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Abstract—
Modern computer processors improve their computing power

by having multiple cores. Traditionally these cores were homoge-
neous: many identical cores with the same capabilities. Instead
it is possible to create processors that have heterogeneous (or
hybrid) cores, where the various cores have differing capabilities.
This can lead to energy savings and other efficiencies, but
complicates performance analysis. Heterogeneous cores have
been common for years in embedded ARM processors; recently
support has appeared in x86 desktop processors as well. It is
likely that before long server and high-performance systems will
also gain hybrid cores.

We look at current Linux support for heterogeneous proces-
sors and detail the various problems encountered when adding
support for them to the PAPI performance measurement library.

Index Terms—Linux perf, perf event, PAPI, heterogeneous
processors, hybrid cores, performance measurement, big.LITTLE

I. INTRODUCTION

The processors inside of modern computers gain perfor-
mance by having multiple computing cores. Properly written
software can increase performance by running code across
multiple cores at once. Traditionally these multi-core systems
use identical (or homogeneous) cores. This greatly simplifies
the design of the system and also makes writing code simpler.

It is possible to instead design a hybrid (or heterogeneous)
system where a variety of different core types work together
while providing differing abilities. Typically this is done for
power-saving reasons: you can have fast (but power-hungry)
cores used when performance is needed, but smaller more
power-efficient cores used when on battery power or when
running less critical applications.

Note that we are specifically describing heterogeneous CPU
cores; there is another type of heterogeneous computing where
CPU cores are paired with GPU (graphics) cores. This is a
related topic but not something covered in this work.

A. Availability of Heterogeneous CPUs

Heterogeneous systems became widely used with the in-
troduction of ARM’s big.LITTLE technology in 2011 [1],
[2]. This type of CPU was primarily found in embedded
devices, phones, tablets and laptops. More recently support
has come to x86 desktops and laptops. Intel has introduced

systems that have what they call P-core (performance) and E-
core (efficiency) processors starting with their 12th generation
Alder Lake systems [3]. Intel has yet to announce a server chip
with heterogeneous cores, but their upcoming Sierra Forrest
and Granite Rapids chips will exclusively be E or P core
respectively, showing that there is a demand for differing
core capabilities in modern server systems. AMD has not
announced plans for heterogeneous processors yet, but they
have contributed patches to the Linux kernel that appear to be
preparing for just such a release [4].

B. Challenges with Heterogeneous CPUs

There are many challenges that come from heterogeneous
systems, with the most prominent being job scheduling. Mul-
ticore thread scheduling on homogeneous systems is already
a difficult task, the situation has only gotten worse with the
introduction of heterogeneous processors.

The scheduler must be aware of the differing capabilities of
the cores and try to make intelligent choices of how best to
allocate resources while trying to maintain optimal power and
performance usage. Overhead in scheduling is a key bottleneck
in operating system performance so these decisions must be
made as quickly as possible and without much code being
run (currently Linux uses the “Completely Fair Scheduler”
which completes in O(logN) time). The low level details
of heterogeneous processors are beyond the scope of this
work, but details can be found in other works [5]–[9]. Often
these heterogeneous-aware schedulers make use of hardware
performance counters to track how all the cores are behaving.

C. Performance Measurement of Heterogeneous CPUs

Most modern CPUs provide access to hardware performance
counters that allow collecting detailed performance informa-
tion that can be used for code optimization. Often hundreds
to thousands of possible events can be measured, covering
all aspects of the underlying computer architecture, including
critical metrics like total cycles, retired instructions, branch
misses, and cache misses.

Unlike some CPU interfaces that are standardized and
remain the same from one processor generation to another (or
even across vendors) the performance counter interface tends
to vary from CPU to CPU. Which events are available can



TABLE I
HARDWARE CONFIGURATION OF THE RAPTOR LAKE SYSTEM

CPU 13th Gen Intel(R) Core(TM) i7-13700
P-cores (performance) 8 (16 threads) @2.10-5.10 GHz

E-cores (efficiency) 8 @1.50-4.10 GHz
Memory 32GB DDR5, 4.4G T/s

vary not only by architecture, but also by vendor and even
by CPU model. This was already a challenge when doing
cross-platform performance measurements, but it becomes
even more complicated on heterogeneous systems. The various
core types can be of different microarchitectures and thus the
cores can have different event interfaces and availability. (An
example of this, Intel top-down events are only available on
the Raptor Lake’s P-cores but not the E-Cores). Most existing
tools assume a system will only have a single, core, set of CPU
events and may fail when encountering a heterogeneous setup.
Tools that are aware of varying cores must handle measuring
processes that might switch core types mid-run and report the
results back to the user in an understandable way.

D. PAPI and Heterogeneous CPUs

The Performance API (PAPI) is a cross-platform library
widely used to measure performance data in high performance
computing [10]. When used on Linux systems it uses the
underlying perf event subsystem to handle access to the
counters provided by the CPUs [11].

The current PAPI 7.1 release does not support heteroge-
neous processors. In this work we investigate how the Linux
kernel handles heterogeneous systems, and then describe the
changes being made to PAPI to enable support for these cores.
By adding the support to PAPI any external tools that build
on it should gain heterogeneous support. While we focus on
the support needed for the PAPI library, the work described
should be useful for other low-level performance tools that
need to add heterogeneous CPU support.

II. MOTIVATION

We investigate the performance of benchmarks on hetero-
geneous CPUs to show why it is advantageous to have hybrid
CPU-aware performance tooling.

A. Comparing HPL Varieties on Intel Raptor Lake

Software designed with homogeneous processors in mind
is not necessarily well optimized for systems with hetero-
geneous processors. We compare two versions of the High
Performance Linpack (HPL) benchmark: HPL [12] compiled
from source using OpenBLAS (OpenBLAS HPL) [13], and
Intel Optimized LINPACK (Intel HPL) from the Intel oneAPI
Math Kernel Library (MKL) [14].

1) Experimental Setup: We compare the two HPL bench-
marks on a desktop PC equipped with a heterogeneous In-
tel Raptor Lake CPU as described in Table I. The operat-
ing system running on the Raptor Lake machine is Debian
GNU/Linux 12 (bookworm), using Linux 6.7.12+bpo-amd64
kernel. The gcc compiler version 12.2.0 is used to compile the

TABLE II
BENCHMARK PERFORMANCE COMPARISON

Enabled cores OpenBLAS HPL Intel HPL % Change
E only 188.62 Gflops 198.95 Gflops +5.4%
P only 356.28 Gflops 392.89 Gflops +10.3%

P and E 290.51 Gflops 457.38 Gflops +57.4%

code. While the 8 P-cores each have two hardware threads, all
HPL runs are limited to one thread per core.

OpenBLAS HPL is built using OpenMPI v4.1.4 and Open-
BLAS version 0.3.27.dev, compiled from source for the best
performance. Intel HPL is built using the distributions of
MPI 2021.12 and MKL 2024.2 in oneAPI.

2) Configuring HPL: Proper tuning of HPL via editing the
HPL.dat file can have a significant impact on its results. The
most important parameters for a single node computer are the
problem size N and block size NB. Since the Raptor Lake
machine has only one node, the process grid shape parameters
P and Q are both necessarily set to 1. The HPL documentation
recommends that N be selected to use 80% of the system’s
memory, although in practice this can vary.

In order to select a good N and NB value pair OpenBLAS
HPL is run 16 times using N values calculated with the β-
approach presented by Krpić, Loina, and Galba [15] for 70%,
75%, 80%, and 85% memory usage paired with NB values of
64, 128, 192, and 256. From these runs it is found that HPL
performs best on the Raptor Lake system with N = 57024
and NB = 192. These values are used in the HPL.dat file
for both of the tested HPL benchmarks.

3) Data Collection: A python script starts the HPL run and
then polls CPU core frequency, thermal zone temperatures, and
Running Average Power Limit (RAPL) [16] energy counter
values at a rate of 1 Hz until the run is completed. The script
performs multiple identical HPL runs, waiting for the CPU
package temperature to settle at 35 ◦C before each run to
ensure that the effects of thermal throttling are similar across
each run. The Linux perf command is used to start HPL
each time, and in doing so some performance counter data
is also collected. Another script is then used to aggregate the
data into an averaged run for analysis.

For both OpenBLAS HPL and Intel HPL data is collected
as described previously and averaged over 10 runs. For both
of the benchmarks HPL.dat is configured with N = 57024,
NB = 192, P = 1, and Q = 1.

4) Raptor Lake HPL Results: A comparison of the results
of the two benchmarks is shown in Table II. Intel’s Optimized
HPL outperformed OpenBLAS HPL for each set of cores,
as can be expected of any software running on the specific
architecture it has been designed for. Of particular note is the
57.4% increase in performance between OpenBLAS HPL and
Intel HPL for the all-core runs.

OpenBLAS HPL performed 18.5% worse when run on all
cores than when limited to only the P-cores. This demonstrates
that software that is not designed with heterogeneous proces-
sors in mind (like OpenBLAS HPL) can actually have their



TABLE III
HARDWARE COUNTER MEASUREMENTS FOR ALL-CORE RUNS

OpenBLAS HPL Intel HPL % Change
Core type P E P E P E

LLC 86% 0.05% 64% 0.03% -26.3% -39.8%missrate
% of total 80% 20% 68% 32% - -instructions

performance negatively affected by the presence of E-cores.
Conversely, Intel HPL performed 16.4% better when given
access to all cores than when it was limited to only the P-
cores. This shows that with proper knowledge of low-level
CPU behavior it is possible and beneficial to leverage all cores
of a heterogeneous processor for high performance tasks.

For a closer look at the different behaviors between the two
benchmarks when run on all cores the average measured core
frequencies for both benchmarks are shown in Figure 1.

The high level of noise in core frequency seen in Figure 1(a)
is also present for all configurations of OpenBLAS HPL, and
is therefore not likely the root cause of the significant perfor-
mance increase obtained by Intel HPL for its all-core runs. The
two benchmarks differed in core frequencies for the all-core
runs in that the median frequency of the P-cores was lower for
Intel HPL (2.61 kHz) than for OpenBLAS HPL (2.94 kHz),
and the median frequency of the E-cores was slightly higher
for Intel HPL (2.32 kHz) than for OpenBLAS HPL (2.26 kHz).
In summary, the heterogeneous core frequencies for Intel HPL
were less dissimilar than for OpenBLAS HPL.

The initial spike in core frequencies seen in both Fig-
ures 1(a) and 1(b) starting at around t = 110s and t = 1s
respectively correspond to the RAPL short term power cap
(219 W) time limit being exceeded. For both benchmarks, the
majority of the run is capped by the long term power limit of
65 W, as shown in Figure 2.

OpenBLAS HPL is unable to reach the full short term power
cap, peaking at 165.7 W before quickly dropping to the long
term limit for the rest of the run. Neither benchmark is affected
by thermal throttling as the power limits and adequate cool-
ing prevent the cores from reaching their maximum allowed
package temperature of 100 ◦C [17].

Values derived from performance counter measurements
collected with perf for both benchmarks are shown in Table III,
including the miss rate of the last level cache (LLC) for
each core type and the percentage of instructions for each
benchmark that were run by each core type.

It can be seen that Intel HPL ran more of its code on the P-
cores when compared to OpenBLAS HPL. Additionally, the
LLC missrate for both core types were greatly reduced for
Intel HPL, particularly that of the E-cores. As discussed in
Stepanovic et al. [18] it is usually optimal to relegate jobs with
a high LLC miss rate to the E-cores. Intel HPL takes advantage
of this fact to achieve greatly improved performance.

TABLE IV
HARDWARE CONFIGURATION OF THE ORANGEPI 800 SYSTEM

CPU Rockchip RK3399 SoC
big cores 2 ARM Cortex-A72 @1.8 GHz

little cores 4 ARM Cortex-A53 @1.4 GHz
Memory 4GB LPDDR4

B. ARM big.LITTLE Exploration

In addition to the Raptor Lake work, we have investigated
behavior on an ARM64 heterogeneous platform.

1) Experimental Setup: We run experiments on an Orange
Pi 800 system, which has six cores: two Cortex-A72 “big”
cores, and four Cortex-A53 “LITTLE” cores as described
in Table IV. We run HPL on this system, compiled against
OpenBLAS with gcc 11.4. The system is running the OrangePi
Ubuntu Jammy distribution with a 64-bit Linux 5.18.5-rk3399
kernel.

2) ARM big.LITTLE Results: As seen in Figure 3 the
big cores quickly ramp up to maximum frequency, but not
for long, as the temperature quickly gets too high and the
cores are scaled back down. Figure 4 shows that the big
cores throttle so quickly that using four little cores can give
better overall performance than using just the big cores, and
using all six cores gives only a slight improvement over
leaving the big cores unused. This behavior is more complex
than one would usually see while running an embarrassingly
parallel benchmark like HPL on homogeneous cores, and
analysis would benefit greatly from performance tools that are
heterogeneous processor-aware.

III. RELATED WORK

Heterogeneous processing is a mature technology, especially
the big.LITTLE ARM variant. There has been previous work
looking at using performance counters on these systems, most
using a wider variety of benchmarks than we do. Unlike the
other previous work, we are able to look at both Intel and
ARM heterogeneous systems.

The work closest to ours is Gupta et al. [19] who use PAPI
with LLVM and Clang to comprehensively instrument and
characterize individual components of a series of benchmarks
on an ARM big.LITTLE system. The characterized data is
used offline to train a classifier that determines optimal core
configurations and frequencies at runtime. They claim to use
PAPI for these measurements, but it is unclear if they have
added heterogeneous support themselves, as at that time PAPI
did not have support for big.LITTLE systems.

Vasilakis et al. [20] look at the performance of single-
threaded benchmarks on the big and little cores of an ARM
big.LITTLE processor, using Instructions Per Cycle (IPC)
derived from hardware counters as the primary performance
indicator.

Whitehouse et al. [21] use performance counters to inves-
tigate the core utilization and the impacts of branch mispre-
diction on heterogeneous multicore processors over an array
of benchmarks and everyday mobile device use cases such as
playing a YouTube video.
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Fig. 1. Measured core frequencies on the Intel Raptor Lake system for both variants of HPL, run on all cores.
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Fig. 2. Measured power and package temperature on the Intel Raptor Lake system for both variants of HPL, run on all cores.
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Fernandez et al. [22] describe monitoring cache misses with
performance counters to assess the suitability of heterogeneous
multicore processors for real-time embedded applications.
Stepanovic et al. [18] also look at cache misses, but with the
goal of designing an efficient core selection model.

IV. ADDING HETEROGENEOUS CPU SUPPORT TO PAPI

It might seem that adding heterogeneous support to the PAPI
library would be a straightforward process. It turns out that full
heterogeneous support will require a lot of intrusive changes to
the codebase and redesigning some of the low-level interfaces.

A. Linux perf Heterogeneous Support

The Linux kernel has supported heterogeneous CPU support
using perf event since ARM big.LITTLE performance moni-
toring unit (PMU) support was added in the 4.10 kernel release
(early 2017). Intel heterogeneous processor PMU support was
merged with Linux 5.13 (2021), which has led to increased
interest in having tools be more heterogeneous-aware.

The Linux perf event interface handles heterogeneous
CPUs by having a separate PMU type exported for each type
of CPU core (usually there are two, but there exist ARM CPUs
with three types and it is plausible even more will be supported
someday).

The PMU type is passed into the kernel when using the
perf_event_open() system call to open an event. A
PMU’s type value can be found in the /sys/ directory:
for example on Raptor Lake the E and P core PMUs (known
to Intel as “atom” and “core” respectively) can be found in:

/sys/devices/cpu_atom/type
/sys/devices/cpu_core/type

When a regular performance event is opened, it is associated
with a process thread and follows the thread wherever it is
scheduled. By default the operating system scheduler is free to
move the process to other cores, including ones of other types.
The counter values are saved and restored at context switch
to keep the counts consistent. This could be a problem on
heterogeneous cores (an event might be measuring hardware
features that do not exist on the new core, or the event itself
might not exist at all there). To avoid this the kernel tracks the
core type and only enables event counters if they match the
core currently being run on. If you want to measure a common
event like retired instructions across all possible cores that
might run your code, you will need to open multiple events,
one for each core type available on the system.

The Linux perf tool works in this way, by setting up
multiple events on heterogeneous systems and reporting all
of the results gathered. This is straightforward, but it does
limit accuracy because even in the best case where the events
being read from each core type share an event group, it will
typically take at least two or more relatively high-latency read
syscalls to gather all of the event values.

In theory adding heterogeneous support to PAPI is just
a matter of allowing multiple PMU events per EventSet.

However due to the underlying design of PAPI this requires
some fairly intrusive changes to the perf event component.

If the perf tool already supports heterogeneous events,
why bother going through the trouble of fixing PAPI? PAPI
provides many features not supported by perf, with the key
advantage being that you can caliper your source code. This
means you can go into your code and add PAPI_start()
and PAPI_stop() calls around arbitrary chunks of code to
do fine-grained measurement. The perf tool does not support
this; currently it only supports gathering either aggregate (full-
program) counts or else statistically sampled values.

B. PAPI support: Heterogeneous Core Detection

One major problem with heterogeneous processors on Linux
is determining what types of cores are available and reporting
this so the user or tools can take advantage of it. Currently
Linux has no standard way of doing this. PAPI would like to
have this information for a variety of internal reasons, but also
so it can report it via the PAPI_get_hardware_info()
interface, the device attribute interface, and via the sysdetect
component.

For ARM big.LITTLE systems there are a few ways to
attempt to get the info. There is:

/sys/devices/system/cpu/cpuX/cpu_capacity

which provides an opaque number between 0 and 1024. On
machines with three types of cores often they are 250, 512,
and 1024 but that is not guaranteed.

You can attempt to figure things out by
looking at the CPU identification values in
/proc/cpuinfo or /sys/devices/system/cpu/
cpuX/regs/identification. This can help you
differentiate if the cores are of different types (for example:
Cortex-A53 vs Cortex-A72). This works on ARM, but Intel
P/E-cores are not given separate family/model/stepping so
this cannot be used generically.

Intel chips can report heterogeneous status via the cpuid
instruction (leaf 1A bits EAX[31-24]) however this is Intel
specific and not a general interface we can depend on for all
types of cores.

The perf tool detects PMUs by searching the
/sys/devices/ directory, and inside any PMU
subdirectory is a file called “cpus” that maps PMU to
core. This has complications as well: on ARM the PMU
names are set by the boot firmware and systems using
devicetree (mostly embedded systems) and ACPI (mostly
servers) can provide different names for the same PMU type.

Some tools resort to determining if heterogeneous cores are
present by looking up the maximum possible frequency or
cache sizes in:

/sys/devices/system/cpu/cpuN/cpufreq/
cpuinfo_max_freq

/sys/devices/system/cpuN/cache

but this cannot always be guaranteed to work.



When initial support for Intel P/E-cores was added
there was a patch proposed to try to create an official
/sys/devices/system/cpu/types interface but it did
not end up included [23]. There was recent discussion on
the Linux-kernel mailing list that such a patch would be
resubmitted for consideration.

C. PAPI support: libpfm4 Support

PAPI depends on the libpfm4 library [24] to provide event
lists and to help create the perf event attribute structure
expected by the Linux kernel perf_event_open() syscall
when specifying events.

Initially libpfm4 had no support for heterogeneous events,
but support for Alder Lake and Raptor Lake P/E-cores was
added after we requested it. The initial support had some bugs
with the instructions retired E-core event, but we worked with
the maintainer and got those fixed.

While libpfm4 now properly handles heterogeneous sup-
port on Intel P/E events it still does not work with ARM
big.LITTLE systems due to the different way the ARM PMU
support scans for PMUs. We have preliminary patches that
allow for multiple PMUs on ARM, and we are working on
getting a solution merged upstream. We also used a not-yet-
merged patch to enable libpfm4 ARM Cortex-A72 support
needed for our OrangePi system.

D. PAPI support: Multiple Default PMUs

The first thing needing to be fixed in PAPI was the possi-
bility of having more than one default PMU. For backwards
compatibility reasons PAPI has the notion of a “default”
PMU that event names are searched in if no explicit PMU
is specified. This was picked to be the primary CPU PMU,
but on a heterogeneous system there are multiple CPU PMUs
and PAPI did not handle this case well and would give an
error or possibly even crash.

Support was added to handle a libpfm4 that reported mul-
tiple default cpus, such as the P and E-cores on Raptor Lake.
We currently choose the “P” core as the default, but there
is not a generic way of determining which of the core types
should be default and for now it has to be hard-coded for each
known heterogeneous CPU type.

E. PAPI support: Multiple PMUs in an EventSet

The most straightforward way to support heterogeneous
systems is to allow a user to create an EventSet (PAPI’s
abstraction for a group of events that run at the same time) with
equivalent events from both PMUs. For example on Raptor
Lake to measure both retired instruction events, you would
create an EventSet with these events:

adl_glc::INST_RETIRED:ANY
adl_grt::INST_RETIRED:ANY

Where adl glc is the Alder Lake GoldenCove P-Core and
adl grt is Alder Lake Gracemont E-Core (Raptor Lake systems
have the same underlying PMU as Alder Lake).

Ideally the PAPI perf event component would already allow
adding any number of perf event supported events to the

same EventSet. Unfortunately the way it is currently written
EventSets can only handle events belonging to the same
perf event PMU type. You cannot have P- and E- core events
in the same EventSet, nor can you have things like CPU
and RAPL power events in the same EventSet. A potential
workaround would be to just create two EventSets, one for the
big PMU and one for the little. However this will not work as
PAPI only allows one EventSet to be active per component at
a time.

The solution to this issue is to modify the perf event
component so it can handle having multiple perf event “event
groups” active in one PAPI EventSet. The perf event interface
has the idea of these “event groups” that are a list of events
that can be started and stopped together. However these groups
also cannot contain events from different PMUs. The solution
is to modify the PAPI perf event component to track the PMU
types of all events added to an EventSet, and split them up
into separate perf event groups by PMU type. Then when an
EventSet is configured, started, stopped, etc., the code will
operate on the multiple perf event groups belonging to the
EventSet.

The primary challenge when implementing this was finding
in the code where events are manipulated and modifying these
calls to search arrays of event groups when needed, adding an
extra layer of indirection. The code currently uses statically
allocated arrays to hold the group/PMU-type info. We will
look into whether more complex data structures might provide
better performance.

We have preliminary code implementing the new multi-
PMU EventSet behavior. It is undergoing testing with the goal
of getting it merged into the main development tree. There
may be complications regarding multiplexing. On perf event
multiplexing is handled by having each event be its own event
group leader while gathering some extra info. Care needs to be
taken that the enhanced event support does not break existing
multiplexing support.

F. PAPI support: Results

With the patches applied we have tested on both the Raptor
Lake and Orange Pi systems described earlier in this paper.

We have a test: papi_hybrid_100m_one_eventset
that runs 1 million instructions 100 times and measures the
average retired events. The result should be roughly 1 million
(with some minor overhead inherent in using PAPI). On a
traditional machine you get the expected result.

On a heterogeneous machine with original PAPI you could
specify only one of the events, so you might get 0, 1 million,
or something in between depending how the OS scheduled
the process. To verify we are only running on the expected
core types we use the taskset tool to bind the process to a
specific CPU core.

With the new, patched, PAPI the test runs as expected. An
example result gives results like:

Average instructions p: 836848 e: 167487



showing that across the full run some instructions were on
the P core, some on the E core, but if you add them up they
average near 1 million as expected.

V. FUTURE WORK

While we have done the preliminary work needed to get
heterogeneous CPU support into PAPI, work continues on
getting all of the changes merged back into the various
upstream projects. In addition there are various other tasks
that we plan on contributing.

1) Detailed Processor Reporting: Currently while PAPI can
detect and report the number of CPU cores and threads in
a system, it currently cannot report processor type of each.
We plan to add support so heterogeneous processors can be
properly reported.

2) Derived Event Support: PAPI has a notion of preset
events: pre-defined common event types that can be used to
generically select events on any processor without having to
know the name of the low-level native event. This includes
things such as PAPI_TOT_INS which will select the proper
“total retired instructions” event.

This falls apart on heterogeneous systems: which event
should be chosen, the big or little one? Luckily PAPI presets
can be defined as “derived” events made up of multiple
underlying events. In this way a user does not have to
care if they are on a heterogeneous machine. Ideally on
such a machine, PAPI_TOT_INS and similar can be a
derived event that just adds together the events for both
types of cores, and transparently adds the result together
behind the scenes. For example, on a Raptor Lake ma-
chine PAPI_TOT_INS might be generated by adding to-
gether the two events adl_glc::INST_RETIRED:ANY
and adl_grt::INST_RETIRED:ANY.

This seems like it should be straightforward, but there are
a few complications. On Intel processors there is only one
family/model type for the overall processor, so the current
way of defining presets by family/model will not work. The
code that parses the PAPI_events.csv file will have to
be modified to be aware of the existence of E and P core
availability so it can properly pick which combination of
events to use.

3) Remove perf event uncore Component: To access un-
core events on Linux perf event, PAPI has its own uncore
component separate from the standard one. This is because
prior to the work in this paper it was not possible to add
multiple events from different perf PMUs to the same eventset.
With the new infrastructure in place, it should be possible to
add uncore events into combined eventset like any other event
and the separate component is no longer necessary.

The question that remains is can it be removed without
breaking backwards compatibility if users have uncore com-
ponent names hardcoded into their workflow.

4) Unit Tests: To ensure that the new support works we
need a comprehensive set of unit tests that test the new
functionality. It is complicated because ideally we will cover
all the tests the current does, but on all combinations of P and

E-cores. This increases the surface area and will be a lot of
work.

5) Overhead: The new method for adding events does
an extra layer of indirection to support multiple perf event
groups. The file descriptor for each group’s parent has to be
looked up and opened. This potentially will add overhead to
the measurement process which already can be slow in some
situations [25].

We need to run extensive tests to see if there are any
overhead regressions. In addition, this might affect the “fast”
rdpmc counter support and this needs to be tested as well.

VI. CONCLUSION

Heterogeneous processors are becoming increasingly com-
mon and it is only a matter of time before they arrive to
the world of high performance computing. We motivate with
two examples the kinds of performance issues can happen
on heterogeneous systems, which shows the need for robust
performance tools that can be used to analyze such problems.
We are working to extend the widely-used PAPI performance
library to take advantage of this knowledge and to be ready
for the future world of hybrid processors.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 Code to enable heterogeneous support for PAPI.
C2 A comparison of HPL compiled with OpenBLAS

and Intel’s Optimized HPL on a heterogeneous CPU.
C3 A comparison of HPL running on an OrangePi

big.LITTLE system.

B. Computational Artifacts

A1 https://zenodo.org/doi/10.5281/zenodo.13287670

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C2, C3 Tables 1-2
Figures 1-4

..

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact is the code needed to patch libpfm4 and PAPI
to enable heterogeneous support.

Expected Results

Expected results are a version of PAPI with heterogeneous
support.

Expected Reproduction Time (in Minutes)

Should take less than an hour.

Artifact Setup (incl. Inputs)

Hardware: Should work on any Linux system, but ideally
test it on a heterogeneous system such as Raptor Lake or an
ARM big.LITTLE system.

Software: Requires standard Linux distribution and git
checkouts of the libpfm4 and PAPI development trees.

Datasets / Inputs: n/a
Installation and Deployment: The included README in

the patches directory describes the versions of the packages
needed and how to apply the patches.

Artifact Execution

Requires gcc compiler.

Artifact Analysis (incl. Outputs)

Output should be working version of PAPI. The test pro-
vided in the tests directory will show if heterogeneous support
is working on a Raptor Lake or OrangePi 800 big.LITTLE
machine.

B. Computational Artifact A2

Relation To Contributions

The artifact (the mon hpl.py script and its supporting
scripts) was used to acquire data to compare HPL compiled
with OpenBLAS to Intel’s Optimized HPL.

Expected Results

The data collected by the artifact when running Intel HPL
should indicate better performance than when running Open-
BLAS HPL. The data collected by the artifact enables the
comparison of the two benchmarks in a number of different
metrics including CPU frequency, thermal performance, en-
ergy consumption, and performance counter values.

Expected Reproduction Time (in Minutes)

The expected computation time for this artifact is given by
Equation 1, where tHPL is the expected amount of time for
a single run of HPL on the system, tthermal is the expected
amount of time it will take for the thermal zones to settle, and
N is the number of runs.

tA2 = (tHPL + tthermal) ∗N (1)

Artifact Setup (incl. Inputs)

Hardware: For RAPL data to be collected, an Intel CPU
supporting RAPL is required.

Software: The scripts were designed for Python 3.11.2
and require the Python packages “numpy” version 1.24.2 and
“matplotlib” version 3.6.3. The scripts are designed to run in
a linux environment, and in order to collect RAPL data root
permissions are required. Additionally, a version of HPL must
be installed for the script to run HPL.

Installation and Deployment: To install and deploy, follow
the instructions in the provided Readme.md file of the artifact.

Artifact Execution

The workflow of the artifact is described by two tasks
T1 → T2. In T1, the mon hpl.py script is ran with the desired
parameters to generate a directory of raw data. In T2, the
process runs.py script is ran with the raw data as an input,
and produces processed data that can subsequently be plotted
or analyzed.

The experimental parameters usable by mon hpl.py are
passed as command line arguments, and their values necessary
to reproduce the artifact on the experiment’s hardware are
listed in Table I.

TABLE I
PARAMETERS USED BY MON HPL.PY

Parameter Value
–n runs 10
–cores 0,2,4,6,8,10,12,14,16-24

–settled temps thermal zone9:35000



“thermal zone9” corresponds to the thermal zone type
“x86 pkg temp”. All other parameters were left at their de-
fault values.

Artifact Analysis (incl. Outputs)

The output of the artifact is recorded CPU frequency,
thermal zone values, RAPL energy data, and performance
counter data. The output is described in further detail in the
artifact’s Readme.md file.

C. Computational Artifact A3

Relation To Contributions

This artifact is the results from running HPL on the Or-
angePi system.

Expected Results

Expected results are similar HPL results assuming run on
an identical OrangePi system.

Expected Reproduction Time (in Minutes)

The actual runs to replicate might take a while (multiple
hours) as time is taken for the CPU to cool off after each run.

Artifact Setup (incl. Inputs)

Hardware: Requires an OrangePi 800 system. For the
power measurements you will need a WattsUpPro power
meter.

Software: Requires Ubuntu distribution that comes with the
OrangePi 800.

Datasets / Inputs: The HPL binary used is provided. Also
included is the HPL.dat input file.

Installation and Deployment:

Artifact Execution

n/a

Artifact Analysis (incl. Outputs)

Experiments involved running the provided HPL binary on
the system and configuring it to limit the cores involved with
env OMP_NUM_THREADS and the thread to bind to with
taskset.

The raw data results are provided, as well as README files
with more info as well as info on how the plots were made.


