 483 13k 360,6
253.perlbmk 535 26k
253.perlbmk 704 84k 52k
253.perlbmk 957 95k 87k 72k 64k 99k 68Kk,6
253.perlbmk 850 80k 94k 33k
253.perlbmk diffmail 18 0 7 420 296 166 612 1k 1k 692,6
253.perlbmk mkrnd 21 0 0 4 20 54 6 3 5 28 60 19,6
253.perlbmk perfect 7 0 0 99 101 140 73 10 111 35 1k 27,6
200.sixtrack 1 0 0 1k 4k 947 40 132 269 577 29k 84,6
171.swim 1 0 0 1k 37k 1k 5 101 1k 261 15k 491,6
300.twolf 3 0 0 771 8k 1k 26 108 900 276 26k 97,6
255.vortex 1 0 0 0 280 441 178 49 23 145 111 7k 38,6
255.vortex 2 2 0 0 795 549 197 74 5 55 167 6k 36,6
255.vortex 3 2 0 0 285 454 255 32 13 134 141 7K 26,6
175.vpr place 0 0 0 300 1k 307 2 80 197 92 44k 34,6
175.vpr route 57k 2 0 0 299 569 181 52 124 225 304 7k 132,6
168.wupwise 26k 2 0 0 877 4k 498 7 29 335 268 18k 5k,6

Table 10. Final overall and per-machine standard deviations for SPEC CPU 2000. Most benchmarks
are run 7 times; if fewer runs exist than the total number is listed after the variation. Light grey
indicates deviation of 1k to 10k, medium grey 10k to 100k, dark grey over 100k. The gcc variations
seen in Table 6 have been removed, but the per1bmk variations remain (this needs investigating).
The Core Duo still has high amounts of variation, which also needs investigating.

23



o
_ 2 3
= < [a] o Sl o ©
. ° g N E N € E X N E N 2N [GN]
Retired S £ 3z ST S5 ST ST ox o T
Instructions c g S £5 £8 EQ =8| 28 23 £Q
Benchmark (mean) o (] > oW o o (s} <~ o ai O+ Oai
473.astar BigLakes 435,510,972,009 -267k -267k 60M 2k -184k -85k 21k -88k 387k -52k
473.astar rivers 870,943,440,840 -166k -166k M 31k -145k -113k =75k | -112k 486k -71k
410.bwaves 2,494,425,636,829
401.bzip2 chicken 199,232,687,985 -60k -60k -60k -6k -36k -31k -30k -31k 162k -25k
401.bzip2 combined 364,136,119,274 -189k -189k -189k 70k -32k -27k -25k -27k 55k -13k
401.bzip2 html 706,417,076,260 -278k -278k -278k 104k -62k -57k 21k -56k 83k -32k
401.bzip2 liberty 346,361,856,485 -91k -91k -90k -7k -67k -61k -59k -61k 306k -49k
401.bzip2 program 593,333,166,362 -300k -300k -300k 78k -83k -79k 17k -78k 207k -60k
401.bzip2 source 452,012,702,211 -316k -316k -315k 40k -97k -92k -18k -92k 335k -75k
436.cactusADM 3,150,074,895,066 -160M | -160M | -160M -158M -159M | -158M -156M | -159M
454 .calculix 8,687,229,110,374 30M 30M 216M 34M 29M 33M | -211M 41M 38M 34M
447 dealll 2,334,570,289,677 M M 3M 2M 3M -21M 3M 4M 3M
416.gamess cytosine 1,143,007,252,827 ™ 7™M | -149M ™ ™ ™ -46M 7™ 8M 7™
416.gamess h2ocu?2 867,682,034,605 752k 752k -183k 957k 802k 863k -5M 944k M 891k
416.gamess triazolium 4,215,194,263,261 2M 2M -11M 3M 2M 2M -18M 2M 3M 2M
403.gcc 166 85,720,744,289 -1M -1M 9M 55k -198k 42k 41k -35k 47k 46k
403.gcc 200 166,630,876,529 -966k -966k -1M 65k -147k 38k 44k -4k -45k 48k
403.gcc c-typeck 140,819,836,173 -6M -6M 17M 100k -292k 83k 76k | -123k 65k 89k
403.gcc cp-decl 109,542,535,643 -872k -872k 10M 66k -189k 46k 48k -43k 21k 50k
403.gcc expr 118,135,968,710 -4M -4M 16M 93k -286k 80k 74k | -110k 61k 85k
403.gcc expr2 160,294,356,532 -6M -6M 24M 182k -417k 93k 87k | -112k 66k 100k
403.gcc g23 193,775,908,083 -6M -6M 19M 339k -453k 47k 111k | -186k 85k 56k
403.gcc s04 179,205,032,366 -2M -2M 20M 299k -537k 54k 99k | -123k 144Kk 62k
403.gcc scilab 64,696,667,990 -88k -88k 520k 20k -27k 9k 11k 7k -32k 10k
445.gobmk 13x13 238,220,190,813 -29k -29k -29k 22k -6k -15k -14k -16k 33k -4k
445.gobmk nngs 631,487,392,799 -68k -68k -67k 49k 21k -46k -44k -47k 128k -17k
445.gobmk score2 345,153,298,166 -33k -33k -32k 26k -17k -25k -24k -25k 76k -9k
445.gobmk trevorc 236,505,629,198 -43k -43k -42k 15k -12k -22k -21k -23k 75k -11k
445.gobmk trevord 340,188,823,216 -46k -46k -45k 19k -20k -30k -29k -31k 108k -15k
459.GemsFDTD 2,511,627,666,076 -82M -82M -82M -93M -79M 331M -78M -79M
435.gromacs 2,929,269,770,446 2M 2M 2M 2M 2M 2M -16M 2M 4M 2M
464.h264ref forebase 564,679,835,977 -83k -83k -14k 16k -68k -39k -48k -37k 199k -20k
464.h264ref foremain 323,101,422,186 -56k -56k -261k 12k -34k -28k -34k -29k 133k -18k
464.h264ref sss 2,814,673,630,472 -426k -426k -1M 102k -324k -283k -329k | -281k M -184k
456.hmmer nph3 1,039,884,702,457 -50k -50k -49k 159k -2k 16k -655k 44k 341k 95k
456.hmmer retro 2,212,798,906,108 -214k -214k -214k 30k -214k -212k -226k | -210k 956k -122k
470.lbm 1,495,737,916,162 -343k -343k -1M 214k -235k -235k 211k | -233k 789k -88k
437 .leslie3d 2,534,171,622,239 -1M -1M -1M 423k -219k -202k -181k | -221k 429k -27k
462.libquantum 3,884,593,703,235 -616k -616k -615k 581k -588k -378k -140k | -380k M -377k
429.mcf 449,895,474,978 -241k -241k 240k | [N 237k -626k -622k 2M -571k
433.milc 1,386,822,074,952 -20M -20M -21M 3M -20M 626k 13M 615k M 632k
444.namd 2,895,739,055,062 669k 669k 673k 954k 687k 691k -4M 696k 875k 773k
471.omnetpp 764,012,528,890 -169k -169k 52k 6k -112k -262k | -112k 483k -55k
400.perlbench checkspam 148,063,263,885 4M -1M -53M 2M 2M 2M -655k -753k 2M -8M
400.perlbench diffmail 401,908,801,828 -19M 23M -77M 1M 1M 1M -359k | -387k M -4M
400.perlbench splitmail 714,321,332,736 -30M -12M 140M 5M 6M 5M -1M -3M 5M -19M
453.povray 1,204,154,429,572 3M M -27M 4M 3M 3M -21M 2M 3M 3M
458.sjeng 2,530,950,250,697 -236k -236k -236k 149k -137k -161k -162k | -162k 522k -49k
450.soplex pds-50 450,968,408,662 -9M -8M 2M -14M M 3M M M M
450.soplex ref 459,061,461,724 -35M -40M 6M -35M 5M 5M 5M 5M 5M
482.sphinx3 2,827,860,491,335 18M 18M 159M 18M 18M 18M | -111M 18M 19M 18M
465.tonto 2,895,381,102,397 202M 245M 150M 223M 67M 222M 448M 224M 222M
481.wrf 4,116,952,684,945 208M 208M | -120M 224M 7™M 223M 359M 226M 223M
483.xalancbmk 1,313,434,962,755 -3M -3M -1M ™ -1M -1M -1M -173k -1M
434.zeusmp 2,397,662,229,146 -597M -52M 754M -51M -52M

Table 11. Final average retired instruction counts for SPEC CPU 2006 after taking actions described
in the text. The individual machine results are shown as deltas against the global mean. Light grey
indicates differences of 1 million to 10 million, medium grey differences of 10 million to 1 billion,
dark grey indicates over 1 billion. Entries marked N/A are benchmarks that could not be run due
to memory constraints. zeusmp has a 1GB data segment size, so the DBI tools cannot run it while
reserving memory for their own use.
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473.astar BigLakes 1 1 0 958 38 118 583 344 267
473.astar rivers 1 1 0 1k 22 148 808 1k 9k
410.bwaves 9 1 O 171 2k 1k
401.bzip2 chicken 4 1 0 327 13 59 389 104 496
401.bzip2 combined 43k 4 4 0 633 20 64 370 362 93k 111
401.bzip2 html 4 1 0 777 10 87 537 791 4k
401.bzip2 liberty 4 1 0 663 10 53 531 324 1k
401.bzip2 program 1 1 0 806 8 56 311 430 191
401.bzip2 source 4 4 0 687 12 94 371 332 135
436.cactusADM 6 92 0 24k 70 17k 3k 2k 767
454.calculix 5 0 0 11k 67 387 2k 4k 949
447 dealll 4 0 0 4k 32 119 2k 920 1k
416.gamess cytosine 0 9 2 1k 31 109 589 950 171
416.gamess h2ocu2 1 2 2 1k 11 72 336 2k 431
416.gamess triazolium 1 2 4 5k 55 183 1k 2k 421
403.gcc 166 0 8 0 438 39 35 231 257 27k 85
403.gcc 200 0 8 0 452 212 48 165 438 62k 251
403.gcc c-typeck 5 6 0 630 269 61 290 669 29k 1k
403.gcc cp-decl 0 8 0 454 154 78 203 65 11k 124
403.gcc expr 5 6 0 222 164 100 295 573 14k 35
403.gcc expr2 11 0
403.gcc g23 0 8 0
403.gcc s04 0 8 0
403.gcc scilab 4 2 0
445.gobmk 13x13 2 8 0
445.gobmk nngs 8 4 0
445.gobmk score2 6 2 0
445.gobmk trevorc 4 6 0
445.gobmk trevord 4 6 0
459.GemsFDTD 2 1 8
435.gromacs 53 42 56,6
464.h264ref forebase 10 11 0
464.h264ref foremain 10 9 0
464.h264ref sss 10 9 0
456.hmmer nph3 27 20 0
456.hmmer retro 3 10 0
470.lbm 1 6 0
437 .leslie3d 98 96 123
462.libquantum 0 0 0,6
429.mcf 0
433.milc 0
444 .namd 0
6

471.omnetpp
400.perlbench checkspam
400.perlbench diffmail
400.perlbench splitmail
453.povray

458.sjeng

450.soplex pds-50
450.soplex ref

1k
323 1k
1k 10k 8k

482.sphinx3 2k 541 4k 4k
465.tonto 124 362 2k 1k
481.wrf 407 342 1k 4k
483.xalancbmk 5k 724 1k 3k
434.zeusmp 54 187 [N Sk

Table 12. Final overall and per-machine standard deviations for SPEC CPU 2006. Most benchmarks
are run 7 times; if fewer runs exist than the total number is listed after the variation. Light grey
indicates deviation of 1k to 10k, medium grey 10k to 100k, dark grey over 100k. The slower machines
are more sensitive to run-time related variation (due to number of interrupts). Variation in per1bench
is due to stack-related issues described in Section 4.2.1. The gcc variation seen in Table 8 has been
mitigated. There is still some perlbench related variation (needs investigation). povray also has
some unexplained variation. The Core Duo machine consistently has high variation (also needs
investigation).
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