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10 Years since my last ICL Lunch Talk

Which was partially presented on an old Apple Il computer
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What Have | Been Up To Since Then?
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Validating DRAM RAPL Power
Measurements

https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_validation.html
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https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_validation.html

Validating GPU Power Measurements

IEX® THE UNIVERSITY OF

[JMAINE 4 VA A 4



PAPI / perf_event / HPC Work

e Fast performance counter reads on x86 and ARM
e Raspberry Pi Cluster

https://web.eece.maine.edu/~vweaver/projects/pi-cluster/
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VMWos — a custom Raspberry Pi
Operating System

-} Terminal - vince@atom: -
RAle Edit View Terminal Tans Help

] cat > out
cdefg

Wi, 2 i winceBma,, ¥ |virceEma,, X i

65 66 67 Ba 31 32 33 34 3 Ba

aH
i B4
4 HEE SRS R 6f
#i # ## i #E # 0
## # o R o # b #

#it # #t w# it it # ##

i # i i - #H i # #

i o
AR O NG i i AN i O .

vmw05 Version 0.14-pre, Compiled Tue May 17 16:41:53 EDT 2016
One BCM2708 Processor, 448M RAM, 2_.00 Bogomips Total

pi

ited with @

CTRL-A Z for hel 115200 B8N1 ( Minicom 2.7 VT102

CTRL-A Z for help | 115200 8N1 | NOR | Minicom 2.7.1 | VT182 | Offline | tyUSBl

http://www.deater.net/weave/vmwprod/vmwos/
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Fun Hardware Projects

e Related to Embedded Systems course | teach
e Lots of projects with blinking lights/music
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Apple 11/114 Background (1977)

e 1MHz 6502

o 4k-48k RAM

e Discrete 7400 series logic
e cassette (later 140k disks)
e Bitbang Speaker

e 40x24 text mode

e 40x48 15 color lo-res

e 140x192 6-color hi-res

e need 16k for hi-res graphics
e BASIC in ROM
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Joined the Demoscene

e Essentially European Programming Competitions

e | specialize in Apple Il and Raspberry Pi demos, especially
size-coding (demos less than 256 bytes)

e Ongoing! (Ascension Holiday in Europe
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Game Demakes

Well, gou found me. Congratulations.
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More Game Demakes

http://www.deater.net/weave/vmwprod/demakes/

THE UNIVERSITY OF
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Back to Academic HPC Work
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Are there bugs in HPC code/systems?

e More worrying, are there security bugs in such systems?
e If there are, does anyone care?

(I've been told that large HPC installations are so
hardened they wouldn't be affected by regular security
bugs)

THE UNIVERSITY OF
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This work came from a bug where PAPI
crashed Linux

e Just running PAPI unit tests crashed Linux machine
completely

e Managed to trigger this on ICL server during the ICL
retreat while we were all remote

(I think the statute of limitations has passed so | can
admit that)

THE UNIVERSITY OF
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How Can You Avoid a Crash?

e Send a bug report / bugfix upstream to the Linux
developers (we did)

e Make a test suite you run on every new kernel to make
sure the same bug doesn't happen again
https://github.com/deater/perf_event_tests

e [hese are reactionary though, can only help after a bug
Is found, which is too late

e Can we pre-emptively find new bugs before they are
a problem?

THE UNIVERSITY OF
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https://github.com/deater/perf_event_tests

Why do we need an Operating System
anyway?

e On most processors to gather performance info need to
access special hardware registers (MSRs on x86)

e Giving a user full access to these can be dangerous, on
x86 can easily take over whole system if unrestricted
MSR access

e The Operating System can abstract away differences in
machines, as well as make sure only good MSR accesses
are happening

THE UNIVERSITY OF
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How Can User Code Crash Linux?

e Linux Kernel is written in C, which famously doesn’t
check bounds when accessing memory

e If you can get code to write values off the end of memory
allocations, can corrupt data

e Worse, if you can over-write code you can take control
of computer

e Local variables are stored on the stack, off the end of
that iIs stored return value

e Anything that crashes program can be exploitable

THE UNIVERSITY OF
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How Does User Code Talk to the Kernel?

e System Calls (syscalls)

e Syscalls are implemented in various ways on modern
systems

e [he traditional way on Linux was:
o Put the syscall number in a register
o Set the parameters in various registers
o Run a syscall instruction (often a software interrupt).

o The kernel then notices and calls the appropriate
Internal code

THE UNIVERSITY OF
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A Simple Syscall

ssize_t write(int fd, const void *buf, size_t count);

e Only three inputs, in theory could audit all possible paths
to code.

e Even with just 3 inputs, inside the kernel there are a lot
of issues (file descriptors have many types, etc).

THE UNIVERSITY OF
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A Complex Syscall — perf_event_open()

int perf_event_open(struct perf_event_attr *attr,
pid_t pid, int cpu, int group_fd,
unsigned long flags);

e The perf_event_attr struct has 40+ fields that
interact in complex ways with the other arguments
e For more info check the (extremely long) manpage

documentation
e It's a convoluted and complex manpage, (I can say that

as | wrote most of it)

THE UNIVERSITY OF
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Testing perf_event_open()

e PAPI| and other perf tools use this interface

e [here are too many combinations of arguments to test
every possible combination in a reasonable amount of
time

e Is there a way to automatically scan for errors?

THE UNIVERSITY OF
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fuzzing

e Automatically scanning for errors by trying random
Inputs

e Term invented by Barton Miller (Wisconsin) in the
1980s when noticed line noise on bad dial-up connection
crashed many UNIX utils

e It is now a well-established technique, with many fuzzers
being available for code at all levels of the programming
stack

THE UNIVERSITY OF
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First steps with Trinity

e Kernel developer Dave Jones has a generic kernel fuzzer
known as Trinity

e | contributed perf_event_open support to Trinity
e T his found a serious root-exploit, CVE-2013-2094
e This led me to making a more targeted fuzzer

TTTTTTTTTTTTTTT

LJIMAINE 2 RAA



The perf_fuzzer

https://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/

o Targeted fuzzer, aimed only at perf_event_open()
interface

e It knows what valid events look like, and creates almost
but not quite valid events when testing

e Also tests other, related, system calls that operate on
file descriptors returned by perf_event_open()
close, read, write, ioctl, mmap, prctl, fork, poll, access

THE UNIVERSITY OF
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https://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/

Why not just use Syzkaller?

e Since the introduction of perf_fuzzer other more
advanced kernel fuzzers have been developed

e Most well known is probably Vyukov's Syzkaller

e perf_fuzzer still finds bugs missed by this, due to its
targeted nature (rather than pure random search)

e Could probably spend time enhancing Syzkaller to do
better
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List of Bugs Found

e Over 30 major (crashing or exploitable bugs found)
e Many WARNING or BUG messages triggered
e Also various correctness and compatibility bugs found

TTTTTTTTTTTTTTT
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Short Summary of Major Bugs Found

Linux perf_event security bugs found by fuzzers. (T=Trinity, P=perf_fuzzer, H=honggfuzz, S=Syzkaller)

Which Type CVE Fixed in Linux Description

T root exploit | CVE-2013-2094 | 3.9 8176cced706bbebd 32/64 bit cast

P crash - 3.10  9bb5d40cd93c9dd4 mmap accounting hole

P crash - 3.10 26cb63ad11e04047 mmap double free

P panic - 3.11  d9f966357b14e356 ARM array out of bounds

P root exploit CVE-2013-4254 3.11  c95eb3184eala3a2 ARM event validation

P panic - 3.11  868f6fea8fa63f09 ARM®64 array out of bounds

P panic - 3.11 ee7538a008a45050 ARM®64 event validation

P panic - 3.13  6e22f8f2e8d81dca alpha array out-of-bounds

P/T crash CVE-2013-2930 | 3.13  12ae030d54ef2507 perf/ftrace wrong permissions check
P crash - 3.14  0ac09f9f8cd1fb02 pagefault ftrace cr2 corruption

P crash - 3.15  46ce0fe97abbe753 race when removing event

P crash - 3.15  ffb4ef21ac4308c2 function cannot handle NULL return
P reboot - 3.17  3577af70a2ce4853 race in perf_remove_from_context()
P crash - 3.19  98b008dff8452653 misplaced parenthesis in rapl_scale()
P crash - 3.19  c3c87e7704582aa00 fix the grouping condition

P crash - 3.19  a83fe28e2e453924 Fix put_event() ctx lock

P crash - 3.19  af91568e762d0493 IVB-EP uncore assign events

THE UNIVERSITY OF
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Short Summary of Major Bugs Found

(page2)

P crash - 4.0 d525211f9d1be8b5 Fix perf_callchain() hang

H memleak - 4.0 a83fe28e2e453924 fix put_event() ctx leak

P crash - 4.1 8fff105e13041e49 arm64 /arm reject groups spanning PMUs

P crash - 4.1 15c1247953e8a452 snb_uncore_imc_event_start crash

P crash - 4.2 57ffc5cab79f499f Fix AUX buffer refcounting

P panic - 4.5 fb822e6076d97269 powerpc: Oops destroying hw_breakpoint event

P crash - 4.8 Ob8fle2e26bfc6b9 crash in perf_cgroup_attach

P crash - 4.9 7fbe6ac02485504b vmalloc stack unwinder crash

P(?) exploit CVE-2017-6001 | 4.10  321027c1fe77f892 perf_event_open() vs. move_group race

S bug - 411  e552a8389aa409e2 Fix use-after-free in perf_release()

P crash - 4.15  99a9dc98bab2267c BTS causes crash with KPTI meltdown fixes

P crash - 4.20 472ded49fdc53365¢ BTS crash, uninitialized ptr

S crash - 5.3 1cf8dfe8a661f046 Race between close() and fork()

P panic - 5.5 242bff7fc515d8eb 1915 null pointer dereference

P crash - 5.12  d88d05a9e0b6d935 NULL pointer dereference with PEBS on haswell
THE UNIVERSITY OF
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perf_fuzzer is open source

e This means other people have used it to find bugs

e A number of bugs found in ARM devices, Android phones
famously had really buggy perf implementations (why
was it even enabled)

e Someone (not me) possibly was even getting bug
bounties for reporting these

MAINE 29 A A 4



Use by Community

e Linux Kernel perf developers use the perf_fuzzer to test
patches before submitting
e Most notably the ARM developers heavily use it

THE UNIVERSITY OF
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Fuzzing Setup

e Run fuzzer on one machine

e Logging machine over serial port

e \Why separate machine? Crashes can crash so hard the
log doesn’'t make it to disk or even the display

e |'ve had machines crash so hard they took out the whole
Ethernet subnet

Fuzzing Logging
Machine Machine

Serial Cable

THE UNIVERSITY OF
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Fuzzing Output

**x*x perf_fuzzer 0.32-rcO *** by Vince Weaver

Linux version 5.18.0-rcl+ x86_64
Processor: Intel 6/60/3

Stopping after 50000

Watchdog enabled with timeout 60s

Will auto-exit if signal storm detected
Seeding RNG from time 1653664198

To reproduce, try:
echo 1 > /proc/sys/kernel/nmi_watchdog
echo 0 > /proc/sys/kernel/perf_event_paranoid
echo 750 > /proc/sys/kernel/perf_event_max_sample_rate
./perf_fuzzer -t OCIRMQWPFpAi -s 50000 -r 1653664198

Fuzzing the following syscalls: mmap perf_event_open close read write ioctl fork prctl poll
Also attempting the following: busy-instruction-loop accessing-perf-proc-and-sys-files trash:
*NOT* attempting the following: signal-handler-on-overflow

Pid=2351163, sleeping l1s
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Uﬂ MAINE 32 VA A/



Cannot open /sys/kernel/tracing/kprobe_events

Iteration 10000,

124955 syscalls in 42.79 s (2.920 k syscalls/s)

Open attempts: 120366 Successful: 942 Currently open: 902

Close:
Read:
Write:
illoicilElR:
Mmap:

THE UNIVERSITY OF

m MAINE

EPERM : 23
ENOENT : 1049
E2BIG : 9450

EBADF : 6826
EACCES : 5030

ENODEV : 4
EINVAL : 96821
ENOSPC : &

EOVERFLOW 1 4

EOPNOTSUPP : 212

Trinity Type (Normal 90/29979) (Sampling 18/30089) (Global 800/30137) (Random 34/30161)
Type (Hardware 227/16831) (software 294/16366) (tracepoint 64/16025) (Cache 55/15082) (c;
40/42 Successful

45/60 Successful

0/50 Successful

21/67 Successful: (ENABLE 8/8) (DISABLE 2/2) (REFRESH 3/8) (RESET 3/4) (PERIOD 0/3) (SET_I
418/1082 Successful: (MMAP 418/1082) (TRASH 154/169) (READ 130/133) (UNMAP 182/193) (AUX
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Prctl:
Fork:
Poll:
Access:

900/900 Successful
445/445 Successful
890/902 Successful
136/961 Successful

Overflows: 0O Recursive: O

SIGIOs due to RT signal queue full: O

THE UNIVERSITY OF
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Bug Found

[96289.009646] BUG: kernel NULL pointer dereference, address: 0000000000000150
[96289.017094] #PF: supervisor read access in kernel mode

[96289.022588] #PF: error_code(0x0000) - not-present page

[96289.028069] PGD O P4D O

[96289.030796] Oops: 0000 [#1] SMP PTI

[96289.034549] CPU: O PID: O Comm: swapper/O Tainted: G W 5.11.0-rcb+ #151
[96289.043059] Hardware name: LENOVO 10AMOOOAUS/SHARKBAY, BIOS FBKT72AUS 01/26/2014
[96289.050946] RIP: 0010:intel_pmu_drain_pebs_nhm+0x464/0x5f0

[96289.056817] Code: 09 00 00 Of b6 cO 49 39 c4 74 2a 48 63 82 78 09 00 00 48 01 c5 48 39 6¢c 24 08 T¢
[96289.076876] RSP: 0000:fffffff£822039e¢0 EFLAGS: 00010097

[96289.082468] RAX: 0000000000000002 RBX: 0000000000000155 RCX: 0000000000000008
[96289.090095] RDX: ffff88811ac118a0 RSI: ffffffff£82203980 RDI: fffffff£82203980
[96289.158414] Call Trace:

[96289.161041] 7 update_blocked_averages+0x532/0x620

[96289.166152] 7 update_group_capacity+0x25/0x1d0

[96289.171025] 7 cpumask_next_and+0x19/0x20

[96289.175339] 7 update_sd_lb_stats.constprop.0+0x702/0x820

[96289.181105] intel_pmu_drain_pebs_buffer+0x33/0x50

[96289.186259] 7 x86_pmu_commit_txn+0xbc/0xf0

[96289.190749] 7 _raw_spin_lock_irgsave+0x1d/0x30
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Tracking down and Reporting Bugs

e [ime consuming

e Kernel oops report usually isn't enough
(for security modern kernels make it harder to match
symbols/addresses)

o If new bug can “git-bisect” kernel to find where
introduced

e Even if straightforward bug can take a while to make
sure bug gets fixed properly (kernel bureaucracy)
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Reproducible Test Cases

e Devs like small repeata
e By saving random num
(but not always) get re

ble test cases
ber seed and other info can often

heatable fuzzer runs

e These can still be millions of instructions
e Sometimes can get those by recording traces, but this

takes forever

THE UNIVERSITY OF
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Is this the only security issue with perf
measurement?

e perf_event is often disabled by default. Why?

e Partly this was due to the bugs found by fuzzer (sorry!)

e Other types of attacks, information leakage, where one
user can figure out what another is doing be carefully
measuring time / cycles / other metric of a shared
resource (cache, CPU)

e This is much easier if perf enabled, so often disabled
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Current Status

e Can now fuzz for months with no bugs

e Linux kernel developers run the fuzzer before submitting
so bugs happen less often

e Can't rest! new platforms and perf features added all
the time

e Many of the features are hardware dependent so might
not catch all issues on the few machines | test on

e Other fuzzers (Syzkaller) with more manpower behind
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Results of Research

e It took 7+ years but the perf_event_open() syscall
seems to be robust against fuzzing

e Lots of trouble getting published / grant money

e Did get a couple of non-academic publications, including
a relatively highly cited tech report

TTTTTTTTTTTTTTT
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Future Work: Is other software vulnerable?

What about the perf tool?

e Can easily crash on malformed (poorly documented)
perf.data analysis file

e Was trying to generate these from PAPI

e Making a small perf.data fuzzer found more bugs

e In theory could write an exploit where you write a
malicious perf .data file and get/trick someone to open
it with a buggy version of perf

e [ his work Is ongoing
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Questions?

vincent.weaver@maine. edu
https://web.eece.maine.edu/~vweaver/

We're always looking for Grad Students
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