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1. Introduction 

 

 

 

 

 
1.1 Cache Conflicts 

The cache is a small, fast storage area where frequently accessed data can be stored, taking 

advantage of temporal and spatial locality of the accesses. Temporal locality implies that if a 

memory location is referenced, it will tend to be referenced again in the near future. Spatial 

locality implies that if a memory location is referenced, memory locations near it will tend to 

be referenced soon [1].  

Generally, a cache is divided into many blocks with fixed-size collection of data containing 

the requested words retrieved from the main memory. Because the cache is smaller than main 
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memory, it is not possible to have all objects of interest in the cache at once. When data is 

loaded and it is not found in the cache, this is called a cache-miss. There are three types of 

cache misses: compulsory, capacity, and conflict. A compulsory miss happens the first time a 

data object is referenced and has not had a chance to be loaded into the cache. A capacity miss 

happens when a cache simply is not big enough to hold all of the data being referenced. A 

conflict miss is caused when more than one object of interest map into the same block in the 

cache [2]. These memory conflicts cause frequent swaps between different level memories and 

increase miss rates. Consequently, the performance will be extremely degraded as well as 

causing greater power consumption. 

The memory conflicts can potentially be eliminated by reorganizing the code or adjusting the 

memory allocation as high miss-rate parts are known. It requires a profiler to monitor the 

client program’s memory reference and an analysis tool to keep statistics about which memory 

structures cause cache conflicts. A cache simulator, Cache Stats [3], has been developed to 

gather and report statistics about these conflicts.  

1.2 Cache Utilization Analysis Tool: Cache Stats 

Cache Stats is a cache simulator and analyzer which reads in data from an instrumented file 

and runs this data through a cache simulator. The simulator keeps statistics on all variables 
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(text, data and bss) and also tracks variables allocated in the heap via malloc, calloc and 

realloc.  

Cache Stats requires four input files: a trace file, a configuration file, a symbol file, and an 

executable binary. The client code should be instrumented by a program analyzer (FIT and 

Valgrind in this project) which will generate a memory reference trace file in the format Catch 

Stats requires. The configuration file defines the behavior of Cache Stats, indicating what kind 

of cache to simulate, what output to generate, and various other data structure parameters. The 

total size, block size, and associativities of the L1 and L2 caches can be specified in detail. 

The symbol file and the executable file are optional. The symbol file, which is generated by 

the command “nm” in Linux, contains a list of all the variable names and addresses. The 

executable file is compiled from the non-instrumented code. Cache Stats uses the executable 

file in conjunction with the "addr2line" tool to determine where in the code memory 

allocations happen. 

When Cache Stats runs, many 64-bits counters are allocated for statistics. Next, the addresses 

of static variables are loaded from the symbol file. Information on the various memory areas 

are stored in variables of the “struct memory_area” type which are found via a hash table. The 

stack is treated as one large unified memory area and given its own memory_area. Dynamic 

memory allocations are treated specially, and there are additional statistics and tables kept for 
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them. In an attempt to approximate knowledge of data-types without parsing the source code, 

Cache Stats groups allocations of same sizes to be of the same data-types. After allocating the 

main infrastructure, the L1-icache, L1-dcache, and L2-unified cache are initialized and the 

trace file is opened. The program then loops, using the incoming data from the trace file to 

simulate the cache and build up the cache conflict information. Conflicts are recorded by 

taking the memory_area corresponding to the address causing a miss, and registering a conflict 

with the memory_area of the data structure being replaced. After the trace files ends, the 

results are reported to an HTML file 

1.3 Static Binary Instrumentor vs. Dynamic Binary Instrumentor  

Cache Stats requires some method of generating memory traces from the benchmarks of 

interest. The trace must include all memory accesses and also information on all dynamic 

memory allocations. There are two common types of analysis tools; one instruments the 

benchmarks source code, the other instruments only the compiled executable [4]. A source 

analyzer operates on the source code, and is independent from the machine’s architecture or 

operation system. In contrast, the binary analysis analyzes a program at the level of machine 

code, either as pre-linked object code or post-linked executable code. It instruments the 

analysis code to the client binary directly and without any access to the source code. 
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Two main binary instrumentation methods are discussed here: the static binary instrumentation 

and the dynamic binary instrumentation (DBI). The static binary instrumentation occurs prior 

to run-time. It takes time to instrument the analysis code first and then execute the program for 

analysis. Unlike static instrumentation, dynamic instrumentation injects analysis code into the 

client program at run-time. DBI has at least two main advantages. First, the client program 

does not have to be prepared in any way in advance, which makes the analysis process a bit 

simpler, especially when client programs are frequently modified. Second, it naturally covers 

all client code. If client code and libraries are mixed, different modules are used, or client uses 

dynamically generated code, it would be difficult to instrument all codes statically. This 

guarantees the correctness for general usage.      

This project compares two kind of binary instrumentor: FIT, the Flexible Instrumentation 

Toolkit, a statistic instrumentor [5] and Valgrind, a dynamic instrumentor [6]. FIT’s 

implementation for Cache Stats had been previously developed and was known to generate 

reasonable results. Nevertheless, as a static instrumentor, FIT requires a slow and unwieldy 

instrumentation process, something which Valgrind does not need. The two methods of 

instrumentation will be compared using accuracy and slowdown as metrics, in order to decide 

whether it is beneficial to replaced FIT with Valgrind as Cache Stats’ profiler.  
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1.4 FIT: The Flexible Instrumentation Toolkit 

FIT, a Flexible open-source binary code Instrumentation Toolkit, is designed to be an ATOM 

compatible binary instrumentor (ATOM [7] was a classic, widely used static binary 

instrumentation tool, which could insert calls to arbitrary C code before and after functions, 

basic blocks, and individual instructions. It worked on Alpha only, and thus is unfortunately 

defunct now.). FIT’s instrumentation is static; it requires all object files for the binary being 

linked, and the object files must be linked with a slightly modified GCC tool-chain.  FIT 

consists of three parts (figure 1.1): the FIT front-end, the FIT instrumentation libraries, and the 

FIT support library. Like ATOM, FIT, requires an instrumentation file that indicates what 

points of the program should be instrumented, and an analysis file which defines what analysis 

code should be executed at those program points. FIT’s front-end creates the instrumentor and 

compiled analysis code. The instrumentation file is linked to the instrumentation library to 

produce the instrumentor, and the analysis code is linked with FIT support libraries that 

provide the standard C-functionality. The instrumentor is then run on a binary executable 

program: it links the analysis code into the binary, and rewrites the binary to call the desired 

parameters of the analysis code. The detail of the internal organization of FIT’s 

instrumentation is in [8] which is beyond the scope of this report. 

FIT uses its own support library to avoid the standard C-library because using the latter will 
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disturb the run-time data structures of the analysis code in the program. FIT also has 

mechanisms that attempt to prevent the original data addresses from being changed.  FIT was 

originally chosen to trace the program’s memory reference for Cache Stats because of these 

attempts to preserve as closely as possible the memory access pattern of the original program. 

Despite these good features, there are a few reasons that FIT is not suitable for Cache Stats. 

First, FIT has large overhead during instrumentation time. The memory used when 

instrumenting SPEC benchmarks can take gigabytes of RAM which will cause thrashing or 

even out-of-memory situations. Although FIT is a binary instrumentation tool, it requires the 

original object files from the compilation, and also requires the binary to be linked with a 

modified gcc tool chain, so effectively you will need the source code available to make full 

use of FIT. Another issue is that FIT currently only works on C programs, and some client 

programs of interest are programmed in C++ and FORTRAN. Finally, the static 

instrumentation requires the binary to be re-instrumented whenever the client code is modified. 

To go through the whole process whenever a part is changed is time consuming and 

inefficient. 
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1.5 Valgr ind  

Valgrind is an open-sourced DBI framework which provides low-level infrastructure to build 

up supervision tools, also called dynamic binary analysis (DBA) tools, such as profilers and 

bug detectors [9][10]. The Valgrind core emulates a synthetic software CPU, and Valgrind 

tools1, which are plugged into the core, instrument and analyze the running program. Anyone 

can easily write and add arbitrary instrumentation to programs under Valgrind. This makes 

Valgrind ideal for experimenting with new kinds of debuggers, profilers, and similar tools. 
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Because Valgrind is execution-driven and uses binary translation, it covers all the codes of a 

client program which includes normal executable code, dynamically linked libraries, and 

dynamically generated code even if the source code is not available. Neither a skin nor its 

libraries need to be recompiled, re-linked with client programs before being run. Just prefix 

the client program’s command line with Valgrind and everything works. These characteristics 

allow Valgrind to supervise programs written in any programming language, and it requires no 

compiler support, no code recompilation, no source code, and no special treatment for libraries. 

Figure 1.2 (a) gives a conceptual view of normal program execution, from the point of view of 

the client. The client can directly access the user-level parts of the machine (e.g. 

general-purpose registers), but can only access the system-level parts of the machine through 

the operating system (OS), using system calls. Figure 1.2 (b) shows how this changes when a 

program is run under the control of Valgrind. The client and the Valgrind tool are part of the 

same process, but the latter mediates everything the client does, giving it complete control 

over the client. 

 

 

1. Contrast to Valgrind core, Valgrind tools are plug-in DBA tools of Valgrind. Valgrind’s creators call them 

“skins.” The terms “plug-in”, “skin” and “Valgrind tool” are used as synonyms in this report. 
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The following components are used at Valgrind start-up: 

ぽ】 Valgrind's loader (a statically-linked ELF executable) 

ぽ】 Valgrind's core (a dynamically-linked ELF executable) 

ぽ】 The plug-in, the skin (a shared object) 

ぽ】 The client program (an ELF executable, or a script) 

Figure 1.3 demonstrates their relationship. When Valgrind runs, the loader does the first step to 

get the other three parts loaded into a single process sharing the same address space; the loader 

is not present in the final layout. The next stage is the basic block (BB) translation. Valgrind 

uses dynamic binary compilation and caching that grafts itself onto the client process at start 

up, and then recompiles the client code, one BB at a time, in a just-in-time (JIT) 

execution-driven fashion. To avoid the complexity of x86 instruction set, Valgrind translates 

the block of x86 instructions into its own intermediate representation (IR), a RISC-like 

instruction set, called UCode. This translation process involves disassembling and optimizing 
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the client program’s x86 code into UCode, which is then instrumented by the skin, and then 

converted back into x86 code. (The design of UCode makes Valgrind easily be transfer to 

other platforms without redesigning the instrumentation methodology in the future.) The 

process utilizes the x86-to-x86 JIT compiler, a basic C library replacement, a low-level 

memory manager, the support for signals handling, and a scheduler. The result basic blocks are 

connected and stored in a translation table, a linear-probe hash table, to be rerun as necessary. 

Basic blocks are translated one-by-one, and once a translation is made, it can be executed 

(refer to [4] for more detail). The Valgrind core spends most of its execution time making, 

finding, and running translations. Finally, Valgrind generates the client program’s original 

executing result and reports its own instrumentation’s conclusion. The file opened by 

instrumentation will also be created.    
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2. Implementation of the Memory Reference Tracing Tool 

under Valgr ind 

This section presents a Valgrind tool, Cache Tool (CT, tentative name), that generates a trace 

file from a client program for the Cache Stats tool. 

 

 

 

 

2.1 Wr iting a Valgr ind Tool  

Valgrind tools define various functions called by Valgrind’s core for instrumenting programs. 

They are then linked against the coregrind library (libcoregrind.a, the Valgrind core library) 

that Valgrind provides as a C library replacement as well as the VEX library (libvex.a, the 

library for dynamic binary instrumentation and translation.) that provides the JIT engine. 

Valgrind source code has already provided many tools for debugging, profiling, etc. On of 
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these skins, Nulgrind, does no instrumentation and can be used for Valgrind’s developers to 

create a new tool [11]. Four basic functions have been set up in it: 

ぽ】 pre_clo_init() 

ぽ】 post_clo_init() 

ぽ】 instrument() 

ぽ】 fini() 

The first two functions are used for initialization (“clo” stands for “command line options”). 

The “pre_clo_init()” contains most of the initialization such as the tool’s name, version, and 

all the functionalities it needs. The “post_clo_init()” function is needed only if the tool 

provides command line options and must do some initialization after option processing takes 

place. The “instrument()” function allows developers to insert code into just-translated basic 

blocks of UCode. The “fini()” function is called when the translation and execution are 

finished. This is where final results, such as a summary of information collected, are printed. 

Any opened log files opened in the initialization functions can also be written and closed here.  

Standard C library functions are avoided in Valgrind tools. Valgrind provides replacements for 

most functions in the C standard library to prevent interference and to ensure client programs 

are totally under Valgrind’s control. Conventionally, functions and variables in the Valgrind 

core and replacement C library use the prefix “VG_” for identification. For example, 
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VG_printf() is used to replaces printf(). For Valgrind tools, the abbreviated name is prefixed. 

Therefore, “ct_” is prefixed in this case, such as: ct_pre_clo_init(), ct_post_clo_init(), 

ct_instrument, and ct_fini().  

2.2 Overview of the Trace Implementation 

CT requires three parts to trace the client’s memory reference: 

ぽ】 Tracing heap allocation: CT uses functions, ct_malloc(), ct_calloc() and ct_realloc(), to 

replace the client programs’ heap allocation routines malloc(), calloc(), realloc().  It also 

replaces free() by ct_free() to free the above heap allocations.  

ぽ】 Tracing memory accesses, load and store: CT inserts instrumentation code to client 

programs’ basic blocks to trace the store and the load instructions in ct_instrument().  

ぽ】 Writing a trace file: A trace file is opened by CT, and the information gathered above is 

written to it according to the trace file format of Cache Stats (see Appendix A). 

2.3 Heap Allocation 

Heap allocations are dynamic allocation of memory. Currently, Cache Stats and CT handle 

only C heap allocations, but adding support for C++ and Fortran should be trivial:  

ぽ】 Malloc (size_t size): The malloc() function allocates a memory block of at least size 
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bytes. The block may be larger than size bytes because of space required for alignment 

and maintenance information. 

ぽ】 Calloc (size_t num, size_t size): The calloc() function allocates storage space for an 

array of num elements, each of length size bytes. Each element is initialized to 0. 

ぽ】 Realloc (void *memblock, size_t size): The realloc() function changes the size of an 

allocated memory block. The memblock argument points to the beginning of the memory 

block. If memblock is NULL, realloc() behaves the same way as malloc() and allocates a 

new block of size bytes. If memblock is not NULL, it should be a pointer returned by a 

previous call to calloc, malloc, or realloc. The size argument gives the new size of the 

block in bytes. The contents of the block are unchanged up to the shorter of the new and 

old sizes, although the new block can be in a different location. Because the new block 

can be in a new memory location, the pointer returned by realloc() is not guaranteed to be 

the pointer passed through the memblock argument. 

ぽ】 Free (void *memblock): The free() function de-allocates a memory block memblock that 

was previously allocated by a call to calloc(), malloc(), or realloc(). The number of freed 

bytes is equivalent to the number of bytes requested when the block was allocated (or 

reallocated, in the case of realloc()). 
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The function replacement is an important feature that Valgrind provides and is not directly 

related to the instrumentation. CT’s replacement functions of these standard C memory 

management functions provide the necessary hooks for the heap memory event callbacks. 

These replacement functions can control details of allocation information and have code to 

write the allocation parameters into a trace file. In order to track the heap information, client 

executables should be dynamically linked. This is because Valgrind uses the LD_PRELOAD 

mechanism to intercept the malloc() calls. In the beginning, an allocation list, ct_malloc_list, 

initialized in ct_pre_clo_init() is created for re-allocation and accessed as a hash table. 

Whenever an allocation happens, a data structure ct_Chunk2 records the allocation address, 

size, kind and PC is added, resized or deleted in the list by the function add_ct_Chunk():  

typedef 

   struct _ct_Chunk { 

      struct _ct_Chunk* next; 

      Addr  data;                   // ptr to actual block;address 

      SizeT  size : (sizeof(UWord)*8)-2; // size requested; 30 or 62 bits 

      ct_AllocKind allockind : 2;       // which wrapper did the allocation 

      ExeContext*   where;          // where it was allocated 

   } 

   ct_Chunk; 

 

 

 

 

 

2. We use “chunk” in the following text to indicate the information data structure of allocations stored in the 

ct_malloc_list. 
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The parameter “kind” in ct_Chunk is defined as an enumeration (enum) of four kinds:  

typedef 

   enum { 

      ct_AllocMalloc = 0, 

      ct_AllocNew = 1, 

      ct_AllocNewVec = 2, 

      ct_AllocCustom = 3 

   }  ct_AllocKind; 

Only C’s allocations are implemented now and categorized as ct_AllocMalloc, other allocation 

categorization such as ct_AllocNew and ct_AllocNewVec for C++’s new/new[]/delete/delete[], 

and ct_allocCustom for other types are reserved for future use. A free list is also optional for 

future use. 

2.3.1 Malloc() and Calloc() 

Three functions are explained here: 

void *ct_malloc ( ThreadId tid, SizeT n ); 

void *ct_calloc ( ThreadId tid, SizeT nmemb, SizeT size1 );   

void *ct_new_block ( ThreadId tid, Addr p, SizeT size, SizeT align, \ 

                     Bool is_zeroed, ct_AllocKind kind, VgHashTable table); 

The ct_malloc() and ct_calloc() functions replace the equivalent functions in the client 

program, and return allocation addresses. Actually, Valgrind implements these two allocations 

in much the same way as the original. The only difference is their size definition. The size of 

ct_malloc() is defined directly by parameter n, but the size of ct_realloc is the multiple of the 

element type argument nmemb and the size argument size1. The function ct_new_block() is 
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called to allocate memory and add chunks to the ct_malloc_list.  

In ct_new_block(), the parameter tid is the thread id of the allocation. The ct_new_block() 

function assigns to address p a memory block having parameters size and align (align= 

VG_clo_alignment= VG_MIN_MALLOC_SZB, defined in the Valgrind core to ensure all 

block payloads are VG_MIN_MALLOC_SZB-aligned). The is_zeroed parameter determines if  

the element is to be initialized to zero or not (this parameter is true in ct_malloc() and false in 

ct_malloc() ). The allocation kind is set to be 0 as mentioned before. When the allocation is a 

success, its chunk is stored in table (equal to ct_malloc_list in CT). 

2.3.2 Free() 

Three functions are referred to here: 

void ct_free ( ThreadId tid, void *p ); 

void ct_handle_free ( ThreadId tid, Addr p, ct_AllocKind kind );                        

void die_and_free_mem ( ThreadId tid, ct_Chunk* mc, ct_Chunk**, \              

      prev_chunks_next_ptr); 

The ct_free() function replaces the free() of client programs. It passes the allocation address p 

to ct_handle_free() to retrieve the chunk in the ct_malloc_list. Then the chunk is passed to 

die_and_free_mem() to be deleted, and its previous chunk’s next pointer points to its next 

chunk. Finally, the allocation is freed in the memory by VG_free(). 

2.3.3 Realloc() 
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The ct_realloc() function replaces the realloc() of the client program:  

void *ct_realloc ( ThreadId tid, void* p, SizeT new_size ); 

It allocates memory almost the same as ct_new_block(), with there cases. First, when new_size 

is equal to the original size of the memory block *p, everything remains the same. Second, 

when new_size is smaller, the allocation size will be changed, and the size parameter in chunk 

will be updated. Third, when the new size is larger, a new space will be allocated as 

ct_new_block() does, and then the data is copied from the original allocation to a new one. 

Finally, the original allocation is freed as ct_free() does.  

The ct_malloc_list is created only because re-allocation requires the original allocation’s 

information. If a client program does not use re-allocation, the ct_malloc_list and the chunk 

related code can be removed, and the heap allocation replacement speed can be highly 

improved. 

2. 4 Program Counter (PC) 

In the heap allocation replacement functions, the allocation PC will be stored as a member of 

the ct_Chunk structure. The type is declared as: 

struct _ExeContext { 

      struct _ExeContext * next; 

      /* Variable-length array.  The size is VG_(clo_backtrace_size); at 

       *       least 1, at most VG_DEEPEST_BACKTRACE.  [0] is the current IP, 
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       *       [1] is its caller, [2] is the caller of [1], etc. */ 

      Addr ips[0]; 

};    

When the allocation happens, the functions’ return addresses are stored in the STACK, and 

then the callee address is stored next to it. The callee PC can be found in the variable-length 

array ips here and also in a list which is dealt by VG_(record_ExeContext) [13]. Therefore, its 

caller PC, where the allocation instruction happens, is near the callee’s in the STACK, in the 

ips[1] location, and it is written into the trace file. 

2.5 Basic Block Instrumentation: Load and Store 

The Valgrind JIT compiler translates the client program’s x86 instructions to its IR (UCode) 

once per basic block (BB). When a BB is under instrumentation, Valgrind will create a new 

BB first and then put all the original instructions plus CT’s instrumentation into it. The IR is 

defined in LibVEX [14], the library for dynamic binary instrumentation and translation of 

Valgrind. Here, only load/store instructions are considered. The loop in ct_instrument() will 

go through each statement in the BB and check whether the statement is a load/store or not. 

When a load/store statement is found, its address will be stored in access_address. Another 

variable is_Load is set to “True” when it is a load; otherwise, it is set to “False.” Finally, 

access_address and is_Load determines what kind of trace data should be written to the trace 

file and adds appropriate instructions to do this to the instrumented BB. 
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2.6 Executing Valgr ind Tool and Wr iting a Trace File 

If a client program is normally run like this: 

prog arg1 arg2 

Then the command line of Valgrind with CT to instrument and execute it is: 

./valgrind --tracefile= trace_file --tool=cachetool prog arg1 arg2 

The “--trace_file” is optional to set the trace file name. Without this argument, CT will use a 

default file name. Usually, the trace file will be a UNIX fifo (named pipe) because the 

memory reference data may consume large amounts of disk space (normally about 2 GB in 

less than ten minutes).  

When the execution starts, Valgrind will read the ct_pre_cloinit() first. This function defines 

the aforementioned heap allocation replacement functions and load/store instrumentation. It 

also calls the ct_post_clo_init(), which gets the file name from command, open the trace file 

and then writes a 16 byte long header. The header is mainly for future compatibility purposes; 

it reports the machine’s size of long in bytes (i.e. 4 on a 32 bit machine, 8 on 64), whether the 

machine is big- or little-endian, and reports the version of the trace file format being used. 

When executing, the tool generates trace data for every replacement allocation function and 

memory reference (address, size, PC).  Once instrumented once during the BB 

instrumentation, the JIT execution will execute the modified version of the BB. When the 
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execution finishes, the ct_fini() closes the file and terminates the whole process. 

An example message is like this (use “a.out” as the client program and “tracefile.txt” as the 

trace file name): 

> ./valgrind --tool=cachetool --tracefile="tracefile.txt" a.out 

==3207== Cachetool, generates traces for the cachteool program. 

==3207== Copyright (C) 2006 - Vince Weaver/yohowo 

==3207== Using LibVEX rev 1367, a library for dynamic binary translation. 

==3207== Copyright (C) 2004-2005, and GNU GPL'd, by OpenWorks LLP. 

==3207== Using valgrind-3.0.1, a dynamic binary instrumentation framework. 

==3207== Copyright (C) 2000-2005, and GNU GPL'd, by Julian Seward et al. 

trace file tracefile.txt opened 

header written 

==3207== For more details, rerun with: -v 

==3207==  

 

(the message of the client program shows here) 

 

==3207==  

 

Cachetool:Exiting! 

The number 3207 is the process ID and usually unimportant. Next it shows the declaration and 

information about Valgrind and its tool (CT here). The opened file name is shown in the next 

part, and then compilation and execution started and displayed the client program’s message. 

Finally, it showed the exit message when the process finished, and the trace file was generated 

(if not a pipe). 
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3. Simulation and Compar ison of Implementations under 

Valgr ind and FIT’s Instrumentation 

This section demonstrates the simulation process of client programs under the Valgrind or FIT 

profiler and the memory conflict analyzer, Cache Stats. The two tools’ accuracy and speed are 

compared. The FIT instrumentation is presumed correct because it had been used extensively 

beforehand.  The goal of this project is to prove that Valgrind has the same accuracy as FIT, 

and that Valgrind’s implementation process is more convenient and to use as an input for 

Cache Stat. 

 

 

 

3.1 Simulation Process  

3.1.1 Machine Specifications 

The simulation was done on the Sampaka Cluster belonging to the Computer System Lab at 

Cornell University. The cluster’s specifications are: 

ぽ】 40 1-U nodes  

ぽ】 Each node has two Pentium 4 2.8GHz Xeon Processors  
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ぽ】 Each node has 2GB of RAM  

ぽ】 Connected by 1000Mb/s Ethernet  

ぽ】 Runs SuSE 9.3 Linux booted via PXE  

ぽ】 90 Gigaflops with 64 CPUS 

ぽ】 Donated by Intel  

The Network Batch System (NBS) [15] has been installed in the cluster. NBS is a suite of 

executable images and command scripts that implements a distributed load-balanced batch 

execution system. NBS is useful when many processes are required to execute at the same 

time, and it will count the final CPU time of processes. 

3.1.2 Trace File 

To run Cache Stats and the instrumented binary at the same time, the trace file should be a fifo 

named pipe. The trace file that is read is named /tmp/trace.PID (in a temporary directory /tmp) 

where PID is the process ID of the program being traced and assigned by the operation system. 

The PID is used because if more than one client is tracing, the two process would overwrite 

each other’s traces and ruin results. The trace file can be consume a lot of disk space, so using 

a pipe can avoid running out of disk, which could potentially interrupting a simulation that 

may take hundreds of hours. 

FIT’s instrumentation code has been written to create the pipe file itself. (When Valgrind is 

used, the pipe is created in a script). To determine the proper trace file name generated by FIT, 

the FIT run is run in the background and the PID determined with the “$!” shell substitution. 
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3.1.3 Prepar ing the Simulation 

Before the simulation, some files are prepared or generated first: the script, the symbol name 

file, and the config file. The script bundles the instrumented program execution and Cache 

Stats command line to run them at the same time through the pipe, and it simplifies the process 

of doing multiple runs with long pathnames. Symbol files are create by the command “nm” in 

Linux, and these files use .nm as extension names. The config file was described in section 

1.2.  

3.1.4 Benchmarks 

Five SPEC CPU 2000[16] benchmark programs were simulated in this project (name, 

remarks): 

ぽ】 164.gzip       Data compression utility 

ぽ】 175.vpr     FPGA circuit placement and routing 

ぽ】 186.crafty   Chess program 

ぽ】 177.mesa    3D Graphics library 

ぽ】 183.equake   Finite element simulation; earthquake modeling 

The remaining benchmark, SMG2000 [16] (a parallel semi-coarsening multigrid solver) is a 

part of the ASCI Purple benchmark suite. 

3.1.5 FIT implementation Simulation Process 

Running the simulation of Cache Stats using FIT requires four steps. First, the client source 
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code should be compiled by FIT’s patched gcc with its tool-chain. Since FIT needs statically 

linked executables, its gcc compiler will statically link against its own version of standard C 

library. This process generates an executable called a “nofit executable”, which means the file 

has been compiled by the proper tool-chain but has not been instrumented yet.  Second, the 

nofit executable is used to create the symbol file and also as Cache Stats’s input executable 

because it contains the non-instrumented original client program code. Third, the nofit 

executable is instrumented by FIT along with the instrumentation and the analysis files. This 

process generates the final FIT executable that uses “.fit” as its extension. Finally, a script 

executes the “.fit” file to generate the trace and inputs the trace to Cache Stats along with the 

config file, symbol file, and nofit executable. Figure 3.1 depict the flows of FIT’s 

implementation and simulation with Cache Stats. The part enclosed by the dashed line can be 

done together by a script. In the final simulation, the script was submitted via NBS and 

execution time was measured. 
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3.1.6 Valgr ind Implementation Simulation Process 

Running the Cache Stats simulation using Valgrind requires three steps. The process is similar 
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to FIT’s (in section 3.1.5), but the third step of instrumenting analysis code and instrument 

code is not needed, because the client binary only has to be compiled once by gcc. Since 

Valgrind uses dynamic binary instrumentation, it is not like FIT which has to compile the 

client code first and then instrument it. Valgrind’s JIT compiler instrument the client’s binary 

executable on the fly and the library can be dynamically linked. Figure 3.2 depicts the flow of 

Valgrind’s implementation and simulation with Cache Stats. The part enclosed by the dashed 

line can be done together by a script. In the final simulation, the script was submitted via NBS 

and the execution time was measured. 
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Figure3.2 Valgrind & Cache Stats simulation flow chart 
 

3.1.7 Statistic Repor t  

The output statistics are generated as an HTML file. Cache Stats counts the total access time, 

load/store time, heap allocation time, and hit rate for LI and L2 cache. The results are show in 
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tables, presenting the following cache conflicts statistics: 

ぽ】 Cache lines sorted by miss rate of L1 data cache and L2 cache 

ぽ】 Symbols sorted by miss rate of L1 data cache and L2 cache 

ぽ】 Allocated memory area conflicts by size of L1 data cache and L2 cache 

Table 3.1 demonstrates a snapshot of the statistic in the output file. Many attributes are listed: 

symbol names (or the line number of the allocation in the original source code), sizes, 

segments (heap, static, stack or mmap), hit rates, addresses, and cache lines. They are listed in 

order according to their miss rate, and this helps programmers to figure out where case 

slowdowns happen.  

Accesses Name Size Segment Address Cacheline Hit Rate
Overall 

Miss 

1680402 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

307624 MMAP 0x40002004 ALL 89.491562 15.146231

1085979 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

116112 HEAP 0x84324ac ALL 89.830282 9.472913

927141 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

116112 HEAP 0x83f1ddc ALL 90.508024 7.548413

284659 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

70312 HEAP 0x83d4d6c ALL 80.847611 4.676286

340106 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

13832 HEAP 0x83ede74 ALL 85.937619 4.102290

40338206 STACK 285212671
UNKNO
WN  

0xaf000000 ALL 99.881933 4.085050

508874 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

72128 HEAP 0x8473bf4 ALL 92.573211 3.241639

403964 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

55896 HEAP 0x84a4c3c ALL 93.556604 2.232599

339792 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

51288 HEAP 0x84d07dc ALL 93.610209 1.862315

203656 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

35056 HEAP 0x84fa184 ALL 94.220647 1.009554

203046 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

32752 HEAP 0x854120c ALL 94.203284 1.009554

171124 
/ufs/vault/vince/cache_suite/instrumented_binaries/trace_smg2000/utilities/memory.c:115 
ptr = calloc(count, elt_size);  

32752 HEAP 0x851e64c ALL 94.010776 0.879093

Table 3.1 Cache conflicts of symbols sorted by miss rate of L1 cache of smag2000 (part) 
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3.1.8 Compar ison Items 

The first step in comparing results was using a stripped-down version of Cache Stats called 

Cache Sim. Cache Sim does not report detailed conflicts, it only shows cache hit and miss 

rates. Because of this, it can be used to roughly compare both implementations in a shorter 

time than Cache Stats does. The compared items include total access time (separated to read 

time and write time), hit rate of L1 data cache and L2 cache (read time, write time, hit time 

and miss time are reported for each cache) and heap allocation time (malloc, realloc, calloc 

and free). The access time may be slightly dissimilar because their linked libraries and 

compilation are different. Heap allocation also has this deviation, but hit rates and heap 

allocation time are supposed to be similar.  

In order to remove some of the variations, “nofit” versions of the benchmarks compiled with 

FIT’s tool-chain were simulated.  These executables are as close to the FIT instrumented 

binaries as possible (figure 3.3). Statically linked versions of the binaries can be compared for 

even closer similarity, but Valgrind is unable to intercept the allocation functions of statically 

linked binaries, so a full comparison cannot be done using this method. 
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After the results from Cache Sim were compared, the more detailed statistics from the Cache 

Stats simulation were compared. The symbols sorted by miss rate are the crucial ones to 

guarantee that Valgrind’s instrumentation is accurate. Orders, access times and miss rates of 
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symbols causing high conflict rates are compared to assure the hypothesis that Valgrind has 

similar accuracy to FIT. Finally, simulation time is compared to tell which one is faster and 

more practical for memory conflict analysis. NBS will report the total CPU time used by the 

instrumentation tool and Cache Stats together when finished. Also, the time of generating trace 

files by each implementation was compared. 

3.2 Compar ing Simulation Results 

3.2.1 Memory Access and Conflict Analysis 

Memory access times of each application are listed in table 3.2. Three simulation results are 

listed by row: FIT’s executable and Cache Stats (figure 3.1), nofit executable under Valgrind 

and Cache Stats (figure 3.3), and original executable under Valgrind and Cache Stats (figure 

3.2). The percentage column compares Valgrind’s time to FIT’s time. The formula is: 

 timeaccess 'FIT

  timeaccess sFIT'   timeaccess sValgrind'
(%)

s
error

/
?  

For L1 cache, error percentages of access times between FIT and Valgrind (nofit) are all less 

than 2% and most of hit rates (table 3.3) between FIT and Valgrind (nofit) implementations are 

similar. Error percentages for L2 cache are higher, but it can be explained by comparing the 

conflict analysis. The details should be inspected manually. Comparing the table “Symbols, 

Sorted by Miss Rate” of both L1 cache and L2 cache of Valgrind and FIT’s report, some C 
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libraries’ functions will be listed in FIT’s report but not Valgrind’s because they are 

dynamically linked in Valgrind’s executables. During FIT’s compilation with its tool-chain, 

functions in the C library must be statically linked; thus they will be recorded in symbol files. 

On the contrary Valgrind linked them dynamically, and thus they are not in the symbol files. 

When Cache Stats finds a memory reference in the trace file but not in the symbol file, it will 

be registered as an “unknown” access rather than a conflict with a known symbol.  These 

differences are not always significant; the primary usage is internal variables used by the C 

malloc arena allocation routines.3. However, if the nofit version’s report is compared with 

FIT’s, all the static linked symbols show. Sometimes contiguous symbols’ order may swap 

because FIT and Valgrind’s compilations are slightly different. Regardless of these static 

linked symbols, their results are almost the same. Therefore, the comparison concludes that 

two implementations have similar accuracy as profiling programs’ memory references.  

 

 

 

 

3. Sometimes, all symbols listed are from the static linked library, such as crafty. If a program’s report is like this, 

it is not easy to find out where to reorganize the code to reduce conflicts.
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 L1 data cache L2 cache 

Accesses Reads Writes Accesses Reads Writes 
Application Input 

# % # % # % # % # % # % 

FIT 177848025764 113346233483 64501792281 15930577718 15529713099 400864619 】

Valgrind(nofit) 178460835890 0.34457 113643831165 0.26256 64817004725 0.48869 676797090 95.75158 321714977 97.92839 355082113 11.42094 mesa 

Valgrind  171349091752 3.65421 108706478421 4.09344 62642613331 2.88237 1025448293 93.56302 578345072 96.27588 447103221 11.53472 

FIT 117201833163 82043624597 35158208566 19247468340 18731706574 515761766 】

Valgrind(nofit) 117202036892 0.00017 82043746521 0.00015 35158290371 0.00023 5688195487 70.44705 5376136054 71.29927 312059433 39.49543 crafty 

Valgrind 128995405620 10.06262 85784478174 4.55959 43210927446 22.90424 5462578994 71.61923 5132833235 72.59815 329745759 36.06627 

FIT 90549626083 72756421441 17793204642 3457108757 3338937035 118171722 】

Valgrind(nofit) 91292301374 0.82019 73203619276 0.61465 18088682098 1.66062 3284675098 4.98780 3166366094 5.16844 118309004 0.11617 equake 

Valgrind 91907869413 1.50000 73047145207 0.39959 18860724206 5.99959 7420650954 114.64905 7156342253 114.32996 264308701 123.66493 

FIT 48914844430 39575091830 9339752600 4161861193 3944394992  217466201 】

Valgrind(nofit) 48914854806 0.00002 39575098112 0.00002 9339756694 0.00004 5259827896 26.38163 5153625592 30.65693 106202304 51.16377 gzip 

Valgrind 48614322014 0.61438 39032084801 1.37209 9582237213 2.59626 5273284085 26.70495 5171316865 31.10545 101967220 53.11123 

FIT 50786613454 34996527844 15790085610 3021334831 2805885322 215449509 】

Valgrind(nofit) 51294265148 0.99958 35300233362 0.86782 15994031786 1.29161 2708436582 10.35629 2487736117 11.33864 220700465 2.43721 vpr 

Valgrind 44449221037 12.47847 31270352584 10.64727 13178868453 16.53707 2643069919 12.51979 2410056443 14.10709 233013476 8.15224 

FIT 55904423 40552268 15352155 1402310 1105877 296433  

Valgrind(nofit) 55922831 0.03293 40563947 0.02880 15358884 0.04383 1176657 16.09152 970763 12.21781 205894 30.54282 smg2000 

Valgrind 50572383 9.53778 37663924 7.12252 12908459 15.91761 1465372 4.49701 1213007 9.68733 252365 14.86609 

Table 3.2 Cache access time 

 
 



  L1 data cache L2 cache 

Applications Input Hit Miss Hit rate (%) Hit Miss Hit rate 

FIT 176602018331 1246007433 99.29 15762539089 168038629 98.94

Valgrind(nofit) 177710775563 750060327 99.57 509363467 167433623 75.26mesa 

Valgrind 170166473893 1182617866 99.30 857958254 167490039 83.66

FIT 111404408009 5797425154 95.05 19217187310 30281030 99.84

Valgrind(nofit) 111516588962 5685447921 95.14 5661204424 24243497 99.57crafty 

Valgrind 123537947692 5457457828 95.76 5430092144 27365684 99.49

FIT 87253646484 3295979599 96.36 571700421 2884810848 16.53

Valgrind(nofit) 88007173464 3285127910 96.40 400404050 2884723860 12.18equake 

Valgrind 84487218459 7420650954 91.92 928241816 6492409138 12.50

FIT 44752983237 4161861193 91.49 4111621567 50239626 98.79

Valgrind(nofit) 43655026910 5259827896 89.24 5234252626 25575270 99.51gzip 

Valgrind 43341037939 5273284085 89.15 5246874935 26409150 99.50

FIT 48170843704 2615769750 94.85 2335211744 686123087 77.29

Valgrind(nofit) 48585828566 2708436582 94.72 2004461220 703975362 74.01vpr 

Valgrind 42236338705 2212882329 95.02 1942177973 700891946 73.48

FIT 54737085 1167338 97.91 1211022 191288 86.35

Valgrind(nofit) 54746174 1176657 97.89 981805 194852 83.44smg2000 

Valgrind 49107011 1465372 97.10 1164015 353299 76.71

Table 3.3 Hit rates 

3.2.2 Heap Allocation  

Table 3.4 shows heap allocation times of each program. FIT and Valgrind handle malloc with 

different methods, and the recognition of malloc by their respective instrumentations may not be 

the same. Valgrind’s tool, CT, uses replacement functions and VG_malloc() to allocate memory 

when malloc(), calloc() or realloc() happen. However, FIT’s tool-chain compiler handles heap 

allocation by itself (FIT’s core), and its instrumentation code simply inserts the trace writing code 

when heap allocations happen. Consequently, some allocations are not recognized equally by each 
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tool. The C library and loader internally call malloc() directly and Valgrind is not capable of 

reporting this properly.  Because of this some early malloc() calls go unreported. Also, the 

Valgrind routines handle allocations in a different way and sometimes cause some simplifications. 

In smg2000, realloc() is called many times, but only with NULL as the first argument. FIT reports 

this as a realloc() followed by a malloc() (which is what the standard C library does), but Valgrind 

notices the NULL argument and thus reports these allocations as plain malloc()s, without the 

intervening realloc() call.  Because of these differences, the malloc count may be slightly different, 

but by less than 10 calls, for every application. Despite these slight differences, the heap allocation 

statistics can be considered essentially the same between both implementations.  

 

Applications Input malloc calloc realloc Free 

FIT 21 49 0 59
mesa 

Valgrind 13 49 0 59

FIT 47 0 0 2
crafty 

Valgrind 39 0 0 2

FIT 1335075 0 0 0
equake 

Valgrind 1335067 0 0 0

FIT 283466 0 0 283454
gzip 

Valgrind 283458 0 0 283454

FIT 73243 88 12 69269
vpr 

Valgrind 73235 88 11 69269

FIT 40112 35314 1260 75418
smg2000 

Valgrind 40104 35314 0 75418

Table 3.4 Heap allocation times 
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3.2.3 Simulation Time 

Table 3.5 shows the time of every simulation, and table 3.6 compares their speed. Columns (3) and 

(4) in the table simply show how long it takes to generate the trace. From columns (5) to (8), two 

programs were executed at the same time, and the simulation time may have higher deviation. In 

table 3.6, it used FIT’s time divided by Valgrind’s. If the factor is greater than one, it means 

Valgrind’s implementation is faster, and vice versa. Basically, Valgrind is faster than FIT in vpr, 

gzip and smg2000 whose access time is comparatively less than the other three. Valgrind takes 

longer time than FIT in larger access times applications, mesa, crafty, equake. Because Valgrind 

instrumented clients on the fly, it may require more memory. Valgrind only allocates a certain 

amount of space to hold cached JIT code, bigger programs might end up overflowing this cache and 

taking longer amounts of time to run. The results show that as the run time increases, Valgrind’s 

slowdown compared to FIT’s will also increase. 

Another parameter to remember is that FIT spends an extra long time to compile and then 

instrumented a code (in (2), and it takes more than ten minutes for a 30 lines C code). Therefore, it 

may actually take a longer time for FIT’s simulation if you factor in compilation and 

instrumentation time. 
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Applications 

(1) 
Application 
execution 

time 

(2) 
FIT 

instrument 
 

(3) 
FIT 
trace 

(4) 
Valgrind 

trace 

(5) 
FIT & 

Cache Sim

(6) 
Valgrind & 
Cache Sim 

(7) 
FIT & 

Cache Stats 

(8) 
Valgrind &
Cache Stats

mesa 
0.05485 

(3.291 min) 
1.726* 29.297 29.449 193.429 181.896 189.183 398.514

crafty 
0.3458 

(2.075 min) 

0.203 

(12.2 min) 
21.518 19.620 122.157 126.323 129.874 290.060

equake 
0.04237 

(2.542 min) 

0.184 

(11.08 min) 
13.950 16.054 82.452 83.968 109.059 114.868

gzip 
0.01830 

(1.098 min) 

0.141 

(8.45 min) 
12.421 7.328 44.768 30.684 ** 80.623

vpr 
0.03622 

(2.173 min) 

0.238 

(14.25 min) 
9.265 7.407 29.317 45.798 64.680. 44.179

smg2000 
0.00006 

(0.22 sec) 

0.242 

(14.52 min) 

0.00968

(34.84 sec)

0.00803

(28.89 sec)

0.12736

(7.642 min)

0.01408 

(2.465 min) 

0.2026

(12.156 min)

0.10468

(6.821 min)

Table 3.5 Simulation time (hours) 

*mesa took so long because it used up more than a gigabyte of RAM and was heavily swapping to disk when instrumented. 

**gzip run under FIT and Cache Stats took a long time (more than 6000 hour). This may be caused by some bugs of Cache Stats and 

will be fixed in the future work. 

(1) Application execution time without any simulation or instrumentation. 

(2) The time of every application instrumented by FIT.  

(3) (4) The time to trace every application and write the trace file by FIT or Valgrind. 

(5) (6) The time to trace the application and run Cache Sim together 

(7) (8) The time to trace the application and run Cache Stats (Conflict analysis) together 

 

Applications (3) ÷(4) (5) ÷(6) (7) ÷(8)

mesa 0.99 1.06 0.47

crafty 1.01 0.96 0.45

equake 0.99 0.98 0.95

gzip 1.70 1.46 N/A

vpr 1.86 0.64 1.46

smg2000 1.21 3.10 1.78

 Table 3.6 Slowdown factor 
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4. Conclusion and Future Work 

 

 

 

 

The simulations demonstrated that the dynamic binary instrumentor, Valgrind, has similar accuracy 

to the static binary instrumentor, FIT, but their speeds are dissimilar. Valgrind is faster on shorter 

running programs, especially when FIT’s instrumentation time is considered. However, as the run 

time increases, this advantage degrades, and Valgrind may perform even worse than FIT (a new 

version of Valgrind has been released just after the project was finished that claims to have 

improved the speed. It may help to get better performance.). Moreover, since Valgrind uses 

dynamic binary instrumentation, it is not like FIT that has to compile and instrument binary codes 

separately before execution. Valgrind’s JIT compiler instruments the client’s binary executable on 

the fly and the libraries can be dynamically linked. This makes the instrumentation process of the 
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Valgrind implementation quicker than FIT’s, and the total client-related file size of the Valgrind 

implementation is also smaller. Furthermore, Valgrind’s tools are compiled separately from the 

clients’ code, and it can save the instrumentation time while the client is still under development 

and modified frequently. What is more, Valgrind can instrument a binary which can be coded by 

any programming language, but FIT can only instrument a client’s source code in C. Some 

benchmarks, such as 176.gcc (too large) and 252.eon (written in C++) of SPEC CPU2000, can not 

be simulated if using FIT as Cache Stats’ profiler. Therefore, Valgrind is considered to be more 

practical and generic for a memory reference analysis and tracing tool. 

The whole program (the Valgrind tool and Cache Stats) will be released as an open source memory 

conflict inspection tool. It will be used to help programmers to find out memory conflicts which 

degrade performance and waste power, and it can also simulation different memory architectures by 

modifying the config file. Programmers can reorganize their codes without extra hardware to 

improve the speed and decrease the power consumption. This can be especially useful for 

resource-restricted embedded systems.  

However, the whole simulation time still seems very long. Both kinds of simulations require many 

days to simulate some benchmarks. The current architecture of the simulation process is that the 

instrumented tool writes the trace information to the pipe, and then the simulator reads the data and 

then simulates it. If the simulator and instrumentor can be combined, such as embedding the Cache 
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Stats in the Valgrind’s tool and then simulation and analysis report are all done in the tool, it may 

makes the tool become faster and more practical. 

Furthermore, the whole analysis tool currently can only be run in X86 Linux machine and analyze 

C code. Nonetheless, Valgrind owns the benefit to analysis a binary code without the source code, 

and the action of expending its application to other platform is in progress. Therefore, Cache Stats 

may be developed to analyze codes other than C in multi-platform in the future. The end goal is that 

programmers and system developers will have a helpful tool to build up their applications and 

systems. 
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Appendix A: Trace File Format of Cache Stats 

Trace File Version 10  
By Vince Weaver 

 

This is documentation on what the programs instrumented with the "fit_vmw_trace" 

instrumentation does: 

 

The instrumented program first opens a named fifo (pipe) for writing called /tmp/trace.PID where 

PID is the process ID of the running instrumented program. The value of the PID can be accessed 

in a shell script by running the instrumented program in the background (ie followed by a &) and 

then using the shell substitution $! (such as /tmp/trace.$! ). 

    

The first thing written is a 16 byte long header: 

  byte0 = sizeof(long) in bytes  (ie 4 on a 32 bit machine, 8 on 64) 

  byte1 = 1 if big-endian, 0 if little-endian 

  byte2 = version of trace file 

  byte3 - byte15 reserved (0 for now) 

   

Then what follows is as follows, repeating until done, and all are unsigned long in type: 

 

  ADDRESS           (0) 

    LOAD/STORE     (Load=0, Store=1) 

    ADDRESS      (Address being loaded/stored ) 

    PC            (Program Counter of the Load/store instruction) 

    SIZE           (Length in bytes of the value being loaded/stored) 

 

  MALLOC_INFO      (1)    [happens before malloc call] 

    SIZE           (size of malloc) 

    CALLSITE       (PC of where malloc happens) 

        

  MALLOC_ADDRESS     (2)    [happens after malloc call] 

        ADDRESS        (address pointing to allocated memory) 

        

  CALLOC_INFO         (3)    [happens before calloc call] 

        COUNT          (number of areas allocated) 
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        SIZE           (size of areas allocated) 

        CALLSITE       (PC of where calloc happened) 

        

  CALLOC_ADDRESS     (4)    [happens after calloc call] 

        ADDRESS        (address pointing to allocated memory) 

        

  REALLOC_INFO        (5)    [happens before realloc call] 

        OLD_ADDRESS   (address of region being realloc) 

        SIZE           (size of new region) 

        CALLSITE       (PC of where realloc happened) 

   

  REALLOC_ADDRESS    (6) 

        ADDRESS        (address pointing to allocated memory) 

        

  FREE_INFO           (7) 

        ADDRESS        (address of region to be freed) 

        

  FREE_FINISHED       (8) 

   

  BLOCK_BEGIN         (9) 

        BLOCK       (block number of this block) 

        ADDRESS        (address of beginning of block) 

        SIZE           (length of block in bytes) 

 

  CALL                (10) 

        RETURN         (return address) 

        

  RETURN            (11)   [a "ret" instruction happened] 
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Appendix B: Source Code 
/*--------------------------------------------------------------------*/ 

/*--- Cachetool: The cachetool interface.    ct_main.c ---*/ 

/*--------------------------------------------------------------------*/ 

/* 

   This file is a tool built up in Valgrind for tracing heap allocation  

   and memory reference. An output trace file will be created and then  

   fed into a cache simulator to find out cache conflicts.  

 

   Copyright (C) 2005-2006  

   Vince Weaver vince _at_ csl.cornell.edu 

   I-Chun Li    yohowo _at_ csl.cornell.edu 

 

   This program is free software; you can redistribute it and/or 

   modify it under the terms of the GNU General Public License as 

   published by the Free Software Foundation; either version 2 of the 

   License, or (at your option) any later version. 

 

   This program is distributed in the hope that it will be useful, but 

   WITHOUT ANY WARRANTY; without even the implied warranty of 

   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 

   General Public License for more details. 

 

   You should have received a copy of the GNU General Public License 

   along with this program; if not, write to the Free Software 

   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 

   02111-1307, USA. 

 

   The GNU General Public License is contained in the file COPYING. 

*/ 

 

#include "pub_tool_basics.h"       //contains the basic types and other things needed everywhere.  

                           //also included libvex.h, a library for dynamic binary instrumentation and translation. 

#include "pub_tool_libcassert.h"    //clib assert replacement 

#include "pub_tool_tooliface.h"     //core/tool interface 
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#include "pub_tool_replacemalloc.h" //library functions replacement:malloc 

#include "pub_tool_mallocfree.h"    //handle free  

#include "pub_tool_libcprint.h"      //printing  

#include "pub_tool_hashtable.h"     //Generic type for a separately-chained hash table.(for realloc) 

#include "pub_tool_libcbase.h"      //VG_(memset) 

#include "pub_tool_options.h"       //command line options 

#include "pub_tool_libcfile.h"       //file I/O 

#include "pub_tool_execontext.h"    //PC 

//#include "pub_tool_stacktrace.h" 

 

/*file I/O*/  

/*trace file 16-byte header  

  The first thing written is a 16 byte long header: 

  byte0 = sizeof(long) in bytes  [ie 4 on a 32 bit machine, 8 on 64) 

  byte1 = 1 if big-endian, 0 if little-endian 

  byte2 = version of trace file 

  byte3-byte15  reserved (0 for now)  

*/ 

unsigned char header[16]={4,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

unsigned long output[10];  

int file_ptr; 

char FileName[256];  //trace file's name 

#define VKI_O_LARGEFILE     0100000  

 

/* Record malloc'd blocks */ 

VgHashTable ct_malloc_list = NULL;//initialized in void ct_pre_clo_init() 

 

//get PC 

unsigned long get_alloc_callsite(void *address); 

 

//from /memcheck/mac_share.h 

/* For malloc()/new/new[] vs. free()/delete/delete[] mismatch checking. */ 

typedef 

   enum { 

      ct_AllocMalloc = 0, 

      ct_AllocNew    = 1, 
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      ct_AllocNewVec = 2, 

      ct_AllocCustom = 3 

   } 

   ct_AllocKind;  

 

struct _ExeContext { 

      struct _ExeContext * next; 

      /* Variable-length array.  The size is VG_(clo_backtrace_size); at 

       *       least 1, at most VG_DEEPEST_BACKTRACE.  [0] is the current IP, 

       *       [1] is its caller, [2] is the caller of [1], etc. */ 

      Addr ips[0]; 

};   

      

/* first two fields must match core's VgHashNode. */ 

typedef 

   struct _ct_Chunk { 

      struct _ct_Chunk* next; 

      Addr          data;           // ptr to actual block 

      SizeT         size : (sizeof(UWord)*8)-2; // size requested; 30 or 62 bits 

      ct_AllocKind allockind : 2;  // which wrapper did the allocation 

      ExeContext*   where;          // where it was allocated 

   } 

   ct_Chunk; 

 

/* memory allocation functions */ 

/* table is ct_malloc_list*/ 

void *ct_new_block ( ThreadId tid, \ 

                     Addr p, SizeT size, SizeT align, Bool is_zeroed, \ 

                     ct_AllocKind kind, VgHashTable table); 

void *ct_malloc ( ThreadId tid, SizeT n ); 

void *ct_calloc ( ThreadId tid, SizeT nmemb, SizeT size1 );   

void *ct_realloc ( ThreadId tid, void* p, SizeT new_size );  

 

/* free memory functions */ 

void ct_handle_free ( ThreadId tid, Addr p, ct_AllocKind kind );                        

void ct_free ( ThreadId tid, void *p ); 
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void die_and_free_mem ( ThreadId tid, ct_Chunk* mc,  

   ct_Chunk** prev_chunks_next_ptr);  

    

/* Allocate its shadow chunk, put it on the appropriate list. */ 

static void add_ct_Chunk ( ThreadId tid, Addr p, SizeT size, ct_AllocKind kind, VgHashTable table) 

{ 

   ct_Chunk* mc; 

 

   mc            = VG_(malloc)(sizeof(ct_Chunk)); 

   mc->data      = p; 

   mc->size      = size; 

   mc->allockind = kind; 

   mc->where     = VG_(record_ExeContext)(tid); 

 

   VG_(HT_add_node)( table, (VgHashNode*)mc ); 

} 

 

/* Allocate memory and note change in memory available */ 

/* ThreadId tid 

   Addr p: allocation address 

   SizeT size: allocation size 

   SizeT align: alignment VG_(clo_alignment) 

   Bool is_zeroed: initialization for shadow area value 

   ct_AllocKind kind: use only ct_AllocMalloc here 

   VgHashTable table: ct_malloc_list 

*/ 

__inline__ 

void* ct_new_block ( ThreadId tid, 

                        Addr p, SizeT size, SizeT align, Bool is_zeroed, ct_AllocKind kind, VgHashTable table) 

{ 

   // Allocate and zero if necessary 

   if (!p){  

      p = (Addr)VG_(cli_malloc)( align, size ); 

      if (!p) { 

         return NULL; 

      } 
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      if (is_zeroed) VG_(memset)((void*)p, 0, size);//initialize value to zero 

   } 

 

   add_ct_Chunk( tid, p, size, kind, table ); 

   return (void*)p; 

} 

  

unsigned long get_alloc_callsite(void *address) { 

   ct_Chunk* mc;  

   ct_Chunk** prev_chunks_next_ptr; 

 

      /* the "chunk" has the execution context which has the stack */ 

      /* backtrace which knows where we were called from           */ 

   mc = (ct_Chunk*)VG_(HT_get_node) ( ct_malloc_list, (UWord)address, 

                                       (void*)&prev_chunks_next_ptr ); 

    

//   VG_(pp_StackTrace)(mc->where->ips,2); 

//   VG_(printf)("Malloc from %x\n",mc->where->ips[1]); 

 

   return mc->where->ips[1];    

} 

 

/* malloc */ 

void *ct_malloc ( ThreadId tid, SizeT n ) { 

    

   void *temp_pointer; 

 

   temp_pointer=ct_new_block ( tid, 0, n, VG_(clo_alignment),  

          /*is_zeroed*/False, ct_AllocMalloc,  

          ct_malloc_list); 

          

   //VG_(printf) ("Malloc of size %d to address %p\n",n,temp_pointer); 

   output[0]=1;  //MALLOC_INFO 

   output[1]=n;   //allocation size 

   output[2]=get_alloc_callsite(temp_pointer);   //PC 

   output[3]=2;   //MALLOC_ADDRESS  
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   output[4]=(unsigned long)temp_pointer;  //allocation address 

   VG_(write)(file_ptr,output,5*sizeof(unsigned long)); 

    

   return temp_pointer;  

} 

 

/* calloc */ 

void *ct_calloc ( ThreadId tid, SizeT nmemb, SizeT size1 ){          

      

 void *temp_calloc_ptr; 

   temp_calloc_ptr=ct_new_block ( tid, 0, nmemb*size1, VG_(clo_alignment),  

                 /* is_zeroed* /True, 

ct_AllocMalloc,ct_malloc_list); 

    

   //VG_(printf) ("Calloc of size %d to address %p\n",nmemb*size1,temp_calloc_ptr);  

   output[0]=3;      //CALLOC_INFO 

   output[1]=nmemb;     //type argument from calloc 

   output[2]=size1;     //size argument from calloc 

   output[3]=get_alloc_callsite(temp_calloc_ptr);   //PC 

   output[4]=4;         //CALLOC_ADDRESS 

   output[5]=(unsigned long)temp_calloc_ptr;    //allocation address 

   VG_(write)(file_ptr,output,6*sizeof(unsigned long)); 

 

   return temp_calloc_ptr; 

} 

       

/* free requires 3 function: 

   ct_free -> ct_handlefree -> die_and_free_mem  */ 

 

void die_and_free_mem ( ThreadId tid, ct_Chunk* mc,  

   ct_Chunk** prev_chunks_next_ptr) 

{ 

   /* Remove mc from the malloclist using prev_chunks_next_ptr to 

      avoid repeating the hash table lookup.  Can't remove until at least 

      after free and free_mismatch errors are done because they use 

      describe_addr() which looks for it in malloclist. */ 
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   *prev_chunks_next_ptr = mc->next; 

 

   VG_(free) ( mc ); 

} 

__inline__ 

void ct_handle_free ( ThreadId tid, Addr p, ct_AllocKind kind ) 

{ 

   ct_Chunk*  mc; 

   ct_Chunk** prev_chunks_next_ptr; 

     

   mc = (ct_Chunk*)VG_(HT_get_node) ( ct_malloc_list, (UWord)p, 

                                       (void*)&prev_chunks_next_ptr ); 

 

   die_and_free_mem ( tid, mc, prev_chunks_next_ptr); 

} 

void ct_free ( ThreadId tid, void* p ) 

{ 

   //VG_(printf) ("free at:  %p\n",p); 

   output[0]=7; 

   output[1]=(unsigned long)p; 

   output[2]=8;    

   VG_(write)(file_ptr,output,3*sizeof(unsigned long)); 

   

   ct_handle_free( tid, (Addr)p, ct_AllocMalloc ); 

}                

   

/* realloc */ 

void* ct_realloc ( ThreadId tid, void* p, SizeT new_size ) 

{ 

   ct_Chunk  *mc; 

   ct_Chunk **prev_chunks_next_ptr; 

   UInt        i; 

 

   mc = (ct_Chunk*)VG_(HT_get_node) ( ct_malloc_list, (UWord)p, 

                                       (void*)&prev_chunks_next_ptr ); 
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   output[0]=5; 

   output[1]=(unsigned long)p; 

   output[2]=(unsigned long)new_size;  

   output[3]=mc->where->ips[1];; 

   output[4]=6; 

 

   if (mc->size == new_size) {/* size unchanged */ 

    

      mc->where = VG_(record_ExeContext)(tid); 

      //VG_(printf) ("realloc of the same size %d to address %p\n",new_size,p); 

      output[5]=(unsigned long)p; 

      VG_(write)(file_ptr,output,6*sizeof(unsigned long)); 

      return p; 

             

   } else if (mc->size > new_size) {/* new size is smaller */ 

       

      mc->size = new_size; 

      mc->where = VG_(record_ExeContext)(tid); 

      output[5]=(unsigned long)p; 

     // VG_(printf) ("realloc of smaller size %d to address %p\n",new_size,p); 

      VG_(write)(file_ptr,output,6*sizeof(unsigned long)); 

      return p; 

       

   } else {/* new size is bigger */ 

       

      Addr p_new; 

 

      /* Get new memory */ 

      p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); 

 

      /* Copy from old to new */ 

      for (i = 0; i < mc->size; i++) 

         ((UChar*)p_new)[i] = ((UChar*)p)[i]; 

 

      /* Free old memory */ 

      die_and_free_mem ( tid, mc, prev_chunks_next_ptr ); 
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      /* this has to be after die_and_free_mem, otherwise the 

         former succeeds in shorting out the new block, not the 

         old, in the case when both are on the same list.  */ 

      add_ct_Chunk ( tid, p_new, new_size,  

                           ct_AllocMalloc, ct_malloc_list ); 

 

      output[5]=(unsigned long)p_new; 

     // VG_(printf) ("realloc of bigger size %d to address %p\n",new_size,p_new); 

      VG_(write)(file_ptr,output,6*sizeof(unsigned long)); 

  

      return (void*)p_new; 

   }   

 

} 

 

/* Tell Valgrind this function has one parameter */  

/* write load information to trace file*/ 

static VG_REGPARM(1) void print_Load (Addr a) { 

 

   //VG_(printf)(" Load  of address: %p\n",a); 

   output[0]=0;         //address info 

   output[1]=0;         //0 for load 

   output[2]=(unsigned long)a;  //load address  

   output[3]=0;                 //PC 

   output[4]=4;                 //? 

   VG_(write)(file_ptr,output,5*sizeof(unsigned long)); 

} 

/* write store information to trace file*/ 

static VG_REGPARM(1) void print_Store (Addr a) { 

 

   //VG_(printf)(" Store of address: %p\n",a); 

   output[0]=0;         //address info 

   output[1]=1;         //1 for store 

   output[2]=(unsigned long)a;  //store address  

   output[3]=0;                 //PC 
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   output[4]=4;                 //? 

   VG_(write)(file_ptr,output,5*sizeof(unsigned long)); 

} 

 

 

/*------------------------------------------------------------*/ 

/*--- Our instrumenter                                     ---*/ 

/*--- Translates the Basic Block passed in as "bb_in"      ---*/ 

/*---    into a new "instrumented" basic block "bb"        ---*/ 

/*------------------------------------------------------------*/ 

//from ac_main.c 

 

static IRBB* ct_instrument ( IRBB* bb_in, VexGuestLayout* layout, 

                             IRType gWordTy, IRType hWordTy ) { 

 

   Int         i, access_size; 

   IRStmt*     st; 

   IRExpr*     data; 

   IRExpr*     access_address; 

   IRExpr*     guard; 

   IRDirty*    di; 

   Bool        isLoad; 

   IRBB*       bb; 

 

   /* Create a new basic block */ 

   /* We'll put all of the original instructions, plus our     */ 

   /* instrumentations into it, and return it back to valgrind */ 

 

   /* create an empty basic block */ 

   bb           = emptyIRBB(); 

 

   /* copy over configuration from the original basic block */ 

   bb->tyenv    = dopyIRTypeEnv(bb_in->tyenv); 

   bb->next     = dopyIRExpr(bb_in->next); 

   bb->jumpkind = bb_in->jumpkind; 
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   /* Walk through each statement, */ 

   /* from first (0) to last (bb_in->stmts_used) */ 

 

   for (i = 0; i <  bb_in->stmts_used; i++) { 

 

      st = bb_in->stmts[i]; 

 

      /* clear these variables */ 

      access_size     = 0; 

      access_address  = NULL; 

      guard  = NULL; 

      isLoad = True; 

 

      switch (st->tag) { 

 

     /* Ist_Tmp means we are copying data into a */ 

     /* "Temporary" register                     */ 

         case Ist_Tmp: 

              data = st->Ist.Tmp.data; 

        /* We only care if it's a load instruction */ 

              if (data->tag == Iex_Load) { 

                 access_address  = data->Iex.Load.addr; 

                 access_size    = sizeofIRType(data->Iex.Load.ty); 

                 isLoad = True; 

                } 

                break; 

 

     /* Ist_Store means we are storing data */ 

         case Ist_Store: 

             data  = st->Ist.Store.data; 

              access_address = st->Ist.Store.addr; 

              access_size = sizeofIRType(typeOfIRExpr(bb_in->tyenv, data)); 

             isLoad = False; 

              break; 
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     /* We ignore these */ 

         case Ist_Put: /* We are copying some "guest state" */ 

         case Ist_PutI:/* We are copying some "guest state" */ 

         case Ist_Exit:/* We are conditionally leaving a basic block  */ 

         case Ist_NoOp: 

         case Ist_IMark: 

         case Ist_MFence: 

              break; 

 

     /* We are in a "dirty" function? */ 

         case Ist_Dirty: 

            if (st->Ist.Dirty.details->mFx != Ifx_None) { 

               /* We classify Ifx_Modify as a load. */ 

               isLoad = st->Ist.Dirty.details->mFx != Ifx_Write; 

               access_size    = st->Ist.Dirty.details->mSize; 

               access_address  = st->Ist.Dirty.details->mAddr; 

               guard  = st->Ist.Dirty.details->guard; 

             } 

             break; 

 

     /* Print an error if an unknown statement type */ 

         default: 

            VG_(printf)("\n"); 

            ppIRStmt(st); 

            VG_(printf)("\n"); 

            VG_(tool_panic)("unhandled IRStmt"); 

            break; 

      } 

 

      /* If we were a load or store, add a call to print it */ 

      if (access_address) { 

 

       if (isLoad) { 

     /* Create a new "instruction" called "di" */ 

     /* This is a dirty instruction, meaning it has side effects */ 

     /* the "0" means we don't expect a return value */ 
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     /* the "N" means we can pass many arguments     */ 

     /* We pass 1 argument, the name of the function, */ 

     /* a pointer to the function, and an "argument vector" */ 

     /* which in this case only has one, the address */ 

            di = unsafeIRDirty_0_N( 1, "print_address", &print_Load, 

                                         mkIRExprVec_1(access_address)); 

         } 

         else { 

            di = unsafeIRDirty_0_N( 1, "print_address", &print_Store, 

                                          mkIRExprVec_1(access_address)); 

        } 

     /* If the call has arisen as a result of a dirty helper which 

            references memory, we need to inherit the guard from the 

            dirty helper. */ /* ??? */ 

         if (guard) { 

            di->guard = dopyIRExpr(guard);      

        } 

 

         /* put the helper call into the new Basic Block */ 

        /* before the load or store */ 

         addStmtToIRBB( bb, IRStmt_Dirty(di) ); 

      } 

 

      /* Make sure the original instruction gets added to the basic block. */ 

      addStmtToIRBB( bb, st ); 

   } 

   return bb; 

} 

                

static void ct_post_clo_init(void) { 

    

   SysRes sysr; 

    

   sysr=VG_(open)(FileName, 

    VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY|VKI_O_LARGEFILE, 

    VKI_S_IRUSR|VKI_S_IWUSR); 
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   if (sysr.isError) { 

      VG_(printf)("file %s can not be opened\n",FileName); 

   } 

   else { 

      VG_(printf)("trace file %s opened\n",FileName);                          

   } 

       

   file_ptr=sysr.val;    

       

   VG_(write)(file_ptr,header,16); 

   VG_(printf)("header written\n"); 

} 

 

   /* Parse the command line options */ 

static Bool ct_process_cmd_line_option(Char* arg) { 

    

        // 12 is length of "--tracefile=" 

   if (VG_CLO_STREQN(12, arg, "--tracefile=")) { 

      VG_(sprintf)(FileName,"%s",&arg[12]); 

   } 

   else { 

      return False; 

   } 

  

   return True; 

} 

    

 

static void ct_print_usage(void) { 

   VG_(printf) ("   --tracefile=<file>  filename to use for tracefile\n"); 

} 

 

static void ct_print_debug_usage(void) { 

   VG_(printf)("    (none)\n"); 

} 
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static void ct_fini(Int exitcode) {    

   VG_(close)(file_ptr); 

   VG_(printf) ("\n\nCachetool:Exiting! \n\n"); 

} 

 

static void ct_pre_clo_init(void) 

{ 

   VG_(details_name)            ("Cachetool"); 

   VG_(details_version)         (NULL); 

   VG_(details_description)     ("generates traces for the cachteool program"); 

   VG_(details_copyright_author)("Copyright (C) 2006 - Vince Weaver/yohowo"); 

   VG_(details_bug_reports_to)  (VG_BUGS_TO); 

 

   /* set up default output file */ 

   VG_(sprintf)(FileName,"trace2.out"); 

    

   VG_(basic_tool_funcs)        (ct_post_clo_init, 

                                 ct_instrument, 

                                 ct_fini); 

    

   VG_(needs_command_line_options)(ct_process_cmd_line_option, 

       ct_print_usage, 

       ct_print_debug_usage); 

       

   VG_(needs_malloc_replacement)( ct_malloc,   /* malloc()     */ 

                                  NULL,        /* new()        */ 

        NULL,        /* vec_new()    */ 

        NULL,        /* memalign()   */ 

       ct_calloc,   /* calloc()     */ 

        ct_free,     /* free()       */ 

        NULL,        /* delete()     */ 

        NULL,        /*  vec_delete() * / 

        ct_realloc,  /* realloc()    */ 

        16);         /* redzone block size? */ 
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   //initialize the hash table,from mac_share.c    

   ct_malloc_list  = VG_(HT_construct)( 80021 );   // prime, big 

 

} 

 

VG_DETERMINE_INTERFACE_VERSION(ct_pre_clo_init, 0)  

 

/*--------------------------------------------------------------------*/ 

/*--- end                                      ---*/ 

/*--------------------------------------------------------------------*/ 
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