Extended version of ISPASS 2013 paper — updated 18 March 2021

Non-Determinism and Overcount on Modern

Hardware Performance Counter Implementations
— Extended

Vincent M. Weaver
University of Maine
vincent.weaver@maine.edu

Dan Terpstra
University of Tennessee
terpstra@icl.utk.edu

Shirley Moore
University of Texas at El Paso
svmoore@utep.edu

March 18, 2021

Extended version of ISPASS 2013 paper — updated 18 March 2021

Abstract

Ideal hardware performance counters provide exact deterministic re-
sults. Real-world performance monitoring unit (PMU) implementations
do not always live up to this ideal. Events that should be exact and de-
terministic (such as retired instructions) show run-to-run variation and
overcount on x86_64 machines, even when run in strictly controlled envi-
ronments. These effects are non-intuitive to casual users and cause diffi-
culties when strict determinism is desirable, such as when implementing
deterministic replay or deterministic threading libraries.

We investigate eleven different x86_64 CPU implementations and dis-
cover the sources of divergence from expected count totals. Of all the
counter events investigated, we find only a few that exhibit enough de-
terminism to be used without adjustment in deterministic execution en-
vironments. On these machines it appears that the iret interrupt return
instruction counts as a userspace instruction despite running in kernel
space, which keeps the counts from being deterministic. The determinis-
tic events we find are those that do not count for iret, such as conditional
branches and retired stores.

We also briefly investigate ARM, IA64, POWER and SPARC systems
and find that on these platforms the counter events have more determin-
ism.

We explore various methods of working around the limitations of the
x86_64 events, but in many cases this is not possible and would require
architectural redesign of the underlying PMU.

1 Introduction

Most modern CPUs have hardware performance counters; these counters allow
detailed, low-level measurement of processor behavior. The counters are most
commonly used for performance analysis, especially in the High Performance
Computing (HPC) field. Usage has spread to the desktop and embedded areas,
with many new and novel utilization scenarios.

There are a wide variety of events that can be measured with performance
counters, with event availability varying considerably among CPUs and vendors.
Some processors provide hundreds of events; separating the useful and accurate
ones from those that are broken and/or measure esoteric architectural minutia
can be a harrowing process. Event details are buried in architectural manuals,
often accompanied by disclaimers disavowing any guarantees of useful results.

Counter validation is a difficult process. Some events cannot be validated
effectively, as they require exact knowledge of the underlying CPU architecture
and can be influenced by outside timing effects not under user control [1]. This
includes most cache events, cycle counts, and any event affected by speculative
execution.

A subset of events exists that is architecturally specified; these measure
various kinds of retired instructions. With a deterministic program (one that
when provided with the same input traverses the exact same code path and
generates the exact same output) the counter results should be the same for

Extended version of ISPASS 2013 paper — updated 18 March 2021

every run. These counts should be consistent; otherwise the processor would
not be ISA compatible with others in the same architecture.

1.1 The Need for Deterministic Events

There are many situations where deterministic software execution is necessary.
Deterministic execution is useful when validating architectural simulators [2, 3],
when analyzing program behavior using basic block vectors (BBVs) [4], when
performing Feedback Directed Optimization (FDO) [5], when using hardware
checkpointing and rollback recovery [6], when performing intrusion analysis [7],
and when implementing parallel deterministic execution [31].

Parallel deterministic execution enables debugging and analysis of multi-
threaded applications in a repeatable way. Deterministic lock interleaving makes
it possible to track down locking problems in large parallel applications. There
have been many proposals about how to best implement parallel deterministic
execution; many require modified hardware or modified operating systems. A
quick and easy way to build deterministic locks is to use hardware performance
counters to ensure that previously non-deterministic lock behavior happens in
a consistent, repeatable way [8, 9, 10, 11]. The need for parallel deterministic
execution has been the primary impetus for the search for deterministic perfor-
mance events.

1.2 Definitions

In this work we search for useful deterministic events. We define a useful de-
terministic event as one where the value does not change run-to-run due to the
microarchitecture of the processor (it is not affected by speculative execution),
the expected value can be determined via code inspection, and the event occurs
with enough frequency and distribution to be useful in program analysis.

We find two primary causes for events to deviate from the expected result:
nondeterminism (identical runs returning different values) and overcount (some
instructions counting multiple times). We investigate both sources of deviation.

2 Experimental Setup

Processor vendors make no guarantees about determinism or counter accuracy;
any limitations must be determined experimentally. We investigate multiple
x86_64 implementations to see if any of the performance events can provide
deterministic events with no overcount, suitable for applications such as parallel
deterministic execution. We also investigate the availability of such events on
other platforms.

2.1 External Sources of Non-Determinism

Measuring exact event counts can be difficult due to various external sources
of variation found in a typical system, including operating system interac-

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 1: Events used in this paper (part 1). Values in parenthesis are perf raw
event numbers.

Intel Atom

[

Intel Core2

[

Intel Pentium D

Retired INSTRUCTIONS_RETIRED INSTRUCTIONS_RETIRED | INSTR_RETIRED:NBOGUSNTAG
Instructions (instructions:u) (instructions:u) (instructions:u)

) BRANCH_INSTRUCTIONS BRANCH_INSTRUCTIONS BRANCH_RETIRED
Retired _RETIRED _RETIRED :MMNP:MMNM:MMTP:MMTM
Branches (branches:u) (branches:u) (branches:u)

Retired RETIRED_-BRANCH_TYPE
Conditional n/a BR-CND_EXEC :CONDITIONAL
Branches (r53008b:u)
Retired n/a INST_RETIRED:LOADS ¥ R%%?ﬁﬁgfggggt%i%%%’
Loads (r5001c0:w)
Retired o/a INST-RETIRED:STORES | 1 och b s rones
Stores (r5002c0:u)
. MUL:AR MUL
Multiplies (r508112:u) (r510012:) n/a
. DIV:AR DIV
Divides (r508113:u) (r510013:u) n/a
X87-COMP_OPS_EXE:ANY_AR FP_COMP_OPS_EXE EXECUTION_EVENT:NBOGUST,
FP1 X87_FP_UOP:ALL:TAG1
(r508110:u,) (r500010:u)
Fpo X87_COMP_OPS_ EXE:ANY_S X87_OPS_RETIRED:ANY n/a
(r530110:u) (r50fec1:u)
EXECUTION_EVENT:NBOGUSZ2,
SIMD_INST_RETIRED SIMD_INSTR_RETIRED PACKED_SP_UOP:ALL:TAG2,
55E PACKED_DP_UOP:ALL:TAG2
(r501fc7:u) (r5000ce:u)
Retired UOPS_RETIRED UOPS_RETIRED UOPS_RETIRED:NBOGUS
Uops (r5010c2:u) (r500fc2:u)
Hardware HW_INT_RCVT HW_INT_RCV
Interrupts (r5100c8:u) (r5000c8:u) n/a

TThis counter does not work on Atom N270 or 230.

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 2: Events used in this paper (part 2). Values in parenthesis are perf raw
event numbers.

Intel Nehalem
Intel Nehalem-EX
Intel Westmere

Intel Sandybridge

Intel IvyBridge

Retired INSTRUCTIONS_RETIRED INSTRUCTION_RETIRED INSTRUCTION_RETIRED
Instructions (instructions:u) (instructions:u) (instructions:u)
Retired BRANCI}PEIEN’EITRIE%CTIONS BRANCI:II:EIEI;\ITSITR%%CTIONS BR_INST.RETIRED
Branches (branches:u) (branches:u) (branches:u)
Retired BR_INST_RETIRED BR-INST_RETIRED

Conditional :CONDITIONAL :CONDITIONAL BR-INST_RETIRED:COND
Branches (r5301c4:u) (r5301c4:u) (r5301c:u)

. MEM_INST_RETIRED MEM_UOP_RETIRED MEM_UOPS_RETIRED
Retired :LOADS :ANY_LOADS :ALL_LOADS
Loads (r50010b:1) (r5381d0:w) (r5381d0:u)

. MEM_INST_RETIRED MEM_UOP_RETIRED MEM_UOPS_RETIRED:
Retired :STORES :ANY_STORES :ALL_STORES
Stores (r50020b:u) (r5382d0:u) (r5382d0:u)

UOPS_ISSUED
Multiplies ARITH:MUL n/a :SINGLE-MUL
(r500214:u) (r53400e:u)
- ARITH:DIV ARITH:FPU_DIV ARITH:FPU_DIV
Divides (r1d40114:w) (r1570114:u) (r1570114:u)
FP_COMP_OPS_EXE:X87 FP_.COMP_OPS_EXE:X87 FP_COMP_OPS_EXE:X877
FP1 (r500110:w) (r5302¢0:u) (r5302¢c0:)
INST_RETIRED:X87 INST_RETIRED:X87 Undocumented
FP2 Used SandyBridge event
(r5002c0:u) (r5302c0:u) (r5302c0:u)
FP_.COMP_OPS_EXE FP_COMP_OPS_EXE FP_COMP_OPS_EXE
SSE :SSE_FP :SSE_DOUBLE_PRECISION :SSE_DOUBLE_PRECISIONT
(r500410:w) (r538010:w) (r538010:u)
Retired UOPS_RETIRED:ANY UOPS_RETIRED:ANY UOPS_RETIRED:ALL
Uops (r5001c2:u) (r5301c2:u) (r5301c2:u)
Hardware HW_INT:RCV* HW%EEE?&;SDTS HW_INTERRUPTS
Interrupts

(r50011d:u)

(r5301cbh:u)

(r5301cb:u)

¥ Event support dropped in 6/2010 Intel Vol3B, interacts poorly with HyperThreading

T Documentation for this event not added by Intel until September 2013.

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 3: Events used in this paper (part 3). Values in parenthesis are perf raw

event numbers.

[AMD Phenom / Tstanbul

AMD faml4h

l

Retired RETIRED_INSTRUCTIONS RETIRED_INSTRUCTIONS
Instructions (instructions:u) (instructions:u)

. RETIRED_BRANCH RETIRED_BRANCH
Retired _INSTRUCTIONS _INSTRUCTIONS
Branches (r5000c2:u) (branches:u)
Retired
Conditional n/a n/a
Branches
Retired
Loads n/a n/a
Retired . B}

Stores n/a n/a
. pIsPATCHED FPU | PTG T ps.
Multiplies :OPS_MULTIPLY DOUBLE.MUL.OPS
(r500200:u) (r581203:u)
RETIRED_SSE_OPERATIONS:
. SINGLE_DIV_OPS:
Divides n/a DOUBLE_DIV_OPS
(r524003:u)
RETIRED_MMX_AND_ RETIRED_FLOATING_
FP1 FP_INSTRUCTIONS:X87 POINT_INSTRUCTIONS
(r5001cb:u) (r5303ch:u)
RETIRED_MMX_AND_ DISPATCHED_FPU:
FP2 FP_INSTRUCTIONS:ALL ANY
(r5007cb:u) (r530300:u)
RETIRED_SSE_ RETIRED_SSE_
SSE OPERATIONS:ALL OPERATIONS:ALL
(r507f03:u) (r537f03:u)
Retired RETIRED_UOPS RETIRED_UOPS
Uops (r5000c1:u) (r5000c1:u)
Hardware INTERRUPTS_TAKEN INTERRUPTS_TAKEN
Interrupts (r5000cf:u) (r5300cf:u)

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 4: Events used in this paper (part 4). Values in parenthesis are perf raw
event numbers.

“ Intel Haswell]

Retired INSTRUCTION_RETIRED
Instructions (instructions:u)
Retired BR_INST_RETIRED
Branches (branches:u)
Retired BR.INST_RETIRED
Conditional :CONDITIONAL
Branches (r5301c4:u)
. MEM_UOPS_RETIRED
Eetlfed :ALL_LOADS
oads (r5381d0:u)
. MEM_UOPS_RETIRED:
ls‘et“ed :ALL_STORES
tores (r5382d0:u)
UOPS_ISSUED
Multiplies :SINGLE_MUL
(r53400e:u)
Divides n/a
FP1 n/a
FP2 n/a
SSE n/a
Retired UOPS_RETIRED:ALL
Uops (r5301c2:u)
Hardware undocumented
Interrupts (r5301cbh:u)

Extended version of ISPASS 2013 paper — updated 18 March 2021

tion [12], program layout [13, 1], measurement overhead [14], multi-processor
variation [15], and hardware implementation details [13, 16]. In our experi-
ments we attempt to avoid these sources of variability by carefully controlling
our test environment.

Benchmarks often have internal sources of non-determinism that are inherent
in their design, usually unintentionally. If a program depends on the time,
pointer values, or I/O input, then the application can take unpredictable paths
through its codebase. Even benchmarks designed to give repeatable results,
such as SPEC CPU, can vary in subtle ways due to a changing operating system
environment [13]. We carefully construct our test-cases to avoid these sources
of variation as much as possible.

2.2 Our Custom Assembly Benchmark

Analysis of performance counter accuracy is difficult; it requires exact knowledge
of all executing instructions and their effects on a system. This precludes using
existing benchmarks written in high level languages as the resulting binaries
are compiler dependent and no “known” overall instruction count is available.
Compilers rarely use the full complement of available processor opcodes, leaving
many unexplored corner cases. Total aggregate event measurements over large
benchmarks can make major divergences from estimated totals visible, but the
root causes can be nearly impossible to discover. Counts can vary due to com-
plex interactions deep within a program and can be perturbed by debugging.

We avoid the variation inherent in high-level benchmarks by writing a large
assembly language benchmark. This microbenchmark has over 200 million dy-
namic instructions, which is larger than the interval size used in many computer
architecture investigations. The benchmark attempts to exercise most x86_64
instructions while having no outside dependencies (by calling operating system
syscalls directly, as in our previous code density investigation [17]).

Due to the CISC nature of the x86 architecture it is difficult to make a
completely comprehensive test. We exercise most integer, x87 floating point,
MMZX, and SSE instructions (up to and including SSE3). We attempt to use
various combinations of register accesses, operand sizes (single byte accesses up
through 128-bit SSE), memory accesses, and the wide variety of x86 addressing
modes. Sections of the code are looped many thousands of times to make
anomalies stand out in the overall instruction count and to allow binary searches
for extra counts. The complete annotated source for the microbenchmark is
available from our website:
http://www.eece.maine.edu/~vweaver/projects/deterministic/

We measure userspace events generated by our benchmark alone; the operat-
ing system provides process-specific counts by saving and restoring the counter
values at context switch time and the CPU performance monitoring unit (PMU)
differentiates between events happening in user and kernel domains. There are
many other conceivable sources of variation, such as crossing cache-line bound-
aries, crossing page boundaries, unaligned instruction fetches, unaligned mem-
ory accesses, etc. We have not found these to affect event counts.

Extended version of ISPASS 2013 paper — updated 18 March 2021

2.3 Events

Modern processors have hundreds of available performance events (a full list can
be found in the various vendor’s architectural manuals [18, 19]). We limit our
search to those described as counting retired or committed instructions.

In general the following types of retired instruction counts are available:

e total retired instructions

retired branches (total or conditional),

retired loads and stores, and

retired floating point and SSE.

In addition, many processors provide retired counts of unusual instructions,
such as fxch, cpuid, move operations, serializing instructions, memory barri-
ers, multiplies and divides, and not-taken branches. While these are useful when
analyzing specific program bottlenecks, they are less useful for large-scale vali-
dation work. Other retired events, such as retired pops, are unsuitable because
they are speculative and implementation dependent.

Tables 1, 2, 3 and 4 list the names of the events for which we provide detailed
results.

2.4 The Experiments

We ran our assembly benchmark ten times each on eleven different x86_64 ma-
chines as shown in Table 5. We compare the results of our benchmarks against
an expected value determined via code inspection. Due to circumstances be-
yond our control the test machines are running different Linux kernel revisions;
we ran tests of various kernels and performance counter implementations on
the same machine and found that the different kernel infrastructures have no
impact on userspace-only aggregate counter results. We use the perf tool on
systems that support the perf_events interface, and the pfmon tool systems
using perfmon2 [20].

The perf tool only supports a small number of common “generic” events;
many events have to be specified using a raw event code. We use the libpfm4
library to determine these codes. We run perf as follows:

perf stat -e r5001cO:u ./retired_instructions
In this example r5001c0 corresponds to the Core2 RETIRED_LOADS event and
the :u mask specifies we only care about user-space (not kernel) counts.

The pfmon utility included with perfmon2 has a much more user-friendly
interface that uses proper event names. It is run like this:

pfmon -e RETIRED_LOADS ./retired_instructions

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 5: Machines used in this study.

Processor Linux Kernel

Intel Atom 230 3.2 perf events
Intel Core2 X5355 2.6.36.2 perf events
Intel Nehalem X5570 2.6.38.6 perf events
Intel Nehalem-EX X7550 | 2.6.32-RHELG6 perf events
Intel Westmere-EX 8870 3.2 perf events
Intel SandyBridge-EP 2.6.32-RHELG6 perf events
Intel IvyBridge i5-3427U 3.2 perf events
Intel Haswell i7-4770 3.13 perf events
Intel Pentium D 2.6.28 perfmon?2

AMD Phenom 9500 2.6.29 perfmon2

AMD Istanbul 8439 2.6.35 perf events
AMD fam14h E-350 3.2 perf events
AMD fam15h A10-6800B 3.13 perf events

3 Evaluation

We first look at results found using our assembly micro-benchmark on x86_64.
We then look at other architectures to see if the same limitations apply. We
analyze methods for mitigating the variations in counts. Finally we attempt to
apply our methodology to a full benchmark suite.

3.1 Sources of Overcount and Non-Determinism on x86_64

We use our hand-crafted assembly language benchmark to find deviation from
the known expected count. We are interested in nondeterminism (run-to-run
variations) and overcount (always-the-same predictable offsets against known
event count due to errata in the chip design).

We calculate known total event counts for the various metrics via code in-
spection, and then validate the expected counts with the Pin [21] dynamic binary
instrumentation (DBI) tool. We use a script to gather performance counter to-
tals for each platform; in the common case where counter results do not match
expectations we manually comment out parts of the assembly benchmark and
re-run until we localize the source of variation.

Table 6 shows a summary of the overcount and nondeterminism found on
each system. The actual event totals gathered are not important; they are
arbitrary values related to the instruction mix of the benchmark. They key
below the table describes the sources of variation, as described below.

10

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 6: Summary of sources of nondeterminism and overcount for retired in-

structions.
Total Total Conditional Loads Stores
Instructions | Branches Branches
Atom hpEF hp — - —
Core2 hpEF hpD p hpD | DETERMINISTIC
Nehalem hpEF hp D hpM hpD
Westmere hpEF hp DETERMINISTIC hp hpD
Sandybridge
IvyBridge hpEF hp DETERMINISTIC U U
Haswell
Pentium D hpEFD hp ! hpU hpU
Phenom
Istanbul hpEFD hp - — -
fam14h

values vary from machine to machine.

Sources of nondeterminism:

Hardware Interrupts
Page Faults

Sources of overcount:

x87/SSE exceptions

OS Lazy FP handling
Instructions Overcounted
Instructions Undercounted
Counts micro-ops

Missing Results:

~ |20 ™ED =

Event not available
Test not run

Table 7: Retired pops, multiplies, and divides in the microbenchmark; these

’ Machine H LHops H Multiplies H Divides
Atom 12,650,929,921+ 10,048 || 13,700,000+ 0 || 7,000,000+ 0
Core2 14,250,314,285+ 38,796 || 16,300,012+ 13 || 5,800,058+ 16
Nehalem 11,746,800,094+ 38,192 || 17,719,57241,992,446 || 3,180,368+ 7,409
Nehalem-EX 11,746,938,597+ 27,708 || 19,835,890+ 215,301 || 3,265,181+£21,966
Westmere-EX 11,740,683,274+ 218,900 || 19,866,413+ 196,031 || 5,800,072+ 64
SandyBridge-EP || 12,292,221,237+ 7,258 n/a 5,800,304+ 56
IvyBridge 12,315,297,486+4,669,700 620,550+ 17,451 || 3,244,139+17,414
Haswell 12,128,839,684+ 4684 600,024+ 6 n/a
Pentium D 12,555,222,761+6,650,825 n/a n/a
Phenom 10,550,974,722+ 36,819 || 69,242,930+ 62,492 n/a
Istanbul 10,557,954,252+ 168,608 || 69,988,147+ 317,885 n/a
Fam14h 11,366,903,273+ 153,234 1,800,000+ 0 || 2,400,000+ 0

11

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 8: Retired FP, MMX and SSE instructions in the microbenchmark. These
values vary from machine to machine. Some may be deterministic, but cannot
be used with integer-only workloads.

| Machine I FP1 \ FP2 \ SSE
Atom 38,800,000 0| 44,000221+ 341 | 88,203,855+ 70,345
Core2 72,601,258+ 215 | 39,099,997+ 0 | 23,200,000+ 0
Nehalem 50,234,437+ 6,800 17,199,998+ 2 | 24,203,034+ 563
Nehalem-EX 50,230,521+ 5,827 | 17,199,998+ 4 | 24,028,996+222,406
Westmere-EX 50,015,343+43,898 17,199,998+ 2 | 24,921,548+ 38,051
SandyBridge-EP || 48,784,041+ 1,325 | 17,200,028+ 8 | 23,136,313+ 18,585
IvyBridge 49,025,110+£37,400 17,200,040+ 27 | 5,434,935+ 26,195
Haswell n/a n/a n/a
Pentium D 100,400,310+ 413 n/a 28,795,097+ 5,662
Phenom 26,600,001+ 0 | 112,700,001+ 0 | 15,800,000+ 0
Istanbul 26,600,001+ 0 | 112,700,001+ 0 | 15,800,000+ 0
Fam14h 115,199,563+ 21 | 276,217,480+541,728 | 15,800,000+ 0

3.1.1 Nondeterministic Hardware Interrupts

Most x86_64 events are incremented an extra time for every hardware interrupt
that occurs (the most common hardware interrupt is the periodic timer, causing
a noticeable runtime-related variation). This interrupt behavior was originally
undocumented when we first described it, but now appears in some vendor
documentation. The number of extra events is inherently unpredictable, but
often can be measured with an additional “hardware interrupts” event that can
be used to adjust the total aggregate results. If an event is affected by hardware
interrupts, then it cannot be a deterministic event, as it is impossible to predict
in advance when these events will happen.

Another source of interrupts is generated when a page fault occurs; in general
the first time a page of memory is accessed it causes a page fault that counts as
an extra instruction. This variation is more predictable than other interrupts,
but can still be affected by the behavior of the operating system and other
programs running on the system.

The source of the overcount remained mysterious for a while, but some
discussion on Twitter around 2020 gave a plausible hypothesis. The iret in-
terrupt return instruction is documented by Agner Fog as being broken into 4
uops. What likely happens is that some of these uops count as being retired
in kernel space, but the tail end gets retired after the kernel/user transition
happens, leading to an extra instruction being registered by the performance
counters. This also explains why the various deterministic events are retired
stores or conditional branches, as neither of those events would count for an
iret instruction.

12

Extended version of ISPASS 2013 paper — updated 18 March 2021

3.1.2 Sources of Instruction Overcount

There are various sources that can cause overcount on x86 processors.

On all the systems we tested an extra instruction event happens if the x87
top-of-stack pointer overflows; care is taken in our benchmark to avoid this
condition.

An additional count may happen when the floating point unit is used for the
first time; this is due to the lazy floating-point save mechanism used by Linux
to avoid context-switch overhead for non-floating point applications.

A major source of overcount is when an instruction event is incremented
multiple times for a single instruction, or when an instruction is not counted at
all. This is likely due to missing terms in the instruction classifying hardware
on the PMU.

One last source of overcount is when an event measures microcoded events
rather than retired events. Sometimes these events are deterministic, but it is
hard to verify because microcode is system dependent and undocumented. Re-
cent counter documentation has gotten much better at indicating which events
are architectural instructions and which are microcoded.

Total Retired Instruction Overcount The total retired instructions event
is high-profile and often used, but still may be affected by overcount.

While not strictly a source of overcount, some instructions are actually
pseudo-instructions and can confuse a user determining expected instruction
counts via code inspection. Various x87 floating point instructions have “wait”
and “no wait” versions that optionally force execution to wait to see if an ex-
ception has occurred. The wait versions are pseudo-ops for instructions with a
wait prefix and count twice.

The AMD machines overcount by one when fninit, fnsave, and fnclex
instructions execute and one of the FP exception status word flags (such as PE
or ZE) is set. Despite being interrupt related, this variation is an overcount
because it can be predicted and happens deterministically.

The Pentium D processor has two different retired instruction events. The
newer (not available on earlier Pentium 4 models) event is INSTRUCTIONS_COMPLETED : NBOGUS
which behaves like the corresponding event on other processors. The other
event, INSTRUCTIONS _RETIRED:NBOGUSNTAG is very different. It is not affected
by hardware interrupts (unless those interrupts cause a string instruction to re-
start). This has the potential to be a deterministic event; however it suffers from
overcount with the following instructions: fldcw, fldenv, frstor, maskmovq,
emms, cvtpd2pi (mem), cvttpd2pi (mem), sfence, and mfence. The fldcw
instruction is particularly troublesome as it is a common instruction used when
converting floating point values to integers (and it has been shown to cause up
to 2% overcount on some SPEC CPU benchmarks [13]).

Retired Branches Overcount The retired branches event counts control
flow changes, including system call entry.

13

Extended version of ISPASS 2013 paper — updated 18 March 2021

On AMD processors, the perf_event branches:u generalized event counts
the wrong value. We supplied a fix that was incorporated into the 2.6.35 kernel;
care must be taken to use the proper raw event on earlier kernels.

On Core2 processors the cpuid instruction also counts as a branch.

Retired Conditional Branches Overcount Not all processors support count-
ing conditional branches (and we were unable to test on Pentium D as the
machine we used for the other results has been decommissioned).

Noll [22] reports that this event is deterministic on SandyBridge; we have
verified this result and found that the equivalent event is likewise deterministic
on IvyBridge, Haswell, Westmere and Nehalem. The Nehalem event suffers
from overcount: in addition to conditional branches (which start with opcode
OF) many instructions are counted that also start with opcode OF, including
various non-branch MMX and SSE instructions.

3.1.3 Retired Load Overcount

Retired loads are not supported on all of the processors we investigate. Extra
loads are counted on exceptions: first floating point usage, page faults, x87 FPU
exceptions and SSE exceptions.

Load events are subject to various forms of under and overcount. Conditional
move instructions will always register a load from memory, even if the condition
is not met. The fbstp “store 80-bit BCD” instruction counts as a load. The
cmps string compare instruction (where two values from distinct memory are
loaded and then compared) counts as only being a single load.

On Core2 machines the leave instruction counts as two loads. The fstenv,
fxsave, and fsave floating point state-save instructions also count as loads.
The maskmovq and maskmovdqu count loads even though they only write to
memory. The movups, movupd and movdqu instructions count as loads even if
their operands indicate a store-to-memory operation.

On Nehalem processors the paddb, paddw, and paddd do not count as load
operations even if the their operands indicate a load from memory.

The Pentium D event has complicated overcount, likely because it is record-
ing microcoded loads and not architectural loads. Unlike other x86 processors,
software prefetches are not counted as loads and page faults count as five loads
total. Pop of a segment (fs/gs), movdqu (load), 1ddqu, movupd (load), and £1dt
all count as two loads instead of one. fldenv counts as seven loads, frstor
counts as 23 loads, and fxrstor counts as 26. The movups (store) instruction
counts as a load. The fstps instruction counts as two (not zero) loads.

Unlike the other x86 load events that treat a rep-prefixed string instruction
as a single atomic instruction, on Pentium D the loads are counted separately,
sometimes at a cache-line granularity. The rep lods and rep scas instruc-
tions count each repeated load individually. The rep movs instructions per-
forms moves in blocks of 64-bytes, then goes one-by-one for the remainder (see
Figure 1). The rep cmps instruction counts each compare instruction as two
loads.

14

Extended version of ISPASS 2013 paper — updated 18 March 2021

192 -

128+ .

D
g
I

Measured Loads on Pentium D

O | | | I | I | |
0 256 512 768 1024 1280 1536 1792 2048
Value in RCX for the rep movsb instruction

Figure 1: On Pentium D, the retired loads event shows unusual behavior with
rep movs string instructions. The observed count is related to 64-byte chunks
being moved with individual moves for the remainder: (floor(reps/64) = 4) +
(reps%64).

The SandyBridge load event measures load pops so it has limitations similar
to Pentium D. On IvyBridge and Haswell the event name for this event was
changed to make its pop nature more obvious.

Retired Store Overcount On Core2 processors the retired store event was
found by Olszewski et al. [8] to be deterministic with no overcount, and we have
reproduced this result. All other processors count hardware interrupts and page
faults with store events.

On Nehalem and Westmere processors the cpuid, sfence, and mfence in-
structions all count as stores (these are all serializing instructions). clflush
also counts as a store.

As with retired loads, the Pentium D processor has elaborate retired store
behavior that likely exposes internal microcode behavior. As with Nehalem,
the cpuid, sfence, mfence and clflush instructions count as a stores. The
enter instruction counts an extra store for each nested stack frame. The fbstp,

15

Extended version of ISPASS 2013 paper — updated 18 March 2021

fstps, fstpt, movups (store), movupd (store), movdqu (store), and maskmovdqu
instructions counts as two stores. The fstenv instruction counts as seven stores,
fsave as 23 and fxsave as 25. The rep stos string instruction counts stores
in 16B blocks (unless storing backwards in memory). The rep movs instruction
counts stores in 16B blocks.

The SandyBridge, IvyBridge, and Haswell store events measure pops and
have similar limitations to Pentium D.

3.1.4 Other Events

Tables 7 and 8 show results from other events that we investigated as possibly
being useful deterministic events, but found to have too much microarchitectural
variation. Total events are show to give a feel for the variation, for comparison
the dynamic total retired event count is 226,990,030. The values shown are the
average of ten runs, with the plus/minus value indicating the maximum distance
from the average.

Retired pops Despite the “retired” modifier in the event name, pop behavior
is nondeterministic as well as implementation specific and cannot be relied on
when comparing different machines. The values are almost two orders of mag-
nitude higher than the total instruction count; this is skewed by the fact that
repeated string instructions are only counted once by the retired instruction
event but counted individually by the pop event.

Multiplies and Divides Table 7 also shows the numbers of multiplies and
divides for each processor. Some of these counts are speculative or else count
pops; the documentation for the counters is not always clear. The implementa-
tion of these events varies from model to model; some count integer only, some
also count floating point and SSE, and some count multiple times for one in-
struction. On Core2 divq (64-bit divide) instructions also count as a multiply,
and mulq (64-bit multiplies) count twice.

On Atom and Faml4h processors the events are deterministic, but these
instructions are rare enough in most code that they would likely not be useful
in practice.

Floating Point and SSE Table 8 shows results for various floating point,
MMX and SSE events. Some of these events appear to be deterministic, most
notably the events on the AMD machines. Unfortunately these events are hard
to predict via code inspection. Some events are retired, some speculative; some
count retired instructions, some count retired pops. Some count only math
instructions, some count any sort of instruction where floating point is involved.
Comparisons between machines will not work due to these variations, and these
events would not be useful for obtaining deterministic counts on integer-only
benchmarks.

16

Extended version of ISPASS 2013 paper — updated 18 March 2021

3.2 Other Architectures

In addition to the x86_64 architecture, we investigate other architectures to see
if they have similar limitations with regard to determinism.

Creating a detailed microbenchmark like the one used on x86_64 is a long
and tedious process, and we do not currently have sufficient resources to do
this for every architecture. Instead we use the 11 assembly benchmark [17]
modified to repeat 10,000 times. This is not as comprehensive as the x86_64
test (it does not test every possible opcode so may miss issues with overcount),
but should catch any obvious determinism issues (such as hardware interrupts
being counted).

ARM We count retired instructions on ARM Cortex-A8 and Cortex-A9
processors. Unfortunately the performance counters on this architecture cannot
select only user-space events; kernel events are always counted too, which makes
all of the available events non-deterministic.

TIA64 On Merced STORES_RETIRED, LOADS_RETIRED, and IA64_INST_RETIRED
appear to be deterministic.

POWER On a POWERG6 system we find instructions:u to be determin-
istic, but branches:u suffers from overcount.

SPARC Finally, on a SPARC Niagara T-1 system we find that the INSTR_CNT
event is deterministic.

4 Compensating for Overcounts

Now that we have determined the factors causing non-determinism and over-
count, we investigate if it may be possible to compensate for the limitations and
derive deterministic events where there are none.

Overcount on its own does not provide a problem for applications such as
deterministic locking. The run-to-run counts will be the same, just different
from the expected value. This is only a problem if applying results gathered on
one machine to runs on a different one with different level of overcounts. In this
case adjusted results can be generated if the exact opcode mix of a program is
known; this is usually not possible without extra analysis by an external tool
and in general not possible to determine in real time.

Compensating for non-determinism is a more difficult problem. When mea-
suring aggregate totals, a compensation factor can be subtracted at the end of a
run. For events that include hardware interrupts, corrected counts can be gen-
erated by measuring a hardware interrupt event (if available) and adjusting the
total by this count. Many implementations include an event which can be used
for this purpose; some CPUs do not (such as Atom or Pentium D) and on some
the event is unreliable when HyperThreading is enabled (Nehalem) [23]. When
no interrupt event is available it is possible (at least on Linux) to use values
from /proc/interrupts instead (although this adds additional error and may
count interrupts that happen outside of process context).

Compensation becomes more difficult when using hardware counters in over-

17

Extended version of ISPASS 2013 paper — updated 18 March 2021

flow or sampling mode (as is often used in performance analysis or deterministic
threading). Users may want hardware to signal an interrupt after ezactly one
million retired instructions; aggregate compensation methods will not work in
this case. One workaround for this is described in the ReVirt project [7]; they
set the counter to overflow at a value before the value wanted, adjust the count
to be accurate, and then slowly single step the program until the desired count
occurs.

4.1 Dynamic Binary Instrumentation Results

To aid in determining expected instruction counts, as well as determining per-
opcode instruction frequency, we used various dynamic binary instrumentation
(DBI) tools. These tools are used in program analysis and are capable of mea-
suring program execution at a per-instruction level; ideally the counts generated
will match actual hardware.

We evaluate Pin [21] version 2.8-33586, the exp-bbv and cachegrind tools
that come with Valgrind [24] version 3.8, and a current git checkout of Qemu [25]
that is patched to generate instruction statistics.

Initial results did not match expected values; this is because all of the DBI
tools report string instructions with a rep repeat prefix as having a count equiv-
alent to the times repeated; this contrasts with real hardware which reports rep-
prefixed string instruction as only one instruction. We have modified the tools
to take this into account, and for Pin the results for the assembly benchmark
match the expected values exactly.

We were unable to fully evaluate Valgrind as it currently does not handle
numerous infrequent instructions that are not generated by gcc but are gener-
ated by our test. Qemu works well, but the patches needed for it to generate
counts are intrusive and make it a poor candidate for this type of analysis.

4.2 Full-sized benchmarks

We apply our methods to the SPEC CPU 2000 [26] benchmarks and investigate
how much variation is found in “real-world” applications. We compile these
programs statically using gcc 4.3 and the -03 -sse3 compiler options. We run
on a Core2 machine with a perf_event enabled kernel. SPEC CPU 2000 is out-
dated compared to more recent benchmarks, but it provides enough runtime to
show any variations without completely overwhelming analysis with orders of
magnitude larger instruction counts.

Care is made to turn off address layout randomization and attempt to set
the environment up in an exacting way previously shown to minimize run-to-run
variations [13]. Despite these precautions, some variation is caused by the Pin
DBI tool, as it adds various environment variables.

Table 9 shows results for retired instructions on each benchmark, with the
reference Pin result, the adjusted measured value, and the difference between
the two. Likewise, Table 10 shows results for retired stores, which is determin-
istic on Core2. The results show large divergences that are still under inves-

18

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 9: Measured Core2 retired instructions for SPEC CPU 2000.

| Benchmark Pin Results | Counter Results | Difference |
164.gzip.graphic 65,982,806,258+ /-0 65,985,332,330+ /-9 2,526,072
164.gzip.log 27,630,471,231+4/-0 27,630,661,869+/-297 190,638
164.gzip.program 134,182,216,830+/-0 | 134,184,158,711+/-25 1,941,881
164.gzip.random 50,551,063,9594 /-0 | 50,553,651,410+/-241 | 2,587,451
164.gzip.source 63,534,557,188+/-0 | 63,534,886,3614 /-711 329,173
168.wupwise 360,553,377,202+ /-0 | 360,553,378,908+ /-175 1,706
171.swim 211,144,484,205+/-0 | 211,145,870,699+/-235 1,386,494
172.mgrid 317,894,840,723+ /-0 317,902,191,070+/-37 7,350,347
173.applu 329,639,819,901+ /-0 | 329,639,964,577+/-135 144,676
175.vpr.place 91,801,778,868+ /-0 91,801,906,033+/-48 127,165
175 vpr.route 65,840,452,950+ /-0 | 65,342,333,8451 /-65 | 1,880,395
176.gcc.166 26,039,501,8524+/-0 | 26,053,619,535+/-69 | 14,117,683
176.g¢¢.200 69,280,861,993+/-0 | 69,333,288,8264/-106 | 52,426,833
176.gcc.expr 7,253,042,753+/-71 7,257,808,280+/-43 | 4,765,536
176.gcc.integrate 7,594,306,527+ /-0 7,598,639,195+/-69 | 4,332,668
176.gcc.scilab 38,687,677,208+/-12 38,718,412,887+/-127 30,735,679
177.mesa 924,909,291,0414 /-0 | 225,141,328,681+/-36 | 232,037,640
178.galgel 265,298,711,2524 /-0 265,315,417,2934/-91 16,706,041
179.art.110 37,455,717,0894/-0 | 37,684,112,743+/-46 | 228,395,654
179.art.470 41,559,174,782+ /-0 | 41,815,556,622+/-70 | 256,381,840
181.mcf 47,176,435,708+ /-0 | 47,178,182,387+ /-41 | 1,746,679
183.equake 91,830,166,820+/-0 | 91,831,754,253+/-486 | 1,587,424
186.crafty 140,410,682,095+ /-0 | 140,491,624,577+/-46 | 80,942,482
187 facerec 249,446,706,530+ /-0 | 249,466,271,565+/-20 | 19,565,035
188.ammp 982,267,674,633+/-0 | 282,273,791,341+/-85 | 6,116,708
189.1ucas 205,650,970,148+ /-0 205,650,971,675+/-54 1,527
191.fma3d 252,617,528,064+ /-0 | 252,621,707,010+/-130 | 4,178,946
197.parser 263,198,435,420+ /-0 | 263,268,978,039+/-227 | 70,542,619
200.sixtrack 542,747,136,304+ /-0 542,751,505,285+/-13 4,368,981
252.eon.cook 59,410,255,668+/-144 59,432,884,285+/-211 22,628,617
252.con kajiya 79,522,480,405+ /02 | 79,548,194,010+/-119 | 25,704,605
252.eon.rushmeier 46,636,612,121+/-577 46,652,449,863+/-73 15,837,742
253.perlbmk.535 2,696,610,456+ /-2 2,698,843,490+/-199 2,233,034
253.perlbmk.704 2,764,426,301+/-4 2,766,432,903+ /-243 2,006,602
953 perlbmk.850 5,655,963,8714/-22 | 5,661,167,625+/-253 | 5,203,754
253.perlbmk.957 4,508,337,217+/-2 4,512,393,547+/-203 4,056,330
253.perlbmk.diffmail 30,233,369,642+/-22 30,339,690,700+/-164 | 106,321,058
253.perlbmk.makerand 1,090,891,857+/-22 1,090,909,156+/-150 17,299
253.perlbmk.perfect 19,657,248,256+ /-22 19,666,664,723+/-198 9,416,467
9254.gap 183,203,201,373+ /-0 | 183,443,753,693+/-20 | 150,552,320
255.vortex.1 162,104+/-0 162,215+ /-10 111
255.vortex.2 161,905+ /-0 162,016+/-10 111
255.vortex.3 162,024+ /-0 162,135+ /-10 111
956.bzip2.graphic 104,650,996,309+ /-0 | 104,716,216,837+/-399 | 65,220,528
956.bzip2. program 92,138,659,767+/-0 | 92,195,366,446+/-283 | 56,706,679
256.bzip2.source 75,683,045,767+/-0 | 75,737,142,438+/-309 | 54,096,671
300.twolf 204,394,181,323+ /-0 | 294,395,384,7514/-203 | 1,203,428
301.apsi 335,965,776,144+ /-0 | 335,998,221,972+/-190 32,445,828

Extended version of ISPASS 2013 paper — updated 18 March 2021

Table 10: Measured Core2 retired stores for SPEC CPU 2000.

| Benchmark Pin Results | Counter Results | Difference |
164 g7ip.graphic 0,020,255,4421 /-0 | 9,220,318,816+ /-1 63,374
164.gzip.log 2,869,442,570+/-0 2,869,475,599+ /-2 33,029
164.gzip.program 15,043,298,768+/-0 | 15,043,347,481+/-0 48,713
164.gzip.random 7,333,288,257+/-0 | 7,333,345,900+ /-1 57,643
164.gzip.source 7,099,846,266+ /-0 | 7,099,884,570+ /-1 38,304
168.wupwise 33,509,937,868+ /-0 33,509,937,948+ /-0 80
171.swim 18,657,590,0024 /-0 | 18,657,604,499-+ /-0 14,407
172.mgrid 19,780,977.3794/-0 | 19,780,992,153+ /-0 14,774
173.applu 36,944,783,307+/-0 | 36,944,806,144+ /-0 22,837
175.vpr.place 10,506,996,023+/-0 | 10,507,367,334+/-1 | 371,311
175 vpr.route 8,408,211,2424/0 | 8,498,625,210+ /-1 | 413,968
176.gcc.166 6,126,548,968+ /-0 | 6,126,646,078+ /-2 97,110
176.g¢¢.200 10,809,876,957+/-0 | 10,810,247,099+/-14 | 370,142
176.gcc.expr 1,262,579,952+ /-14 | 1,262,641,060+ /-4 61,108
176.gcc.integrate 1,472,392,036+ /-0 1,472,436,588+ /-3 44,552
176.gcc.scilab 6,544,043,5081 /-1 | 6,544,314,7794/-10 | 271,181
177.mesa 35,256,814,647+/-0 | 35,256,814,675+ /-0 28
178.galgel 25,736,467,292+ /-0 25,736,468,525+ /-0 1,233
179.art.110 3,467,916,650+/-0 | 3,467,916,650+/-0 0
179.art.470 3,792,351,365+/-0 | 3,792,351,365+/-0 0
181.mecf 3,101,673,836+/-0 3,101,673,836+/-0 0
183.equake 6,401,707,007+/-0 | 6,401,707,013+/-0 6
186.crafty 14,715,320,0504+ /-0 | 14,715,329,550+ /-0 500
187 facerec 17,108,726,507+/-0 | 17,175,801,130+/-6 | 67,164,623
188.ammp 31,435,756,0724/-0 | 31,435,756,072+ /-0 0
189 Tucas 18,135,992,918+ /-0 | 18,135,093,0501 /-0 132
191.fma3d 42,289,894,809+/-0 | 42,326,598,083+/-13 | 36,703,274
197.parser 32,254,247,2494 /-0 | 32,254,090,688+/-0 | -156,561
200.sixtrack 94,831,293,0484/-0 | 24,831,447,9154/-1 | 154,867
252.eon.cook 9,168,538,965+/-10 9,168,538,925+/-21 -40
252.con kajiya 12,616,424,674+ /-5 | 12,616,424,618+ /-39 756
252.eon.rushmeier 7,321,524,013+/-47 7,321,523,805+ /-0 -208
253.perlbmk.535 502,744,026+ /-0 502,853,217+ /-1 109,191
253.perlbmk.704 515,446,194+ /-1 515,464,538+ /-0 18,344
953.perlbmk.850 1,077,046,593+/-2 | 1,077,124,158+ /-1 77,565
253.perlbmk.957 853,729,475+ /-0 853,824,516+ /-0 95,041
253.perlbmk.diffmail 5,192,919,547+ /-2 5,192,873,218+/-0 -46,329
253.perlbmk.makerand 188,774,998+ /-2 188,774,884+ /-1 -114
253.perlbmk.perfect 3,498,063,997+/-2 | 3,498,435,004+/-0 | 371,097
9254.gap 25,380,689,015+ /-0 | 25,380,688,751+ /-0 -264
255.vortex.1 22,413+/-0 22,405+ /-0 -8
255.vortex.2 22,403+ /-0 22,395+ /-0 -8
255.vortex.3 22,410+ /-0 92,4024 /-0 -8
956.bzip2.graphic 14,992,496,920+ /-0 | 14,992,496,932+ /-0 3
956.bzip2. program 12,378,627,404+/-0 | 12,378,627,408+/-0 4
256.bzip2.source 8,647,185,58’0—1—/-0 8,647,185,382+ /-0 2
300.twolf 30,735,278,724+ /-0 | 30,735,278,725+ /-0 1
301.apsi 30,722,966,049+/-0 | 39,722,972,988+ /-0 6,939

Extended version of ISPASS 2013 paper — updated 18 March 2021

tigation, although some seem to be related to malloc() and strlen() being
non-deterministic at runtime.

It is extremely difficult to track down the causes of divergences in bench-
marks this large, so new methodologies need to be designed to analyze these
kinds of problems. This will be even more difficult when analyzing parallel
applications.

5 Related Work

The primary use of deterministic events is for parallel deterministic execution
and deterministic replay. In these cases any deterministic event will do, and
once one is found it tends to be mentioned in passing without discussing the
methodology used to analyze the determinism.

Olszewski et al. [8], while attempting to create a user-space deterministic
multi-threading library, find that RETIRED_STORES is deterministic on Core2 pro-
cessors. They do not describe their methodology for how this was determined,
nor do they look at any other architectures. Bergan et al. [11] use retired in-
structions while doing deterministic multi-threading; they use the methodology
of Dunlap et al. [7] which used retired branches on AMD machines but stopped
early and single-stepped to avoid hardware interrupt issues.

Many other studies use hardware performance counters in various ways, but
there has been little research into deterministic variation or overcount. Our
work is unique in looking at a wide range of architectures and a wide variety
of modern 64-bit machines, as well as determining correctness based on code
inspection rather than using a simulator.

Stodden et al. [6] use assembly-language programs to validate use of hard-
ware counters for log-based rollback recovery, but they do not analyze the de-
terminism of the events, only the amount of interrupt lag when trying to stop
at a precise instruction address.

Zaparanuks et al. [14] investigate the performance counter accuracy as pro-
vided by various high-level counter APIs on three different x86 architectures.
They measure overhead of the cycle and total retired instruction events, but use
a very small (4 instruction long) assembly benchmark and do not fully explore
the underlying causes of the variation.

Mytkowicz et al. [1] investigate sources of measurement bias and non-determinism
in program execution. The cycles event was used in this work, and the problems
found focused on high-level executable layout and operating system issues and
not limitations of the underlying PMU.

Korn, Teller, and Castillo [27] validate MIPS R12000 performance counters
with microbenchmarks, reporting up to 25% error with INSTRUCTIONS_DECODED
when comparing against a hardware simulator. Black et al. [28] investigate the
number of retired instructions and cycles on the PowerPC 604 platform, compar-
ing their results against a cycle-accurate simulator. Cycle-accurate simulators
have their own inherent error, so unless that is known exactly it limits what can
be learned about the accuracy of the hardware counters being compared.

21

Extended version of ISPASS 2013 paper — updated 18 March 2021

We previously investigate the determinism of the RETIRED_INSTRUCTION
counter on a wide range of 32-bit x86 processors using the SPEC CPU bench-
marks [13], finding upward of 2% error on Pentium D. This work found many
sources of variation but was limited to one event and did not fully explore the
causes of non-determinism.

Maxwell et al. [29] look at accuracy of performance counters on a variety
of architectures, reporting less than 1% error with retired instructions when
using a microbenchmark. DeRose et al. [30] look at variation and error with
performance counters on a Power3 system, but only for startup and shutdown
costs; they do not report total benchmark behavior.

6 Conclusions and Future Work

In our experiments we have found only a small minority of x86_64 events to be
deterministic and without overcount: RETIRED_STORES on Core2 and BR_INST RETIRED_CONDITIONAL
on SandyBridge and Westmere. This lack of useful events limits the use of per-
formance counters for advanced applications such as deterministic replay and
threading libraries on the popular x86_64 architecture.

Many potentially deterministic events are rendered unusable by including the
unpredictable hardware interrupt count. This can be mitigated by subtracting
off a separate interrupt counter event (if available), but this will not help in the
deterministic use case where exact overflow is desired in order to stop at precise
locations.

Our investigation of other architectures shows that deterministic events are
more common on non-x86 hardware. This shows that deterministic events can
be accomplished and are not an unsolvable problem. Unfortunately these plat-
forms are typically not available to most users.

New users of performance counters are often frustrated that the results they
measure are not the ones they “know” to be correct. Eventually the users
learn the sources of the error, and undertake analysis that allows for run-to-run
variation in the results. It becomes almost a rite of passage, learning why the
counters work the way they do, and working around them. This fatalistic view
of the quality of counters explains the lack of impetus for fixing the underlying
problem.

We propose that there are definite benefits to providing deterministic coun-
ters with little overcount or variation. Existing methodologies that can stand
some variation will not be harmed, and new and better uses for the counters
will be found. Use of counters by non-experts can then be encouraged, as there
will be so many fewer caveats to their use.

The various x86_64 vendors need to be strongly encouraged to fix the per-
formance monitoring units on their respective CPUs. There are many inherent
hardware problems with providing deterministic counters, but other non-x86 ar-
chitectures seem to have solved them. This may mean simplifying the available
counters or limiting the number of available events, but in practice few people
use the counters at all, let alone the full feature set.

22

Extended version of ISPASS 2013 paper — updated 18 March 2021

A change like this will not happen overnight; In the meantime more work on
analyzing the causes and amounts of variations can be done. Manually generat-
ing and validating test suites is a slow, tedious process. We are investigating a
method of automated testcase generation and validation that can vastly improve
the process.

When deterministic counters do become available, they will be welcomed
not only by those working on deterministic replay and simulator validators, but
also by all users of performance counters.

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant No. 0910899 and by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by U.S. Department of Energy Office of
Advanced Scientific Computing Research under award number DE-SC0006733.

References

[1] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, “Producing wrong
data without doing anything obviously wrong!” in Proc. 14th ACM Sympo-
stum on Architectural Support for Programming Languages and Operating
Systems, Mar. 2009.

[2] V. Weaver and S. McKee, “Are cycle accurate simulations a waste of time?”
in Proc. 7th Workshop on Duplicating, Deconstructing, and Debunking,
Jun. 2008, pp. 40-53.

[3] R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha: a vali-
dated, execution-driven Alpha 21264 simulator,” Department of Computer
Sciences, The University of Texas at Austin, Tech. Rep. TR-01-23, 2001.

[4] V. Weaver and S. McKee, “Using dynamic binary instrumentation to gener-
ate multi-platform simpoints: Methodology and accuracy,” in Proc. 3rd In-
ternational Conference on High Performance Embedded Architectures and
Compilers, Jan. 2008, pp. 305-319.

[5] D. Chen, N. Vachharajani, R. Hundt, S.-W. Liao, V. Ramasamy, P. Yuan,
W. Chen, and W. Zheng, “Taming hardware event samples for FDO com-
pilation,” in Proc. 8th IEEE/ACM International Symposium on Code Gen-
eration and Optimization, Apr. 2010, pp. 42-53.

[6] D. Stodden, H. Eichner, M. Walter, and C. Trinitis, “Hardware instruction
counting for log-based rollback recovery on x86-family processors,” in Proc.
3rd International Service Availability Symposium, May 2006, pp. 106-119.

[7] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen, “ReVirt: Enabling
intrusion analysis through virtual-machine logging and replay,” in Proc.

23

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Extended version of ISPASS 2013 paper — updated 18 March 2021

5th USENIX Symposium on Operating System Design and Implementation,
Dec. 2002.

M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: Efficient determin-
istic multithreading in software,” in Proc. 14th ACM Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, Mar.
2009.

H. Yun, “DPTHREAD: Deterministic multithreading library,” 2010.

A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Efficient system-enforced
deterministic parallelism,” in Proc. 9th USENIX Symposium on Operating
System Design and Implementation, Oct. 2010.

T. Bergan, N. Hunt, L. Ceze, and S. Gribble, “Deterministic process groups
in dOS,” in Proc. 9th USENIX Symposium on Operating System Design and
Implementation, Oct. 2010.

N. McGuire, P. Okech, and G. Schiesser, “Analysis of inherent randomness
of the Linux kernel,” in Proc. 11th Real-Time Linuz Workshop, 2009.

V. Weaver and S. McKee, “Can hardware performance counters be
trusted?” in Proc. IEEE International Symposium on Workload Charac-
terization, Sep. 2008, pp. 141-150.

D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in Proc. IEEE International Symposium on Per-
formance Analysis of Systems and Software, Apr. 2009, pp. 23-32.

A. Alameldeen and D. Wood, “Variability in architectural simulations of
multi-threaded commercial workloads,” in Proc. 9th IEEE Symposium on
High Performance Computer Architecture, 2003.

V. Weaver, “Using dynamic binary instrumentation to create faster, vali-
dated, multi-core simulations,” Ph.D. dissertation, Cornell University, May
2010.

V. Weaver and S. McKee, “Code density concerns for new architectures,”
in Proc. IEEFE International Conference on Computer Design, Oct. 2009,
pp. 459-464.

Intel, Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, 2009.

AMD, AMD Family 10h Processor BIOS and Kernel Developer Guide,
2009.

S. Eranian, “Perfmon2: a flexible performance monitoring interface for
Linux,” in Proc. 2006 Ottawa Linuz Symposium, Jul. 2006, pp. 269-288.

24

[21]

[30]

[31]

Extended version of ISPASS 2013 paper — updated 18 March 2021

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood, “Pin: Building customized program analysis
tools with dynamic instrumentation,” in Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation, Jun. 2005, pp. 190
200.

A. Noll, Personal Communication, 2011.
C. Segulja, Personal Communication, 2012.

N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation, Jun. 2007, pp. 89—
100.

F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
USENIX Annual Technical Conference, FREENIX Track, Apr. 2005, pp.
41-46.

Standard Performance Evaluation Corporation, “SPEC CPU benchmark
suite,” http://www.specbench.org/osg/cpu2000/, 2000.

W. Korn, P. Teller, and G. Castillo, “Just how accurate are performance
counters?” in 20th IEEE International Performance, Computing, and
Communication Conference, Apr. 2001, pp. 303-310.

B. Black, A. Huang, M. Lipasti, and J. Shen, “Can trace-driven simulators
accurately predict superscalar performance?” in Proc. IEEFE International
Conference on Computer Design, Oct. 1996, pp. 478-485.

M. Maxwell, P. Teller, L. Salayandia, and S. Moore, “Accuracy of per-
formance monitoring hardware,” in Proc. Los Alamos Computer Science
Institute Symposium, Oct. 2002.

L. DeRose, “The hardware performance monitor toolkit,” in Proc. 7th In-
ternational Euro-Par Conference, Aug. 2001, pp. 122-132.

RR Project, “RR Project Website,” https://rr-project.org/, 2021.

25

