Comparing Two Implementations of a
Memory Reference Analysis Tool

A Design Project Report
Presented to the Engineeringvi3ion of Graduate School
Of Cornell University
In Partial Fulfillment of thd&Requirements for the Degree of

Master of Engineering (Electrical and Computer)

by
I-CHUN LI
Project Advisor: Sally McKee
Degree Date: August 2006

1. Introduction

1.1 Cache Conflicts

The cache is a small, fast storage area wheggidrely accessed datanche stored, taking

advantage of temporal and spatial locality & #tcesses. Temporal locality implies that if a
memory location is referenced, it will tend to federenced again in the near future. Spatial
locality implies that if a memory location is reé@ced, memory locations near it will tend to

be referenced soon [1].

Generally, a cache is divided intoany blocks with fixed-sizeollection of data containing

the requested words retrieved from the maimrgy. Because the cache is smaller than main

1

memory, it is not possible to have all objectsrgérest in the cache at once. When data is
loaded and it is not found in the cache, iBigalled a cache-miss. &te are three types of
cache misses: compulsory, capacity, and conflict. A compulsory miss happens the first time a
data object is referenced andsheot had a chance to be loaded into the cache. A capacity miss
happens when a cache simply is not big enough to hold all of the data being referenced. A
conflict miss is caused when more than one olgéatterest map into the same block in the
cache [2]. These memory conflicts cause fregeesatps between different level memories and
increase miss rates. Consequently, the performance will be extremely degraded as well as

causing greater power consumption.

The memory conflicts can potentially be elimied by reorganizing theode or adjusting the
memory allocation as high miss-rate parts Bnown. It requires a pfiler to monitor the
client program’s memory reference and an analggikto keep statistics about which memory
structures cause cache conflicts. A cache sinl&ache Stats [3], has been developed to

gather and report statisti@about these conflicts.

1.2 Cache Utilization Analysis Tool: Cache Stats

Cache Stats is a cache simulator and analyzerhwie@ds in data from an instrumented file

and runs this data through a cache simuldtbe simulator keeps statistics on all variables

(text, data and bss) and also tracks varmliocated in the heap via malloc, calloc and

realloc.

Cache Stats requires four input files: a trace @leconfiguration file, a symbol file, and an

executable binary. The client code shouldifsrumented by a program analyzer (FIT and

Valgrind in this project) which will generate a mery reference trace file in the format Catch

Stats requires. The configuratiéle defines the behavior ofache Stats, indicating what kind

of cache to simulate, what output to generatd,\amious other data structure parameters. The

total size, block size, and assatorities of the L1 and L2 cachesn be specified in detalil.

The symbol file and the executable file are apsl. The symbol filewhich is generated by

the command “nm” in Linux, contas a list of all the varide names and addresses. The

executable file is compiled from the non-instruneel code. Cache Stats uses the executable

file in conjunction with the "addr2line” tooto determine where in the code memory

allocations happen.

When Cache Stats runs, many 64-bits counteralbreated for statisticdNext, the addresses

of static variables are loaded from the symiilel Information on the various memory areas

are stored in variables of the “struct memorgaé type which are found via a hash table. The

stack is treated as one large unified menma®a and given its own memory_area. Dynamic

memory allocations are treated specially, andetlage additional statistiend tables kept for

3

them. In an attempt to approximate knowledfelata-types without paing the source code,
Cache Stats groups allocations of same sizbs @f the same data-types. After allocating the
main infrastructure, the L1l-icache, L1-dcachad L2-unified cache are initialized and the
trace file is opened. The program then loopsgishe incoming data &m the trace file to
simulate the cache and build up the cache lobnhformation. Conflicts are recorded by
taking the memory_area corresponding to theestdcausing a miss, and registering a conflict
with the memory_area of the tdastructure being ptaced. After the trace files ends, the

results are reported to an HTML file

1.3 Static Binary Instrumentor vBynamic Binary Instrumentor

Cache Stats requires some method of gemgratiemory traces from the benchmarks of
interest. The trace must include all memaigcesses and also information on all dynamic
memory allocations. There are two common $yé analysis toolspne instruments the

benchmarks source code, the other instrumenty the compiled executable [4]. A source
analyzer operates on the source code, anadispendent from the machine’s architecture or
operation system. In contrast, the binary analge&lyzes a program at the level of machine
code, either as pre-linked objecbde or post-linked execulabcode. It instruments the

analysis code to the cliebinary directly and withouny access to the source code.

Two main binary instrumentation methods are uksed here: the static binary instrumentation
and the dynamic binary instrumentation (DBI).eT$tatic binary instrumentation occurs prior
to run-time. It takes time to instrument the gsa code first and then execute the program for
analysis. Unlike static instrumg&tion, dynamic instrumentationj@cts analysis code into the
client program at run-time. DBI has at leasbtmain advantages. First, the client program
does not have to be prepared in any way waade, which makes the analysis process a bit
simpler, especially when client programs &egjuently modified. 8cond, it naturally covers
all client code. If clientode and librare are mixed, different modulese used, or client uses
dynamically generated code, it would be difficto instrument all odes statically. This

guarantees the correctness for general usage.

This project compares two kind of binary mshentor: FIT, the Flexible Instrumentation
Toolkit, a statistic instrumentor [5] anW¥algrind, a dynamic instrumentor [6]. FIT’s
implementation for Cache Stats had been iptesly developed and was known to generate
reasonable results. Nevertheless, as a staioumentor, FIT requirea slow and unwieldy
instrumentation process, something whighlgrind does not need. The two methods of
instrumentation will be compared using accurang slowdown as metrics, in order to decide

whether it is beneficial to replaced Riith Valgrind as Cache Stats’ profiler.

1.4 FIT: The Flexible Instrumentation Toolkit

FIT, a Flexible open-source binary code Instratagon Toolkit, is designed to be an ATOM

compatible binary instrumentor (ATOM [7] waa classic, widely used static binary

instrumentation tool, which couliesisert calls to arbitrary Cocle before and after functions,

basic blocks, and individual instructions. Itnked on Alpha only, and thus is unfortunately

defunct now.). FIT’s instrumentation is staticyaétquires all object files for the binary being

linked, and the object files must be linked wihslightly modified GCC tool-chain. FIT

consists of three parts (figutel): the FIT front-end, the FIT insimentation libraries, and the

FIT support library. Like ATOM, FIT, requires anstrumentation filethat indicates what

points of the program should be instrumented,amédnalysis file which defines what analysis

code should be executed at those program pdiiitss front-end creates the instrumentor and

compiled analysis code. The instrumentation fdinked to the instrumentation library to

produce the instrumentor, and the analysis cisdénked with FIT support libraries that

provide the standard C-functiditg The instrumentor is themun on a binary executable

program: it links the analysis code into the bynand rewrites the binary to call the desired

parameters of the analysis code. The ibetd the internal organization of FIT's

instrumentation is in [8] which is beyond the scope of this report.

FIT uses its own support libratg avoid the standard C-libsabecause usinthe latter will

6

disturb the run-time data stiwres of the analysis code in the program. FIT also has

mechanisms that attempt to prevent the origiaah addresses from being changed. FIT was

originally chosen to trace the program’s meynceference for Cache Stats because of these

attempts to preserve as closely as possil@lerthmory access pattern of the original program.

Despite these good features, there are a few redisan&IT is not suitable for Cache Stats.

First, FIT has large overhead during instrumentation time. The memory used when

instrumenting SPEC benchmarks can take gigabytes of RAM which will cause thrashing or

even out-of-memory situations. Although FIT ibiaary instrumentation tool, it requires the

original object files from te compilation, and also requirestbhinary to be linked with a

modified gcc tool chain, so effectively you wilked the source code available to make full

use of FIT. Another issue is that FIT cuttgronly works on C programs, and some client

programs of interest are programmed @++ and FORTRAN. Finally, the static

instrumentation requires the bindoybe re-instrumented whenewhe client code is modified.

To go through the whole process whenevepaat is changed is time consuming and

inefficient.

analysys.c

CROSSCC m
executable

FIT
front-end

custom instrumentor
Instrument.o

CC —} FIT architecture

instrumentation routine

Diablo

instrumented
client executable

Figure 1.1 The design of FIT

1.5 Valgrind

Valgrind is an open-sourced DBI framework whimtovides low-level infrastructure to build

up supervision tools, also called dynamic binanalysis (DBA) tools, such as profilers and
bug detectors [9][10]. The Valgrind core emakta synthetic software CPU, and Valgrind
tools', which are plugged into the core, instruthnand analyze the running program. Anyone
can easily write and add arbitrary instrunagion to programs under Valgrind. This makes

Valgrind ideal for experimenting with new kindé debuggers, profilers, and similar tools.

Because Valgrind is execution-driven and usesityi translation, it covers all the codes of a

client program which includes normal execug¢alglode, dynamically linked libraries, and

dynamically generated code even if the soummgecis not available. Neither a skin nor its

libraries need to be recompilegt-linked with client programbefore being run. Just prefix

the client program’s command line with Valgrind and everything works. These characteristics

allow Valgrind to supervise programs writtenany programming language, and it requires no

compiler support, no code recompilation, no soeame, and no special treatment for libraries.

Figure 1.2 (a) gives a conceptual view of norpralgram execution, from the point of view of

the client. The client can directly accesse tlhiser-level parts of the machine (e.g.

general-purpose registers), but can only acttessystem-level parts of the machine through

the operating system (OS), using system cé&iligure 1.2 (b) shows hothis changes when a

program is run under the contral Valgrind. The client and thealgrind tool are part of the

same process, but the latter mediates everytthiagclient does, givingt complete control

over the client.

1. Contrast to Valgrind core, Valgrind tools are plug-in DBA tools of Valgrind. Valgrindeators call them

“skins.” The terms “plug-in”, “skin” and “Valgrind tool” are used as synonyms in this report.

Client

Client Valgrind
oS
Machine Machine 03
(user-level) | mMachine (user-level)| Machine
| (system-level) | (system-leve)

Figure 1.2 (a) Figure 1.2 (b)

The following components are used at Valgrind start-up:

e Valgrind's loader (a statically-linked ELF executable)
e Valgrind's core (a dynamically-linked ELF executable)
e The plug-in, the skin (a shared object)

e The client program (an ELF executable, or a script)

Figure 1.3 demonstrates their redaiship. When Valgrind runs, theader does the first step to

get the other three parts loaded into a singbegss sharing the same address space; the loader

is not present in the final layouthe next stage is the basiotk (BB) translation. Valgrind

uses dynamic binary compilation and caching thaftgitself onto the client process at start

up, and then recompiles the client codee oBB at a time, in a just-in-time (JIT)

execution-driven fashion. To avoid the complexity of x86 instruction set, Valgrind translates

the block of x86 instructions into its own intermediate representation (IR), a RISC-like

instruction set, called UCode. This tranglatprocess involves disassembling and optimizing

10

the client program’s x86 code into UCode, whis then instrumented by the skin, and then

converted back into x86 codélhe design of UCode makes \Valgl easily be transfer to

other platforms without redesigning the mshentation methodology in the future.) The

process utilizes the x86-to-x86 JIT compiler, a basic C library replacement, a low-level

memory manager, the support for signals hagdimd a scheduler. The result basic blocks are

connected and stored in a tramisia table, a linear-probe haslbka, to be rerun as necessary.

Basic blocks are translatemhe-by-one, and once a trangiatiis made, it can be executed

(refer to [4] for more detail). The Valgrind cospends most of its execution time making,

finding, and running translations. Finally, Valuli generates the cliemrogram’s original

executing result and reports its own instratagion’s conclusion. The file opened by

instrumentation will also be created.

11

Client executable
(X86 binary code)

Valgrind
plug-in

Valgrind core

Valgrind Loader
BB
B e Translation BB:
1. Disassembly
instrumented 2. Optimization
BB (UCode) 3. Instrumentation
h 4. Register allocation
J;H 5. Code generation
instrumented
BB (x86)
instrumented Connecting BB
BB (x86)
Translation table Executing translation

!l 4

client program
execution result

Valgrind report

Figure 1.3

12

2. Implementation of the Memory Reference Tracing Tool

under Valgrind

This section presents a Valgrind tool, Cache T@l, tentative name), that generates a trace
file from a client program for the Cache Stats tool.

2.1 Writing a Valgrind Tool

Valgrind tools define various functions callbg Valgrind’s core for instrumenting programs.
They are then linked against theregrindlibrary (libcoregrind.g the Valgrind core library)
that Valgrind provides as a C library replacement as well as the VEX lidilavex.a the

library for dynamic binary instrumentation atmenslation.) that prades the JIT engine.

Valgrind source code has already providechyntools for debugging, profiling, etc. On of

13

these skins, Nulgrind, does ncsirumentation and can be used Valgrind’s developers to

create a new tool [11]. Four basimctions have been set up in it:

pre_clo_init()

e post_clo_init()

e instrument()

e fini()

The first two functions are used for initializatiorcl” stands for “command line options”).
The “pre_clo_init() contains most of the itialization suchas the tool's name, version, and
all the functionalities it needs. Thedst_clo_init() function is neededonly if the tool
provides command line options and must do samiglization after option processing takes
place. The instrument() function allows developers to indecode into just-translated basic
blocks of UCode. Thefinhi()” function is called when théranslation and execution are

finished. This is where final results, suchaasummary of informationollected, are printed.

Any opened log files opened in thetialization functionscan also be written and closed here.

Standard C library functionseavoided in Valgrind tools. Wgrind provides replacements for

most functions in the C standard library to @netvinterference and to ensure client programs

are totally under Valgrind’s comi. Conventionally, functionand variables in the Valgrind

core and replacement C library use the prefixG*” for identification. For example,

14

VG_printf() is used to replacgwintf(). For Valgrind tools, the abbreviated name is prefixed.
Therefore, “ct_” is prefixedin this case, such ast _pre_clo_init() ct_post_clo_init()

ct_instrumentandct_fini().

2.2 Overview of the Trace Implementation

CT requires three parts to trace the client’'s memory reference:

e Tracing heap allocation: CT uses functioctsmalloc() ct_calloc()andct_realloc() to
replace the client programs’ heap allocation routma#ioc(), calloc(), realloc(). It also

replacedree()by ct_free()to free the above heap allocations.

e Tracing memory accesses, load and st@#€ inserts instrumentation code to client

programs’ basic blocks to trace the store and the load instructiohsnstrument()

 Writing a trace file A trace file is opened by CT, aige information gathered above is

written to it according to the trace filermat of Cache Stats (see Appendix A).

2.3 Heap Allocation

Heap allocations are dynamic allocatiommdmory. Currently, Cache Stats and CT handle

only C heap allocations, but adding support@e-+ and Fortran should be trivial:

e Malloc (size_tsize: The malloc() function allocates a mempo block of at leassize

15

bytes. The block may be larger thsire bytes because of space required for alignment

and maintenance information.

Calloc (size_tnum size_tsizg: The calloc() function allocates storage space for an

array ofnumelements, each of lengsizebytes. Each element is initialized to O.

Realloc (void*memblock size_tsizg: The realloc() function changes the size of an

allocated memory block. Thmemblockargument points to the beginning of the memory

block. If memblocks NULL, realloc() behaves the same wayraalloc() and allocates a

new block ofsizebytes. Ifmemblockis not NULL, it should be pointer returned by a

previous call to calloc, malloc, or realloc. Teeeargument gives the new size of the

block in bytes. The contents of the blae unchanged up to thieaster of the new and

old sizes, although the new block can beidifferent location. Because the new block

can be in a new memory logat, the pointer returned bgalloc() is not guaranteed to be

the pointer passed through timemblockargument.

Free (void*rmemblocR: Thefree() function de-allocates a memory blociemblockhat

was previously allocated by a calldalloc(), malloc(), or realloc() The number of freed

bytes is equivalent to the number of byteguested when the block was allocated (or

reallocated, in the case @alloc()).

16

The function replacement is anportant feature that Valgrind provides and is not directly
related to the instrumentation. CT’s replaesm functions of thes standard C memory
management functions provide the necessmgks for the heap memory event callbacks.
These replacement functions can control detzfilallocation information and have code to
write the allocation parametergana trace file. In ater to track the heap information, client
executables should be dynamically linked. This is because Valgrind useB tRRELOAD
mechanism to intercept thmealloc() calls. In the beginng, an allocabn list, ct_malloc_list
initialized in ct_pre_clo_init() is created for re-allocationnd accessed as a hash table.
Whenever an allocation happens, a data structur@hunk records the allocation address,
size, kind and PC is added, resizedleleted in the list by the functi@add_ct_Chunk()

typedef

struct _ct_Chunk {
struct _ct_Chunk* next;

Addr data; Il ptr to actual block;address
SizeT size : (sizeof(UWord)*8)-2; // size requested; 30 or 62 bits
ct_AllocKind allockind : 2; /' which wrapper did the allocation
ExeContext* where; /l where it was allocated

}

ct_Chunk;

2. We use “chunk” in the following text to indicate the information data structure of allocations stored in the

ct_malloc_list.

17

The parameter “kind” itt_Chunkis defined as an enumeration (enum) of four kinds:
typedef
enum {
ct_AllocMalloc = 0,
ct_AllocNew =1,
ct_AllocNewVec = 2,
ct_AllocCustom = 3
} ct_AllocKind;
Only C’s allocations are implemented now and categorizetl &8locMallog other allocation
categorization such as$_AllocNewandct_AllocNewVedor C++'s new/new[]/delete/delete][],

andct_allocCustonfor other types are reserved for futwse. A free list is also optional for

future use.

2.3.1 Malloc() and Calloc()

Three functions are explained here:

void *ct_malloc (Threadld tid, SizeT n);

void *ct_calloc (Threadld tidSizeT nmemb, SizeT sizel);

void *ct_new_block (Threadld tid, Addr p, SizeT size, SizeT align, \

Bool is_zeroed, ct_AllocKind kind, VgHashTable table);

The ct_malloc() and ct_calloc() functions replace the equivalent functions in the client
program, and return allocation addresses. Atugklgrind implements these two allocations
in much the same way as the original. Theyatifference is their size definition. The size of

ct_malloc() is defined directly by parameter n, thé size of ct_realloc is the multiple of the

element type argument nmemb and the sigparaent sizel. The fution ct_new_block() is

18

called to allocate memory and add chunks to the ct_malloc_list.

In ct_new_block(), the paramettd is the thread id of the allocation. Tle new_block()

function assigns to addregsa memory block having parametesize and align (align=

VG_clo_alignment VG_MIN_MALLOC_SZBdefined in the Valgrindcore to ensure all

block payloads ar®G_MIN_MALLOC_SZRligned). Thas_zeroedparameter determines if

the element is to be initialized to zero or not (this parameter is tieiermalloc()and false in

ct_malloc()). The allocatiorkind is set to be 0 as mentioned before. When the allocation is a

success, its chunk is storedtable (equal toct_malloc_listin CT).

2.3.2 Free()

Three functions are referred to here:

void ct_free (Threadld tid, void *p);

void ct_handle_free (Threadld tid, Addr p, ct_AllocKind kind);

void die_and_free_mem (Threadld tid, ct_CHumk, ct_Chunk**, \
prev_chunks_next_ptr);

Thect_free()function replaces thigee() of client programs. It ses the allocation addrgss

to ct_handle_free(Jo retrieve the chunk in thet_malloc_list Then the chunk is passed to

die_and_free_mem(p be deleted, and its previousuok’s next pointer points to its next

chunk. Finally, the allocation is freed in the memory&y free()

2.3.3 Realloc()

19

Thect_realloc()function replaces the realloc() of the client program:

void *ct_realloc (Threadld d, void* p, SizeT new_size);
It allocates memory almost the samectsiew_block()with there cases. First, wheew_size
is equal to the originadize of the memory blockp, everything remains the same. Second,
whennew_sizas smaller, the allocation size will lnhanged, and the size parameter in chunk
will be updated. Third, when the new size is larger, a new space will be allocated as
ct_new_block(does, and then the data is copied from the original allocation to a new one.

Finally, the original allocation is freed et free()does.

The ct_malloc_listis created only because re-allooatirequires the original allocation’s
information. If a client prograndoes not use re-allocation, the malloc_listand the chunk
related code can be removed, and the haligration replacement speed can be highly

improved.

2. 4 Program Counter (PC)

In the heap allocation replacement functions,ath@cation PC will be stored as a member of
the ct_Chunk structure. €hype is declared as:

struct _ExeContext {
struct _ExeContext * next;
[* Variable-length array. The size is VG_(clo_backtrace_size); at
* least 1, at moMG_DEEPEST BACKTRACE. [0] is the current IP,

20

* [1] is its caller, [2] is the caller of [1], et¢/

Addr ips[0];

When the allocation happens, the functiorturn addresses are stored in 8iBACK and

then the callee address is storexkt to it. The callee PC cdre found in the variable-length

arrayips here and also in a list which is dealt\6§ (record_ExeContexfl3]. Therefore, its

caller PC, where the allocation instruction happens, is near the callee’sSHAIGK in the

ips[1] location, and it is wridin into the trace file.

2.5 Basic Block Instrumentation: Load and Store

The Valgrind JIT compiler translates the cligmbgram’s x86 instructits to its IR (UCode)

once per basic block (BB). When a BB is unohtrumentation, Valgnd will create a new

BB first and then put all the original instructioplus CT’s instrumentain into it. The IR is

defined in LibVEX [14], the library for dynamibinary instrumentation and translation of

Valgrind. Here, only load/store instructions are considered. The loop imstrument()will

go through each statement in the BB and checkhwinghe statement is a load/store or not.

When a load/store statement @ifd, its address will be stored access _address®\nother

variableis_Loadis set to “True” when it is a load; otiwése, it is set to “False.” Finally,

access_addresandis_Loaddetermines what kind of trace dataould be written to the trace

file and adds appropriate instructiaiesdo this to the instrumented BB.

21

2.6 Executing Valgrind Tool and Writing a Trace File

If a client program is normally run like this:

prog argl arg2
Then the command line of Valgrind with @@ instrument and execute it is:

Jvalgrind --tracefile= trace_file-tool=cachetool prog argl arg2
The “-trace_fil€' is optional to set the trace file nam#&/ithout this argument, CT will use a
default file name. Usually, the trace fileilmbe a UNIX fifo (named pipe) because the
memory reference data may consume large amounts of disk space (normally about 2 GB in

less than ten minutes).

When the execution starts, Valgrind will read ttepre_cloinit()first. This function defines
the aforementioned heap allocation replacementtions and load/store instrumentation. It
also calls thect_post_clo_init() which gets the file name from command, open the trace file
and then writes a 16 byte long header. The hdaadwrainly for futurecompatibility purposes;

it reports the machine’s size aing in bytes (i.e. 4 on a 32 Imachine, 8 on 64), whether the
machine is big- or little-endian, and reporte trersion of the trace file format being used.
When executing, the tool generates trace tatavery replacement allocation function and
memory reference (address, size, PC)Once instrumented once during the BB

instrumentation, the JIT execution will exectlte modified version of the BB. When the

22

execution finishes, thet_fini() closes the file and terminates the whole process.

An example message is like this (use “a.outttes client program and “tracefile.txt” as the

trace file name):

> /valgrind --tool=cachetool -+acefile="tracefile.txt" a.out

==3207== Cachetool, generates traces for the cachteool program.
==3207== Copyright (C) 2006 - Vince Weaver/yohowo

==3207== Using LibVEX rev 1367, a libry for dynamidcbinary translation.
==3207== Copyright (C) 2004-2005, and GNGPL'd, by OpenWorks LLP.
==3207== Using valgrind-3.0.1, a dynamic fmary instrumentation framework.
==3207== Copyright (C) 2000-2005, and GNGPL'd, by Julian Seward et al.
trace file tracefile.txt opened

header written

==3207== For more details, rerun with: -v

==3207==

(the message of the atigprogram shows here)

==3207==

Cachetool:Exiting!
The number 3207 is the process ID and usualijnpartant. Next it show the declaration and
information about Valgrind and its tool (CT her&he opened file name is shown in the next
part, and then compilation and execution staged displayed the client program’s message.
Finally, it showed the exit message when trecess finished, and the trace file was generated

(if not a pipe).

23

3. Simulation and Comparison of Implementations under

Valgrind and FIT’s Instrumentation

This section demonstrates the simulation preadxlient programs under the Valgrind or FIT
profiler and the memory conflietnalyzer, Cache Stats. The ttools’ accuracy and speed are
compared. The FIT instrumentation is presuroedect because it had been used extensively
beforehand. The goal of this project is to prove that Valgrind has the same accuracy as FIT,
and that Valgrind’s implementation processmsre convenient and tose as an input for
Cache Stat.

3.1 Simulation Process

3.1.1 Machine Specifications

The simulation was done on the Sampaka Clustéonging to the Computer System Lab at
Cornell University. The cluster’s specifications are:

e 40 1-U nodes
e Each node has two Pentium 4 2.8GHz Xeon Processors

24

e Each node has 2GB of RAM

e Connected by 1000Mb/s Ethernet

e Runs SuSE 9.3 Linux booted via PXE

e 90 Gigaflops with 64 CPUS

e Donated by Intel

The Network Batch System (NBS) [15] has béestalled in the cluster. NBS is a suite of
executable images and command scripts thateimgnts a distributed load-balanced batch

execution system. NBS is useful when manycpsses are required to execute at the same

time, and it will count the final CPU time of processes.

3.1.2 Trace File

To run Cache Stats and the instrumegl binary at the same tintage trace file should be a fifo

named pipe. The trace file that is read is naftrag/trace.PID(in a temporary directorftmp)

where PID is the process ID of the program being traced and assigned by the operation system.
The PID is used because if more than onenti tracing, the two process would overwrite

each other’s traces and ruin resulthe trace file can be consuméot of disk space, so using

a pipe can avoid running out of disk, whicbutd potentially interrupting a simulation that

may take hundreds of hours.

FIT’s instrumentation code has been writtercteate the pipe file itself. (When Valgrind is

used, the pipe is created in a script). To wheitee the proper trace filkame generated by FIT,

the FIT run is run in the background and the Bélermined with the “$!” shell substitution.

25

3.1.3 Preparing the Simulation

Before the simulation, some files are preparedemerated first: the script, the symbol name

file, and the config file. The script bundlése instrumented prograexecution and Cache

Stats command line to run them at the same time through the pipe, and it simplifies the process

of doing multiple runs with long pathnames. $ghfiles are create by the command “nm” in

Linux, and these files use .nm as extension naifies.config file wasdescribed in section

1.2.

3.1.4 Benchmarks

Five SPEC CPU 2000[16] benchmark programgewsimulated in this project (name,

remarks):

e 164.9zip Data compression utility

e 175.vpr FPGA circuit placement and routing

e 186.crafty Chess program

e 177.mesa 3D Graphics library

e 183.equake Finite element simulation; earthquake modeling

The remaining benchmark, SMG2000 [16] (a parallel semi-coarsening multigrid solver) is a

part of the ASCI Purple benchmark suite.

3.1.5 FIT implementation Simulation Process

Running the simulation of Cache Stats using Fiqunes four steps. First, the client source

26

code should be compiled by FIT’s patched gcc with its tool-chain. Since FIT needs statically

linked executables, its gcc compiler will statically link against its own version of standard C

library. This process generates an executablectall“nofit executable”, which means the file

has been compiled by the propeoltohain but has not been instrumented yet. Second, the

nofit executable is used to create the symhbeldnd also as Cache Stats’s input executable

because it contains the non-instrumented ilmaigclient program code. Third, the nofit

executable is instrumented by FIT along with ith&trumentation and the analysis files. This

process generates the final FIT executable thaes Gdit” as its extension. Finally, a script

executes the “fit” file to gemate the traceral inputs the trace to Caelstats along with the

config file, symbol file, and nofit execuike. Figure 3.1 depict the flows of FIT's

implementation and simulation with Cache Statse part enclosed by the dashed line can be

done together by a script. the final simulation, the script was submitted via NBS and

execution time was measured.

27

source code

gcc with
FIT tool-chain

FIT
instrument

non-instrumented
executable
(nofit executable)

instrumented
executable
(FIT executable)

nm

v

symbol file

trace file config file

Cache Stats

Figure 3.1 FIT & Cache Stats simulation flow chart

3.1.6 Valgrind Implementation Simulation Process

Running the Cache Stats simulation using Valgrimgiires three steps. €lprocess is similar

28

to FIT's (in section 3.1.5), but ¢hthird step of instrumentingnalysis code and instrument

code is not needed, because the client bimaly has to be compiled once by gcc. Since

Valgrind uses dynamic binary instrumentatianis not like FIT which has to compile the

client code first and then instrument it. Vaiglis JIT compiler instrument the client’s binary

executable on the fly and the library can beatyitally linked. Figure 2 depicts the flow of

Valgrind’s implementation and simulation witra€he Stats. The part enclosed by the dashed

line can be done together by aigt In the final simulation, the script was submitted via NBS

and the execution time was measured.

29

\Em

source code

gcc

executable

non-instrumented !

Valgrind nm
trace file symbol file

Cache Stats

fffffffffffffff ¥

Report
(HTML)
\/\

Figure3.2 Valgrind & Cach8tats simulation flow chart

3.1.7 Statistic Report

The output statistics are generated as an HTiML Cache Stats cownthe total access time,

load/store time, heap allocation time, and hit fatd_l and L2 cache. The results are show in

30

tables, presenting the following cache conflicts statistics:

e Cache lines sorted by miss rafiel1 data cache and L2 cache

e Symbols sorted by miss rate of L1 data cache and L2 cache

e Allocated memory area conflicts bysiof L1 data cache and L2 cache

Table 3.1 demonstrates a snapgfahe statistic in the outpuild. Many attributes are listed:

symbol names (or the line number of the allmratin the original source code), sizes,

segments (heap, static, stack or mmap), hit ratidresses, and cache lines. They are listed in

order according to their miss rate, and thalps programmers to figure out where case

slowdowns happen.

Accesses Name

1680402 ptr = calloc(count, elt_size);

1085979 ptr = calloc(count, elt_size);

Size

/ufs/vauIt/vince/cache_suitastrumented_binaries/trace_sngOOO/uti|ities/memory.(::%&?62 4

/ufs/vauIt/vinc:e/cache_sumastrumented_binaries/trace_smg2000/utiIities/memory.(::i.%é112

927141 /ufs/vauIt/vince/cache_suitastrumented_binaries/trace_sngOOO/utiIities/memory.(::]‘}j!g112

ptr = calloc(count, elt_size);

284659 ptr = calloc(count, elt_size);

/ufs/vau It/vince/cache_suitastrumented_binaries/trace_sngOOO/utiIities/memory.(::.’{l,&g;12

340106 /ufs/vauIt/vmce/cache_suitastrumented_bmanes/trace_sngOOO/utll|t|es/memory.(::H§32

ptr = calloc(count, elt_size);

40338206 STACK

508874 ptr = calloc(count, elt_size);

285212671,

/ufs/vauIt/vinc:e/cache_sumastrumented_binaries/trace_smg2000/utiIities/memory.(::.’/Lﬂ,?28

403964 /ufs/vauIt/vmce/cache_suitastrumented_bmanes/trace_sngOOO/utll|t|es/memory.(::§§§96

ptr = calloc(count, elt_size);

339792 ptr = calloc(count, elt_size);

/ufs/vau It/vince/cache_suitastrumented_binaries/trace_sngOOO/utiIities/memory.(::él).}?88

203656 /ufs/vauIt/vmce/cache_suitastrumented_bmanes/trace_sngOOO/utll|t|es/memory.(::§§(§56

ptr = calloc(count, elt_size);

203046 ptr = calloc(count, elt_size);

171124 ptr = calloc(count, elt_size);

Jufs/vau It/vince/cache_suitastrumented_binaries/trace_sngOOO/utiIities/memory.(::%i,?52

/ufs/vauIt/vinc:e/cache_sumastrumented_binaries/trace_smg2000/utiIities/memory.(::é.%?52

Segmen: Address |Cacheline| HitRate O'\\//ﬁsrsall

MMAP | 0x40002004 ALL 89.491562 | 15.146231
HEAP 0x84324ac | ALL 89.830252 9.47291
HEAP 0x83flddc ALL 90.508024 7.54841:
HEAP 0x83d4d6¢c |ALL 80.847611 | 4.67628¢€
HEAP 0x83ede74 |ALL 85.937619 | 4.102290
o NO loxafo00000 | ALL 99.881933 4.085050
HEAP 0x8473bf4 |ALL 92.573211 | 3.24163¢
HEAP 0x84a4c3c |ALL 93.556604 | 2.23259¢9
HEAP 0x84d07dc |ALL 93.610209 | 1.86231%
HEAP 0x84fal84 |ALL 94.220647 | 1.009554
HEAP 0x854120c |ALL 94.203284 | 1.009554
HEAP 0x851e64c ALL 94.010776 | 0.87909%

Table 3.1 Cache conflicts of sypols sorted by miss rate of L1 cache of smag2000 (part)

31

3.1.8 Comparison Items

The first step in comparing results was usingtripped-down versioaf Cache Stats called

Cache Sim. Cache Sim does not report detatlenflicts, it only shows cache hit and miss

rates. Because of this, it can be used to roughly compare both implementations in a shorter

time than Cache Stats does. Tdmmpared items include totala@ass time (separated to read

time and write time), hit rate of L1 data cachnd L2 cache (read time, write time, hit time

and miss time are reported for each cache) and heap allocation time (malloc, realloc, calloc

and free). The access time may be slightlgsidnilar because their linked libraries and

compilation are different. Heap allocation alkas this deviation, buhit rates and heap

allocation time are supposed to be similar.

In order to remove some of the variationsofit” versions of the benchmarks compiled with

FIT's tool-chain were simulated. These exablds are as close to the FIT instrumented

binaries as possible (figure 3.3tatically linked versions of éhbinaries can be compared for

even closer similarity, but Valgrind is unableimtercept the allocation functions of statically

linked binaries, so a full compariscannot be done using this method.

32

gcc with
FIT tool-chain

non-instrumented
executable
(nofit executable

Valgrind nm
trace file symbol file

Cache Stats

fffffffffffffffffffffffffffffffff ¥

Report
(HTML)
\/\

Figure3.3 Simulating nofit execut&blinder Valgrind & Cache Stats

After the results from Cache Sim were compatée more detailed statistics from the Cache

Stats simulation were compared. The symisuiged by miss rate are the crucial ones to

guarantee that Valgrind’s instrumentationatscurate. Orders, access times and miss rates of

33

symbols causing high conflict rates are compdoedssure the hypotsie that Valgrind has
similar accuracy to FIT. Finally, simulation tinie compared to tell which one is faster and
more practical for memory conflict analysis. NBS will report the total CPU time used by the
instrumentation tool and Cachea&&t together when finished. #d, the time of generating trace

files by each implementation was compared.

3.2 Comparing Simulation Results

3.2.1 Memory Access and Conflict Analysis

Memory access times of each apalion are listed in tabl8.2. Three simulation results are

listed by row: FIT's executable and Cache S{@gure 3.1), nofit executable under Valgrind

and Cache Stats (figure 3.3), and original exagle under Valgrind and Cache Stats (figure
3.2). The percentage column compares Vatijsitime to FIT’s time. The formula is:

|Valgrind'saccesgime— FIT'saccessime |
error (%) = _
| FIT'saccessime |

For L1 cache, error percentagef access times between Fiidavalgrind (nofit) are all less

than 2% and most of hit rates (table 3.3) l&wFIT and Valgrind (nofit) implementations are

similar. Error percentages for L2 cache armghbr, but it can be explained by comparing the

conflict analysis. The detailshould be inspected manualyomparing the table “Symbols,

Sorted by Miss Rate” of both L1 cache anddathe of Valgrind and FIT's report, some C

34

libraries’ functions will be listed in FIT'sreport but not Valgrind’s because they are
dynamically linked in Valgrind's executables. iing FIT’s compilation with its tool-chain,
functions in the C library must be statically lickehus they will be recorded in symbol files.
On the contrary Valgrind linked them dynamicaliyd thus they are not in the symbol files.
When Cache Stats finds a memory reference itréee file but not in the symbol file, it will

be registered as an “unknown” access rather than a conflict with a known symbol. These
differences are not always significant; the @mgnusage is internalariables used by the C
malloc arena allocation routindsHowever, if the nofit version’s report is compared with
FIT’s, all the static linkedsymbols show. Sometimes contiguous symbols’ order may swap
because FIT and Valgrind’'s compilations are slgldifferent. Regardless of these static
linked symbols, their results are almost thensaTherefore, the comparison concludes that

two implementations have similar accurasyprofiling programs’ memory references.

3. Sometimes, all symbols listed are from the static linkedrljpsuch as crafty. If a program’s report is like this,

it is not easy to find out where to reorganize the code to reduce conflicts.

35

L1 data cache L2 ca
Accesses Reads Writes Accesses
Application Input
% # % # % # %
FIT 177848025764 113346233483 64501792281 15930577718 1552971
mesa Valgrind(nofit) | 178460835890 0.34457 113643831165 0.26p56 64817004725 0.48869 676797090 9p.75158 3’
Valgrind 171349091757 3.65441L 108706478421 4.09B44 62642613331 2.$8237 1025448293 9B.56302 5
FIT 117201833163 82043624597 35158208566 19247468340 1873170¢
crafty Valgrind(nofit) | 117202036892 0.0001y 82043746521 0.00p15 35158290p371 0.0023 5688195487 7p.44705 53’
Valgrind 128995405620 10.06262] 85784478174 455999 43210927446 22.90424 5462578994 7161923 5132
FIT 90549626083 72756421441 17793204642 3457108757 3338937
equake Valgrind(nofit) | 91292301374 0.8201p 73203619276 0.61465 18088682098 1.46062 3284675098 1.98780 31¢€
Valgrind 91907869413 1.50000| 73047145207 0.399949 18860724206 599059 7420650954 1144905 7156
FIT 48914844430, 39575091830 9339752600 4161861193 3944394992
gzip Valgrind(nofit) | 48914854806 0.0000p 39575098112 0.00902 9339756694 0.4o004 5259827896 2¢$.38163 51¢f
Valgrind 48614322014 0.61438] 39032084801 1.37249 9582237213 259626 5273281085 26.J0495 5171
FIT 50786613454 34996527844 15790085610 3021334831 280588¢
vpr Valgrind(nofit) | 51294265148 0.99958 35300233362 0.86f82 15994031786 1.29161 2708436582 19.35629 24¢
Valgrind 44449221037 12.47847| 31270352584 10.64737 13178868453 16.53707 2643069919 1251979 241(
FIT 55904423 40552268 15352154 1402310 11058
smg2000 | Valgrind(nofit) 55922831 0.03293 40563947 0.0288p 15358884 0.04383 1176657 16.0p152 9
Valgrind 50572383 9.53778 37663924 7.1225p 12908459 15.91}61 1465372 4.4'3701 12

Table 3.2 Cache access time

36

L1 data cache L2 cache
Applications | Input Hit Miss Hit rate (%) Hit Miss Hit rate

FIT 176602018331 1246007433 99.29 15762539089 168038629)8.94
mesa Valgrind(nofit) 177710775563 750060327 99.57 509363467 167433623 15.26
Valgrind 170166473893 1182617866 99.80 857958254 167490039 3.66
FIT 111404408009 5797425154 95.05 19217187310 30281030 99.84
crafty Valgrind(nofit) 111516588962 5685447921 95.14 5661204424 24248497 h9.57
Valgrind 123537947692 5457457828 95.[f6 5430092{144 27365684 99.49
FIT 87253646484 3295979599 96.36 571700421 2884810848 16.53
equake Valgrind(nofit) 88007173464 3285127910 96.40 400404050 2884723860 12.18
Valgrind 84487218459 74206509534 91.92 928241816 6492409138 12.50
FIT 44752983237 4161861193 91.49 41116215%67 50239626 98.79
gzip Valgrind(nofit) 4365502691(5259827896 89.p4 5234252626 25575270 99.51
Valgrind 43341037939 5273284085 89.15 5246874935 26409150 99.50
FIT 48170843704 2615769750 94.45 2335211744 686123087 17.29
vpr Valgrind(nofit) 48585828566 2708436542 94.72 2004461220 703975362 74.01
Valgrind 42236338705 2212882329 95.1?2 1942177973 700891946 73.48

FIT 54737085 1167338 97.9"]. 1211022 191288 86.35

smg2000 | Valgrind(nofit) 54746174 1176657 97.89 981805 194852 83.44
Valgrind 49107011 1465372 97.1|P 1164015 353299 76.71

Table 3.3 Hit rates

3.2.2 Heap Allocation

Table 3.4 shows heap allocation times of epobgram. FIT and Valgrind handle malloc with

different methods, and the recognition of mallpctheir respective instroentations may not be

the same. Valgrind’s tool, CT, uses replacement functionsvVa@dmnalloc()to allocate memory

when malloc(), calloc() or realloc() happen. However, FIT's tool-chain compiler handles heap

allocation by itself (FIT’s core), and its instruntation code simply insts the trace writing code

when heap allocations happen. Consequently, sdloeations are not cegnized equally by each

37

tool. The C library and loader internally catlalloc() directly and Valgrind is not capable of
reporting this properly. Because of this some eanBiloc() calls go unreported. Also, the
Valgrind routines handle allocations in a different way and sometimes cause some simplifications.
In smg2000yealloc() is called many times, but only with NULL as the first argument. FIT reports
this as aealloc() followed by amalloc() (which is what the standard library does), but Valgrind
notices the NULL argument and thugpoets these allocations as plamalloc(s, without the
interveningrealloc() call. Because of these difference thalloc count may be slightly different,

but by less than 10 calls, for every application. Degpiése slight differencethe heap allocation

statistics can be considered essentiddeé same between both implementations.

Applications | Input malloc | calloc | realloc Free
FIT 21 49 0 59
mesa
Valgrind 13 49 0 59
FIT 47 0 0 2
crafty
Valgrind 39 0 0 2
FIT 1335075 0 0 0
equake
Valgrind | 1335067 0 0 0
FIT 283466 0 0| 283454
gzip
Valgrind 283458 0 0| 283454
FIT 73243 88 12 69269
vpr
Valgrind 73235 88 11 69264
FIT 40112 | 35314 1260 75418
smg2000
Valgrind 40104 | 35314 (0 75418

Table 3.4 Heap allocation times

38

3.2.3 Simulation Time

Table 3.5 shows the time of every simulation, taidle 3.6 compares their speed. Columns (3) and

(4) in the table simply show how long it takes togmete the trace. From columns (5) to (8), two

programs were executed at the same timetl@ndimulation time may have higher deviation. In

table 3.6, it used FIT’s time divided by Valgrind&the factor is greatr than one, it means

Valgrind’s implementation is faster, and vice veBasically, Valgrind is faster than FIT in vpr,

gzip and smg2000 whose access time is comparatasdythan the other three. Valgrind takes

longer time than FIT in larger access timesliappons, mesa, crafty, equake. Because Valgrind

instrumented clients on the fly, it may requinere memory. Valgrind only allocates a certain

amount of space to hold cached JIT code, biggagrams might end up overflowing this cache and

taking longer amounts of time to run. The resulsvg that as the run time increases, Valgrind’s

slowdown compared to FIT’s will also increase.

Another parameter to remember is that FI'ergfs an extra long time to compile and then

instrumented a code (in (2), and it takes more tearminutes for a 30 lines C code). Therefore, it

may actually take a longer time for FIT's simulation if you factor in compilation and

instrumentation time.

39

1 2
Appieston |+ @®) @ (5) ©®) @ ®
Applications execution | instrument FIT Valgrind FIT & Valgrind & FIT & Valgrind &
time trace trace Cache Sim| Cache Sim Cache Stats | Cache Stats|
0.05485
mesa 1.726* 29.297 29.449 193.42P 181.896 189.183 398.514
(3.291 min)
0.3458 0.203
crafty 21.518 19.620 122.15¢ 126.343 129.874 290.060
(2.075 min) | (12.2 min)
0.04237 0.184
equake 13.950 16.054 82.452 83.968 109.059 114.868
(2.542 min) | (11.08 min)
0.01830 0.141
gzip 12.421 7.328| 44.768 30.684 e 80.623
(1.098 min)| (8.45 min)
0.03622 0.238
vpr 9.265 7.407 29.317 45.798 64.680. 44.179
(2.173 min) | (14.25 min)
0.00006 0.242 0.00968 0.00803 0.12736 0.01408 0.2026 0.10468
smg2000
(0.22 sec)| (14.52 min)| (34.84 sec)| (28.89 sec)| (7.642 min) (2.465 min) | (12.156 min)| (6.821 min)

**gzip run under FIT and Cache Stats took a long time (more@B8a hour). This may be caused by some bugs of Cache Stats and

will be fixed in the future work.

Table 3.5 Simulation time (hours)

*mesa took so long because it used up more than a gigabigs\diand was heavily swapping to disk when instrumented.

(1) Application execution time withoatny simulation or instrumentation.

(2) The time of every application instrumented by FIT.

(3) (4) The time to trace every application and write the trace file by FIT or Valgrind.

(5) (6) The time to trace the application and run Cache Sim together

(7) (8) The time to trace the application and Cache Stats (Conflict analysis) together

Applications 3) =) | (B)+(6) (7)=(8)
mesa 0.99 1.06 0.47
crafty 1.01 0.96 0.45
equake 0.99 0.9§ 0.95
gzip 1.70 1.46 N/A

vpr 1.86 0.64 1.46|
smg2000 1.21 3.1d 1.78

Table 3.6 Slowdown factor

40

4. Conclusion and Future Work

The simulations demonstrated that the dynamic binary instrumentor, Valgrind, has similar accuracy
to the static binary instrumen{dfIT, but their speeds are dissimilgalgrind is faster on shorter
running programs, especially when FIT’s instrunagion time is considered. However, as the run

time increases, this advantage degrades, and Valgrind may perform even worse than FIT (a new
version of Valgrind has been released just afiter project was finished that claims to have
improved the speed. It may help to get befterformance.). Moreoversince Valgrind uses
dynamic binary instrumentation, it is not like FlTatthas to compile and instrument binary codes
separately before execution. Valgrind's JIT compifestruments the clientbinary executable on

the fly and the libraries can be dynamically link&tlis makes the instrumeation process of the

41

Valgrind implementation quicker than FIT’s, and the total client-related file size of the Valgrind

implementation is also smaller. Furthermorelg¥ad’s tools are compiled separately from the

clients’ code, and it can save the instrumentatime while the client is still under development

and modified frequently. What imore, Valgrind can instrumeat binary which can be coded by

any programming language, but FIT can only instmime client's source code in C. Some

benchmarks, such as 176.gcc (too large) and @bZweritten in C++)of SPEC CPU2000, can not

be simulated if using FIT as Cache Stats’ praofilEnerefore, Valgrind is considered to be more

practical and generic for a memorya®nce analysis and tracing tool.

The whole program (the Valgrind tool and Cache Stats) will be released as an open source memory

conflict inspection tool. It will be used to hefgogrammers to find ounemory conflicts which

degrade performance and waste power, and it sasahulation different memory architectures by

modifying the config file. Programmers can mgamize their codes without extra hardware to

improve the speed and decrease the power c@igum This can be especially useful for

resource-restricted embedded systems.

However, the whole simulation tinsill seems very long. Bothkals of simulations require many

days to simulate some benchmarks. The curraititacture of the simulation process is that the

instrumented tool writes the trace information te gipe, and then the simulator reads the data and

then simulates it. If the simulator and instrumentor can be combined, such as embedding the Cache

42

Stats in the Valgrind’s tool and then simulatiordanalysis report are all done in the tool, it may

makes the tool become faster and more practical.

Furthermore, the whole analys@ol currently can oml be run in X86 Linux machine and analyze

C code. Nonetheless, Valgrind owns the benefértalysis a binary code without the source code,
and the action of expending its application to otblatform is in progress. Therefore, Cache Stats
may be developed to analyze codes other thann@iti-platform in the future. The end goal is that
programmers and system developers will have a helpful tool to build up their applications and

systems.

43

5. Reference

[1]

[2]

[3]

[4]

[5]

[6]

David A. Patterson, John L. Hennes§pmputer Organization & Design: The
Hardware/Software Interface ", Morgan Kaufmaff etition, pp540-544, 1997

John L. Hennessy, David A. Patterson, “Comparehitecture: A Quantitative Approach”,
Morgan Kaufman, "8 edition, pp. 392-402, 2003

Cache Stats has been developed by Vince @aavwComputer System Lab of Cornell
University and not yet released
http://www.csl.cornell.edu/~vince/

Nicholas Nethercote Dynamic Binary Analysis and InstrumentatipRhD Dissertation,
University of Cambridge, pp.1-34, November 2004.

The Flexible Instrumentation Toolkit, FIT
http://www.elis.ugent.be/fit

Valgrind
http://www.valgrind.org

44

http://www.valgrind.org/docs/phd2004.pdf
http://www.elis.ugent.be/fit

[7] Amitabh Srivastava and Alan Eustace. ATOMsystem for building customized program
analysis tools. In Proceedings of theMGIGPLAN Conference on Programming Language
Design and Implementation (PLDI '94), pp. 196-205, Orlando, Florida, USA, June 1994.

[8] Bruno De Bus, Dominique Chanet, Bjorn De Sutteido Van Put, Koen De Bosschere, “The
design and implementation of FIT: a flexiblestrumentation toolkit.”, Proceedings of the
ACM-SIGPLAN-SIGSOFT workhop on Program Analysis for Software Tools and
Engineering, pp 29-34, June 2004.
http://portal.acm.org/citation.cfm?doid=996821.996833

[9] Nicholas Nethercote and Julian Seward, gvidd: A Program Supervision Framework”,
Electronic Notes in TheoreticBlomputer Science 89 No. 2, 2003.

[10] Julian Seward and Nicholas Nethercote, “Usinighfad to detect undefined value errors with
bit-precision”, Proceedings of the USENDO% Annual Technical Conference, Anaheim,

California, USA, April 2005

[11] “Valgrind Technical Documentation”, pp.109-119,June 7, 2006
http://www.valgrind.orglocs/manual/valgrind_manual.pdf

[12] Valgrind source code, “m_main” in Valgrind/coregrind
[13] Valgrind source code, “pub_tool_execontext.htidm_execontext.c” in Valgrind/coregrind/
[14] Valgrind source code, “libvexr.h” in Valgrind/VEX/pub

[15] Voyager Software, Network Batch System
http://lwww.vgersoft.com/nbs/

[16] Standard Performance Evaliaam Corporation, SPEC CPU2000
http://lwww.spec.org/cpu2000/

[17] Lawrence Livermore National Laboratory (LLNL)
http://www.lInl.gov/asci/purple/benchmarks/limited/smg/

45

Appendix A: Trace File Format of Cache Stats

Trace File Version 10
By Vince Weaver

This is documentation on what the programs instrumented with the "fit_ vmw_trace"
instrumentation does:

The instrumented program first opens a namied(fiipe) for writing called /tmp/trace.PID where
PID is the process ID of the running instrumenteagram. The value of the PID can be accessed
in a shell script by running ¢hinstrumented program in the background (ie followed by a &) and
then using the shell substitution $! (such as /tmp/trace.$!).

The first thing writteris a 16 byte long header:
byteO = sizeof(long) in bytes (ie 4 on a 32 bit machine, 8 on 64)
bytel = 1 if big-adian, 0 if little-endian
byte2 = version of trace file
byte3 - bytel5 reserved (0 for now)

Then what follows is as follows, repeatiagtil done, and all arensigned long in type:

ADDRESS ©)

LOAD/STORE (Load=0, Store=1)

ADDRESS (Address being loaded/stored)

PC (Prograf@ounter of the Load/store instruction)

SIZE (Length in bytes of the value being loaded/stored)
MALLOC_INFO (1) [happens before malloc call]

SIZE (size of malloc)

CALLSITE (PC of where malloc happens)
MALLOC_ADDRESS (2) [happens after malloc call]

ADDRESS (address pointing to allocated memory)
CALLOC_INFO (3) [happens before calloc call]

COUNT (number of areas allocated)

46

SIZE
CALLSITE

CALLOC_ADDRESS
ADDRESS

REALLOC_INFO
OLD_ADDRESS
SIZE
CALLSITE

REALLOC_ADDRESS
ADDRESS

FREE_INFO
ADDRESS

FREE_FINISHED

BLOCK_BEGIN
BLOCK
ADDRESS

SIZE

CALL
RETURN

RETURN

(size of areas allocated)
(PC of where calloc happened)

4) [happens after calloc call]
(address pointing to allocated memory)

(5) [happens before realloc call]
(@dress of region being realloc)
(size of new region)

(PC of where realloc happened)

(6)

(address pointing to allocated memory)

(7)

(address of region to be freed)
(8)

€)
(block number of this block)

(address of beginning of block)

(length of block in bytes)

(10)
(return address)

(11) [a"ret"instruction happened]

47

Appendix B: Source Code

/*

*

[*--- Cachetool: The cachetowiterface. ct_main.c ---*/

/*
/*

*/

#include "pub_tool_basics.h"

*

This file is a tool built up in Valgrind for tracing heap allocation

and memory reference. An output trace file will be created and then

fed into a cache simulator to find out cache conflicts.

Copyright (C) 2005-2006
Vince Weaver vince _at_ csl.cornell.edu

I-Chun Li yohowo _at_csl.cornell.edu

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FORA PARTICULAR PURPOSE.

General Public License for more details.

You should have received a copfythe GNU General Public License
along with this program; ifiot, write to the Free Software
Foundation, Inc., 59 TempRace, Suite 330, Boston, MA
02111-1307, USA.

The GNU General Public Licensecontained in the file COPYING.

See the GNU

/[contains the basic types and other things needetiereeryw

/lalso included libvex.h, a library for dynamic binary instnati@n and translation.

#include "pub_tool_libcassert.h" /lclib assert replacement

#include "pub_tool_tooliface.h" /lcore/tool interface

48

#include "pub_tool_replacemalloc.Hlibrary functions replacement:malloc

#include "pub_tool_mallocfree.h" //handle free

#include "pub_tool_libcprint.h" [lprinting

#include "pub_tool_hashtable.h" /IGeneric type for a separately-chained hagfotaklloc)
#include "pub_tool_libcbase.h" IING_(memset)

#include "pub_tool_options.h" /lcommand line options

#include "pub_tool_libcfile.h" [ffile 11O

#include "pub_tool_execontext.h" /IPC

/l#include "pub_tool_stacktrace.h"

[*file 1/O*/
[*trace file 16-byte header
The first thing written is a 16 byte long header:
byte0 = sizeof(long) in bytes [ie 4 on a 32 bit machine, 8 on 64)
bytel = 1 if big-endian, O if little-endian
byte2 = version of trace file
byte3-bytel5 reserved (0 for now)
*/
unsigned char header[16]={4,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0};
unsigned long output[10];
int file_ptr;
char FileName[256]; //trace file's name
#define VKI_O_LARGEFILE 0100000

/* Record malloc'd blocks */

VgHashTable ct_malloc_list = NULL;//initialized in void ct_pre_clo_init()

/lget PC

unsigned long get_alloc_callsite(void *address);

/lfrom /memcheck/mac_share.h

/* For malloc()/new/new([] vs. free()/tte/delete[] mismatch checking. */

typedef
enum {
ct_AllocMalloc = 0,

ct_AllocNew =1,

49

ct_AllocNewVec = 2,
ct_AllocCustom = 3

}
ct_AllocKind;

struct _ExeContext {
struct _ExeContext * next;

/* Variable-length array. The size is VG_(d_backtrace_size); at

* least 1, at mo$tG_DEEPEST BACKTRACE. [0]is the current IP,
* [1]is its caller, [2] is the caller of [1], etc. */
Addr ips[0];

[* first two fields must match core's VgHashNode. */
typedef
struct _ct_Chunk {

struct _ct_Chunk* next;

Addr data; /I ptr to actual block
SizeT size : (sizeof(WBAM)*8)-2; // size requested; 30 or 62 bits
ct_AllocKind allockind : 2; // which wrapper did the allocation
ExeContext* where; Il where it was allocated

}

ct_Chunk;

/* memory allocation functions */

/* table is ct_malloc_list*/

void *ct_new_block (Threadld tid, \
Addr p, SizeT size, SizeT align, Bool isoger\
ct_AllocKind kind, VgHashTable table);

void *ct_malloc (Threadld tid, SizeT n);

void *ct_calloc (Threadld tid, SizeT nmemb, SizeT sizel);

void *ct_realloc (Threadld tid, void* p, SizeT new_size);

[* free memory functions */
void ct_handle_free (Threadld tid, Addr p, ct_AllocKind kind);
void ct_free (Threadld tid, void *p);

50

void die_and_free_mem (Threadld tid, ct_ Chunk* mc,

ct_Chunk**prev_chunks_next_ptr);

/* Allocate its shadow chunk, put it on the appropriate list. */
static void add_ct_Chunk (Threadld tid, AddSieT size, ct_AllocKind kind, VgHashTable table)

{

ct_Chunk* mc;

mc = VG_(malloc)(sizeof(ct_Chunk));
mc->data =p;
mc->size = size;

mc->allockind = kind;

mc->where =VG_(record_ExeContext)(tid);

VG_(HT_add_node)(table, (VgHashNode*)mc);

/* Allocate memory and note change in memory available */
/* Threadld tid

*/

Addr p: allocation address

SizeT size: allocation size

SizeT align: alignmnt VG_(clo alignment)

Bool is_zeroed: initialization for shadow area value
ct_AllocKind kind: use only ct_AllocMalloc here

VgHashTable table: ct_malloc_list

__inline__

void* ct_new_block (Threadld tid,

Addr p, SizeT size, SizeT align, Bool is_zeroed, ct_AllocKind kind,s\JHhale table)

/I Allocate and zero if necessary
if ('p){
p = (Addr)VG_(cli_malloc)(align, size);
if ('p) {
return NULL,;

51

if (is_zeroed) VG_(memset)((@*)p, O, size);//initialize value to zero

add_ct_Chunk(tid, p, size, kind, table);

return (void*)p;

unsigned long get_alloc_callsite(void *address) {
ct_Chunk* mc;

ct_Chunk** prev_chunks_next_ptr;

/* the "chunk" has the execution context which has the stack */
/* backtrace which knows where we were called from */
mc = (ct_Chunk*)VG_(HT_get node) (ct_malloc_list, (UWord)address,

(void*)&prev_chunks_next_ptr);

/I VG_(pp_StackTrace)(mc->where->ips,2);
/I VG_(printf)("Malloc from %x\n",mc->where->ips[1]);

return mc->where->ips[1];

/* malloc */

void *ct_malloc (Threadld tid, SizeT n) {

void *temp_pointer;

temp_pointer=ct_new_block (tid, 0, n, VG_(clo_alignment),
[*is_zeroed*/False, ct_AllocMalloc,

ct_malloc_list);

IING_(printf) ("Malloc of size %d to address %p\n“,n,temp_pointer);
output[0]=1; /IMALLOC_INFO

output[1]=n; //allocation size
output[2]=get_alloc_callsite(temp_pointer); //PC

output[3]=2; //IMALLOC_ ADDRESS

52

output[4]=(unsigned long)temp_pointer; //allocation address

VG_ (write)(file_ptr,output,5*sizeof(unsigned long));

return temp_pointer;

/* calloc */

void *ct_calloc (Threadld tid, SizeT nmemb, SizeT sizel ¥

void *temp_calloc_ptr;
temp_calloc_ptr=ct_new_block (tid, 0, nmemb*sizel, VG_(clo_alignment),

tis _zeroed*/True,

ct_AllocMalloc,ct_malloc_list);

IING_(printf) ("Calloc of size %d to aldess %p\n",nmemb*sizel,temp_calloc_ptr);

output[0]=3; /ICALLOC_INFO
output[1]=nmemb; [ltype argument from calloc
output[2]=sizel; /Isize argument from calloc

output[3]=get_alloc_callsite(temp_calloc_ptr); //PC
output[4]=4; /I[CALLOC_ADDRESS
output[5]=(unsigned long)temp_calloc_ptr; /[allocation address

VG_ (write)(file_ptr,output,6*sizeof(unsigned long));

return temp_calloc_ptr;

[* free requires 3 function:

ct_free -> ct_handlefree -> die_and_free_mem */

void die_and_free_mem (Threadld tid, ct_ Chunk* mc,

ct_Chunk**prev_chunks_next_ptr)

/* Remove mc from the malloclist using prev_chunks_next_ptr to
avoid repeating the hash table lookup. Can't remove until at least
after free and free_mismatch errors are done because they use

describe_addr() which looks for it in malloclist. */

53

*prev_chunks_next_ptr = mc->next;

VG_(free) (mc);
}

__inline__
void ct_handle_free (Threadld tid, Addr p, ct_AllocKind kind)
{

ct_Chunk* mc;

ct_Chunk** prev_chunks_next_ptr;

mc = (ct_Chunk*)VG_(HT_get node) (ct_malloc_list, (UWord)p,

(void*)&prev_chunks_next_ptr);

die_and_free_mem (tid, mc, prev_chunks_next_ptr);

}
void ct_free (Threadld tid, void* p)
{
IING_(printf) ("free at: %p\n",p);
output[0]=7;
output[1]=(unsigned long)p;
output[2]=8;
VG_ (write)(file_ptr,output,3*sizeof(unsigned long));
ct_handle_free(tid, (Addr)p, ct_AllocMalloc);
}
/* realloc */

void* ct_realloc (Threadld tidvoid* p, SizeT new_size)

{

ct Chunk *mc;
ct_Chunk **prev_chunks_next_ptr;
Ulint i;

mc = (ct_Chunk*)VG_(HT_get node) (ct_malloc_list, (UWord)p,

(void*)&prev_chunks_next_ptr);

54

output[0]=5;

output[1]=(unsigned long)p;
output[2]=(unsigned long)new_size;
output[3]=mc->where->ips[1];;

output[4]=6;

if (mc->size == new_zge) {/* size unchanged */

mc->where = VG_(record_ExeContext)(tid);

IING_(printf) ("realloc of theame size %d to address %p\n",new_size,p);
output[5]=(unsigned long)p;

VG_ (write)(file_ptr,output,6*sizeof(unsigned long));

return p;

} else if (mc->size > new_size) {/* new size is smaller */

mc->size = new_size;
mc->where = VG_(record_ExeContext)(tid);
output[5]=(unsigned long)p;
II'VG_(printf) ("realloc of smédr size %d to address %p\n",new_size,p);
VG_ (write)(file_ptr,output,6*sizeof(unsigned long));

return p;

} else {/* new size is bigger */

Addr p_new;

/* Get new memory */

p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size);

/* Copy from old to new */
for (i = 0; i < mc->size; i++)
((UChar*)p_new)[i] = ((UChar*)p)Ii];

/* Free old memory */

die_and_free_mem (tid, mc, prev_chunks_next_ptr);

55

/* this has to be after die_and_free_mem, otherwise the
former succeeds in shorting out the new block, not the
old, in the case when both are on the same list. */

add_ct_Chunk (tid, p_new, new_size,

ct_AllocMalloc, ct_malloc_list);
output[5]=(unsigned long)p_new;
/I'VG_(printf) ("realloc of biggesize %d to address %p\n",new_size,p_new);

VG_ (write)(file_ptr,output,6*sizeof(unsigned long));

return (void*)p_new;

/* Tell Valgrind this function has one parameter */
/* write load information to trace file*/
static VG_REGPARM(1) void print_Load (Addr a) {

ING_(printf)(" Load of address: %p\n“,a);

output[0]=0; /laddresmfo
output[1]=0; /[Ofor load
output[2]=(unsigned long)a; //load address

output[3]=0; /IPC

output[4]=4; 1

VG_ (write)(file_ptr,output,5*sizeof(unsigned long));
}

/* write store information to trace file*/
static VG_REGPARM(1) void print_Store (Addr a) {

ING_(printf)(" Store of address: %p\n",a);

output[0]=0; /laddresmfo
output[1]=1; /[1for store
output[2]=(unsigned long)a; //store address

output[3]=0; /IPC

56

output[4]=4; 14
VG_ (write)(file_ptr,output,5*sizeof(unsigned long));

}

[* */

[*--- Our instrumenter -/
[*--- Translates the Basic Block gged in as "bb_in" -/

[*--- into a new "instrumented” basic block "bb" -/

[* */

/lfrom ac_main.c

static IRBB* ct_instrument (IRBB* bb_in, VexGuestLayout* layout,
IRType gWordTy, IRType hWordTy) {

Int i, access_size;
IRStmt* st;

IRExpr* data;

IRExpr* access_address;

IRExpr* guard;

IRDirty* di;
Bool isLoad;
IRBB* bb;

/* Create a new basic block */
/* We'll put all of the original instructions, plus our */

/* instrumentations into it, and return it back to valgrind */

/* create an empty basic block */
bb = emptyIRBB();

/* copy over configuration from the original basic block */
bb->tyenv = dopylRTypeEnv(bb_in->tyenv);
bb->next = dopylRExpr(bb_in->next);
bb->jumpkind = bb_in->jumpkind;

57

/* Walk through each statement, */

/* from first (0) to last (bb_in->stmts_used) */

for i=0;i< bb_in->stmts_used; i++) {

st = bb_in->stmts]i];

[* clear these variables */
access_size =0;
access_address = NULL;
guard = NULL;

isLoad = True;

switch (st->tag) {

/* Ist_Tmp means we are copying data into a */
/* "Temporary" register */
case Ist_Tmp:
data = st->Ist. Tmp.data;
/* We only care if it's a load instruction */
if (data->tag == lex_Load) {
access_address = data->lex.Load.addr;
access_size = sizeoflRType(dta->lex.Load.ty);
isLoad = True;
}

break;

/* Ist_Store means we are storing data */
case Ist_Store:
data = st->Ist.Store.data;
access_address = st->Ist.Store.addr;
access_size = sizédfype(typeOfIRExpr(bb_in->tyenv, data));
isLoad = False;

break;

58

/* We ignore these */

case Ist_Put: /* We are copying some "guest state" */
case Ist_Putl:/* We are copying some "guest state" */
case Ist_Exit:/* We are conditionally leaving a basic block
case Ist_NoOp:

case Ist_IMark:

case Ist_MFence:

break;

/* We are in a "dirty" function? */
case Ist_Dirty:
if (st->Ist.Dirty.details->mFx != Ifx_None) {

/* Weclassify Ifx_Modify as a load. */
isLoad = st->Ist.Dirty.details->mFx != Ifx_Write;
access_size = st->|st.Dirty.details->mSize;
access_address = st->Ist.Dirty.details->mAddr;
guard = st->Ist.Dirty.details->guard;

}

break;

/* Print an error if an unknown statement type */
default:
VG_ (printf)("\n");
ppIRStmt(st);
VG_ (printf)("\n");
VG_(tool_panic)("unhandled IRStmt");

break;

/* If we were a loadr store, add a call to print it */

if (access_address) {

if (isLoad) {
/* Create a new "instruction” called "di" */
/* This is a dirty instruction, meaning it has side effects */

/* the "0" means we don't expect a return value */

59

*

/* the "N" means we can pass many arguments */
/* We pass 1 argument, the name of the function, */
/* a pointer to the function, and an "argument vector" */
/* which in this case only has one, the address */
di = unsafelRDirty_0 N(1, "print_address", &print_Load,
mKIRExprVec_1(access_address));
}
else {
di = unsafelRDirty_0_N(1, "print_address", &print_Store,
mKIRExprVec_1(access_address));
}
/* If the call has arisen as a result of a dirty helper which
references memory, we need to inherit the guard from the
dirty helper. */ [* ?2?2? */
if (guard) {
di->guard = dopylRExpr(guard);
}

/* put the helper call into the new Basic Block */
/* before the load or store */
addStmtTolRBB(bb, IRStmt_Dirty(di));

/* Make sure the original instruction gets added to the basic block. */
addStmtTolRBB(bb, st);

}

return bb;

static void ct_post_clo_init(void) {

SysRes sysr;

sysr=VG_(open)(FileName,

VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY|VKI_O_LARGEFILE,

VKI_S_IRUSR|VKI_S_IWUSRY;

60

if (sysr.isError) {

VG_ (printf)("file %s can not be opened\n",FileName);

}
else {

VG_ (printf)("trace file %s opened\n",FileName);

file_ptr=sysr.val,

VG_ (write)(file_ptr,header,16);
VG_ (printf)("header written\n");

/* Parse the command line options */

static Bool ct_process_cmd_line_option(Char* arg) {

/I 12 is length of "--tracefile="
if VG_CLO_STREQN(12, arg, "--tracefile=")) {
VG_ (sprintf)(FileName,"%s",&arg[12]);
}

else {

return False;

return True,

static void ct_print_usage(void) {

VG_(printf) (* --tracefile=<file filename to use for tracefile\n");

static void ct_print_debug_usage(void) {
VG_ (printf)(" (none)\n");

61

static void ct_fini(Int exitcode) {

VG_(close)(file_ptr);
VG_ (printf) ("\n\nCachetool:Exiting! \n\n");

static void ct_pre_clo_init(void)

{

VG_(details_name) ("Cachetool");
VG_(details_version) (NULL);
VG_ (details_description) ("gerates traces for the cachteool program");

VG_ (details_copyright_author)("Copyright (C) 2006 - Vince Weaver/yohowo");

VG_(details_bug_reports_to) (VG_BUGS_TO);

/* set up default output file */
VG_ (sprintf)(FleName,"trace2.out");

VG_ (basic_tool_funcs) (ct_post_clo_init,

ct_instrument,

ct_fini);

VG_(needs_command_line_options)(ct_process_cmd_line_option,

ct_print_usage,

ct_print_debug_usage);

VG_(needs_malloc_replacement)(ct_malloc,
NULL,
NULL,
NULL,
ct_calloc,
ct_free,
NULL,
NULL,
ct_realloc,
16);

/* malloc() */

/* new() */
/* vec_new() */
/* memalign() */
/* calloc() */

/* free() */
/* delete() */
* vec_delete() */
/*realloc() */

/* redzone block size? */

62

/initialize the hash table,from mac_share.c
ct_malloc_list =VG_(HT_construct)(80021); // prime, big

VG_DETERMINE_INTERFACE_VERSION(ct_pre_clo_init, 0)

[* */
/*--- end ¥
[* */

63

