inding bugs in HPC Systems with
the perf_fuzzer

Vince Weaver

vincent.weaver@maine.edu

PENT I

ICL Lunch Talk — 27 May 2022

10 Years since my last ICL Lunch Talk

Which was partially presented on an old Apple Il computer

o -~ ; L o, N
A = ! #

THE UNIVERSITY OF
IMAINE 1 RAAL

What Have | Been Up To Since Then?

THE UNIVERSITY OF
CJIMAINE z RAAL

Validating DRAM RAPL Power
Measurements

https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_validation.html

THE UNIVERSITY OF

IMAINE 3 VA A 4

v

https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_validation.html

Validating GPU Power Measurements

IEX® THE UNIVERSITY OF

[JMAINE 4 VA A 4

PAPI / perf_event / HPC Work

e Fast performance counter reads on x86 and ARM
e Raspberry Pi Cluster

https://web.eece.maine.edu/~vweaver/projects/pi-cluster/

THE UNIVERSITY OF

ITﬂ MAINE 5

https://web.eece.maine.edu/~vweaver/projects/pi-cluster/

VMWos — a custom Raspberry Pi
Operating System

-} Terminal - vince@atom: -
RAle Edit View Terminal Tans Help

] cat > out
cdefg

Wi, 2 i winceBma,, ¥ |virceEma,, X i

65 66 67 Ba 31 32 33 34 3 Ba

aH
i B4
4 HEE SRS R 6f
#i # ## i #E # 0
o R o # b

#it # #t w# it it # ##

i # i i - #H i # #

i o
AR O NG i i AN i O .

vmw05 Version 0.14-pre, Compiled Tue May 17 16:41:53 EDT 2016
One BCM2708 Processor, 448M RAM, 2_.00 Bogomips Total

pi

ited with @

CTRL-A Z for hel 115200 B8N1 (Minicom 2.7 VT102

CTRL-A Z for help | 115200 8N1 | NOR | Minicom 2.7.1 | VT182 | Offline | tyUSBl

http://www.deater.net/weave/vmwprod/vmwos/

THE UNIVERSITY OF

IMAINE ; RAAL

http://www.deater.net/weave/vmwprod/vmwos/

Fun Hardware Projects

e Related to Embedded Systems course | teach
e Lots of projects with blinking lights/music

THE UNIVERSITY OF

ITH MAINE 7

Apple 11/114 Background (1977)

e 1MHz 6502

o 4k-48k RAM

e Discrete 7400 series logic
e cassette (later 140k disks)
e Bitbang Speaker

e 40x24 text mode

e 40x48 15 color lo-res

e 140x192 6-color hi-res

e need 16k for hi-res graphics
e BASIC in ROM

8 VA A 4

Joined the Demoscene

e Essentially European Programming Competitions

e | specialize in Apple Il and Raspberry Pi demos, especially
size-coding (demos less than 256 bytes)

e Ongoing! (Ascension Holiday in Europe

XA THE UNIVERSITY OF

ITH MAINE

Game Demakes

Well, gou found me. Congratulations.

XA THE UNIVERSITY OF

ITﬂ MAINE 10 VA A/

More Game Demakes

http://www.deater.net/weave/vmwprod/demakes/

THE UNIVERSITY OF
ZIMAINE 1 VAL

http://www.deater.net/weave/vmwprod/demakes/

Back to Academic HPC Work

THE UNIVERSITY OF
LIMAINE 12
. 2

Are there bugs in HPC code/systems?

e More worrying, are there security bugs in such systems?
e If there are, does anyone care?

(I've been told that large HPC installations are so
hardened they wouldn't be affected by regular security
bugs)

THE UNIVERSITY OF
LJMAINE 13 WA A4

This work came from a bug where PAPI
crashed Linux

e Just running PAPI unit tests crashed Linux machine
completely

e Managed to trigger this on ICL server during the ICL
retreat while we were all remote

(I think the statute of limitations has passed so | can
admit that)

THE UNIVERSITY OF
LJMAINE 14 WA A4

How Can You Avoid a Crash?

e Send a bug report / bugfix upstream to the Linux
developers (we did)

e Make a test suite you run on every new kernel to make
sure the same bug doesn't happen again
https://github.com/deater/perf_event_tests

e [hese are reactionary though, can only help after a bug
Is found, which is too late

e Can we pre-emptively find new bugs before they are
a problem?

THE UNIVERSITY OF
LJMAINE 19 WA A4

https://github.com/deater/perf_event_tests

Why do we need an Operating System
anyway?

e On most processors to gather performance info need to
access special hardware registers (MSRs on x86)

e Giving a user full access to these can be dangerous, on
x86 can easily take over whole system if unrestricted
MSR access

e The Operating System can abstract away differences in
machines, as well as make sure only good MSR accesses
are happening

THE UNIVERSITY OF
LJMAINE 16 WA A4

How Can User Code Crash Linux?

e Linux Kernel is written in C, which famously doesn’t
check bounds when accessing memory

e If you can get code to write values off the end of memory
allocations, can corrupt data

e Worse, if you can over-write code you can take control
of computer

e Local variables are stored on the stack, off the end of
that iIs stored return value

e Anything that crashes program can be exploitable

THE UNIVERSITY OF
ZIMAINE 17 A A/

How Does User Code Talk to the Kernel?

e System Calls (syscalls)

e Syscalls are implemented in various ways on modern
systems

e [he traditional way on Linux was:
o Put the syscall number in a register
o Set the parameters in various registers
o Run a syscall instruction (often a software interrupt).

o The kernel then notices and calls the appropriate
Internal code

THE UNIVERSITY OF
LJMAINE 18 WA A4

A Simple Syscall

ssize_t write(int fd, const void *buf, size_t count);

e Only three inputs, in theory could audit all possible paths
to code.

e Even with just 3 inputs, inside the kernel there are a lot
of issues (file descriptors have many types, etc).

THE UNIVERSITY OF
[IMAINE 1 RAA

A Complex Syscall — perf_event_open()

int perf_event_open(struct perf_event_attr *attr,
pid_t pid, int cpu, int group_fd,
unsigned long flags);

e The perf_event_attr struct has 40+ fields that
interact in complex ways with the other arguments
e For more info check the (extremely long) manpage

documentation
e It's a convoluted and complex manpage, (I can say that

as | wrote most of it)

THE UNIVERSITY OF
[IMAINE 20 RAA

Testing perf_event_open()

e PAPI| and other perf tools use this interface

e [here are too many combinations of arguments to test
every possible combination in a reasonable amount of
time

e Is there a way to automatically scan for errors?

THE UNIVERSITY OF
LJMAINE 21 WA A4

fuzzing

e Automatically scanning for errors by trying random
Inputs

e Term invented by Barton Miller (Wisconsin) in the
1980s when noticed line noise on bad dial-up connection
crashed many UNIX utils

e It is now a well-established technique, with many fuzzers
being available for code at all levels of the programming
stack

THE UNIVERSITY OF
[IMAINE 2 RAA

First steps with Trinity

e Kernel developer Dave Jones has a generic kernel fuzzer
known as Trinity

e | contributed perf_event_open support to Trinity
e T his found a serious root-exploit, CVE-2013-2094
e This led me to making a more targeted fuzzer

TTTTTTTTTTTTTTT

LJIMAINE 2 RAA

The perf_fuzzer

https://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/

o Targeted fuzzer, aimed only at perf_event_open()
interface

e It knows what valid events look like, and creates almost
but not quite valid events when testing

e Also tests other, related, system calls that operate on
file descriptors returned by perf_event_open()
close, read, write, ioctl, mmap, prctl, fork, poll, access

THE UNIVERSITY OF
LJMAINE 24 WA A4

https://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/

Why not just use Syzkaller?

e Since the introduction of perf_fuzzer other more
advanced kernel fuzzers have been developed

e Most well known is probably Vyukov's Syzkaller

e perf_fuzzer still finds bugs missed by this, due to its
targeted nature (rather than pure random search)

e Could probably spend time enhancing Syzkaller to do
better

MAINE 25 A A 4

List of Bugs Found

e Over 30 major (crashing or exploitable bugs found)
e Many WARNING or BUG messages triggered
e Also various correctness and compatibility bugs found

TTTTTTTTTTTTTTT

[JMAINE 2 RAA/

Short Summary of Major Bugs Found

Linux perf_event security bugs found by fuzzers. (T=Trinity, P=perf_fuzzer, H=honggfuzz, S=Syzkaller)

Which Type CVE Fixed in Linux Description

T root exploit | CVE-2013-2094 | 3.9 8176cced706bbebd 32/64 bit cast

P crash - 3.10 9bb5d40cd93c9dd4 mmap accounting hole

P crash - 3.10 26cb63ad11e04047 mmap double free

P panic - 3.11 d9f966357b14e356 ARM array out of bounds

P root exploit CVE-2013-4254 3.11 c95eb3184eala3a2 ARM event validation

P panic - 3.11 868f6fea8fa63f09 ARM®64 array out of bounds

P panic - 3.11 ee7538a008a45050 ARM®64 event validation

P panic - 3.13 6e22f8f2e8d81dca alpha array out-of-bounds

P/T crash CVE-2013-2930 | 3.13 12ae030d54ef2507 perf/ftrace wrong permissions check
P crash - 3.14 0ac09f9f8cd1fb02 pagefault ftrace cr2 corruption

P crash - 3.15 46ce0fe97abbe753 race when removing event

P crash - 3.15 ffb4ef21ac4308c2 function cannot handle NULL return
P reboot - 3.17 3577af70a2ce4853 race in perf_remove_from_context()
P crash - 3.19 98b008dff8452653 misplaced parenthesis in rapl_scale()
P crash - 3.19 c3c87e7704582aa00 fix the grouping condition

P crash - 3.19 a83fe28e2e453924 Fix put_event() ctx lock

P crash - 3.19 af91568e762d0493 IVB-EP uncore assign events

THE UNIVERSITY OF
mﬂ MAINE 27 VA A

Short Summary of Major Bugs Found

(page2)

P crash - 4.0 d525211f9d1be8b5 Fix perf_callchain() hang

H memleak - 4.0 a83fe28e2e453924 fix put_event() ctx leak

P crash - 4.1 8fff105e13041e49 arm64 /arm reject groups spanning PMUs

P crash - 4.1 15c1247953e8a452 snb_uncore_imc_event_start crash

P crash - 4.2 57ffc5cab79f499f Fix AUX buffer refcounting

P panic - 4.5 fb822e6076d97269 powerpc: Oops destroying hw_breakpoint event

P crash - 4.8 Ob8fle2e26bfc6b9 crash in perf_cgroup_attach

P crash - 4.9 7fbe6ac02485504b vmalloc stack unwinder crash

P(?) exploit CVE-2017-6001 | 4.10 321027c1fe77f892 perf_event_open() vs. move_group race

S bug - 411 e552a8389aa409e2 Fix use-after-free in perf_release()

P crash - 4.15 99a9dc98bab2267c BTS causes crash with KPTI meltdown fixes

P crash - 4.20 472ded49fdc53365¢ BTS crash, uninitialized ptr

S crash - 5.3 1cf8dfe8a661f046 Race between close() and fork()

P panic - 5.5 242bff7fc515d8eb 1915 null pointer dereference

P crash - 5.12 d88d05a9e0b6d935 NULL pointer dereference with PEBS on haswell
THE UNIVERSITY OF
ITﬂ MAINE 28 VA A

perf_fuzzer is open source

e This means other people have used it to find bugs

e A number of bugs found in ARM devices, Android phones
famously had really buggy perf implementations (why
was it even enabled)

e Someone (not me) possibly was even getting bug
bounties for reporting these

MAINE 29 A A 4

Use by Community

e Linux Kernel perf developers use the perf_fuzzer to test
patches before submitting
e Most notably the ARM developers heavily use it

THE UNIVERSITY OF
[JMAINE 30 VA A 4

Fuzzing Setup

e Run fuzzer on one machine

e Logging machine over serial port

e \Why separate machine? Crashes can crash so hard the
log doesn’'t make it to disk or even the display

e |'ve had machines crash so hard they took out the whole
Ethernet subnet

Fuzzing Logging
Machine Machine

Serial Cable

THE UNIVERSITY OF
[IMAINE 5 RAA

Fuzzing Output

x*x perf_fuzzer 0.32-rcO * by Vince Weaver

Linux version 5.18.0-rcl+ x86_64
Processor: Intel 6/60/3

Stopping after 50000

Watchdog enabled with timeout 60s

Will auto-exit if signal storm detected
Seeding RNG from time 1653664198

To reproduce, try:
echo 1 > /proc/sys/kernel/nmi_watchdog
echo 0 > /proc/sys/kernel/perf_event_paranoid
echo 750 > /proc/sys/kernel/perf_event_max_sample_rate
./perf_fuzzer -t OCIRMQWPFpAi -s 50000 -r 1653664198

Fuzzing the following syscalls: mmap perf_event_open close read write ioctl fork prctl poll
Also attempting the following: busy-instruction-loop accessing-perf-proc-and-sys-files trash:
NOT attempting the following: signal-handler-on-overflow

Pid=2351163, sleeping l1s

THE UNIVERSITY OF

Uﬂ MAINE 32 VA A/

Cannot open /sys/kernel/tracing/kprobe_events

Iteration 10000,

124955 syscalls in 42.79 s (2.920 k syscalls/s)

Open attempts: 120366 Successful: 942 Currently open: 902

Close:
Read:
Write:
illoicilElR:
Mmap:

THE UNIVERSITY OF

m MAINE

EPERM : 23
ENOENT : 1049
E2BIG : 9450

EBADF : 6826
EACCES : 5030

ENODEV : 4
EINVAL : 96821
ENOSPC : &

EOVERFLOW 1 4

EOPNOTSUPP : 212

Trinity Type (Normal 90/29979) (Sampling 18/30089) (Global 800/30137) (Random 34/30161)
Type (Hardware 227/16831) (software 294/16366) (tracepoint 64/16025) (Cache 55/15082) (c;
40/42 Successful

45/60 Successful

0/50 Successful

21/67 Successful: (ENABLE 8/8) (DISABLE 2/2) (REFRESH 3/8) (RESET 3/4) (PERIOD 0/3) (SET_I
418/1082 Successful: (MMAP 418/1082) (TRASH 154/169) (READ 130/133) (UNMAP 182/193) (AUX

33 VA A 4

Prctl:
Fork:
Poll:
Access:

900/900 Successful
445/445 Successful
890/902 Successful
136/961 Successful

Overflows: 0O Recursive: O

SIGIOs due to RT signal queue full: O

THE UNIVERSITY OF

ITH MAINE

34

Bug Found

[96289.009646] BUG: kernel NULL pointer dereference, address: 0000000000000150
[96289.017094] #PF: supervisor read access in kernel mode

[96289.022588] #PF: error_code(0x0000) - not-present page

[96289.028069] PGD O P4D O

[96289.030796] Oops: 0000 [#1] SMP PTI

[96289.034549] CPU: O PID: O Comm: swapper/O Tainted: G W 5.11.0-rcb+ #151
[96289.043059] Hardware name: LENOVO 10AMOOOAUS/SHARKBAY, BIOS FBKT72AUS 01/26/2014
[96289.050946] RIP: 0010:intel_pmu_drain_pebs_nhm+0x464/0x5f0

[96289.056817] Code: 09 00 00 Of b6 cO 49 39 c4 74 2a 48 63 82 78 09 00 00 48 01 c5 48 39 6¢c 24 08 T¢
[96289.076876] RSP: 0000:fffffff£822039e¢0 EFLAGS: 00010097

[96289.082468] RAX: 0000000000000002 RBX: 0000000000000155 RCX: 0000000000000008
[96289.090095] RDX: ffff88811ac118a0 RSI: ffffffff£82203980 RDI: fffffff£82203980
[96289.158414] Call Trace:

[96289.161041] 7 update_blocked_averages+0x532/0x620

[96289.166152] 7 update_group_capacity+0x25/0x1d0

[96289.171025] 7 cpumask_next_and+0x19/0x20

[96289.175339] 7 update_sd_lb_stats.constprop.0+0x702/0x820

[96289.181105] intel_pmu_drain_pebs_buffer+0x33/0x50

[96289.186259] 7 x86_pmu_commit_txn+0xbc/0xf0

[96289.190749] 7 _raw_spin_lock_irgsave+0x1d/0x30

THE UNIVERSITY OF

m MAINE 35 VA A/

Tracking down and Reporting Bugs

e [ime consuming

e Kernel oops report usually isn't enough
(for security modern kernels make it harder to match
symbols/addresses)

o If new bug can “git-bisect” kernel to find where
introduced

e Even if straightforward bug can take a while to make
sure bug gets fixed properly (kernel bureaucracy)

MAINE 36 Y

Reproducible Test Cases

e Devs like small repeata
e By saving random num
(but not always) get re

ble test cases
ber seed and other info can often

heatable fuzzer runs

e These can still be millions of instructions
e Sometimes can get those by recording traces, but this

takes forever

THE UNIVERSITY OF

37 VA A 4

Is this the only security issue with perf
measurement?

e perf_event is often disabled by default. Why?

e Partly this was due to the bugs found by fuzzer (sorry!)

e Other types of attacks, information leakage, where one
user can figure out what another is doing be carefully
measuring time / cycles / other metric of a shared
resource (cache, CPU)

e This is much easier if perf enabled, so often disabled

MAINE 38 Y

Current Status

e Can now fuzz for months with no bugs

e Linux kernel developers run the fuzzer before submitting
so bugs happen less often

e Can't rest! new platforms and perf features added all
the time

e Many of the features are hardware dependent so might
not catch all issues on the few machines | test on

e Other fuzzers (Syzkaller) with more manpower behind

THE UNIVERSITY OF
LJMAINE 39 VA A4

Results of Research

e It took 7+ years but the perf_event_open() syscall
seems to be robust against fuzzing

e Lots of trouble getting published / grant money

e Did get a couple of non-academic publications, including
a relatively highly cited tech report

TTTTTTTTTTTTTTT

LJIMAINE 10 RAA

Future Work: Is other software vulnerable?

What about the perf tool?

e Can easily crash on malformed (poorly documented)
perf.data analysis file

e Was trying to generate these from PAPI

e Making a small perf.data fuzzer found more bugs

e In theory could write an exploit where you write a
malicious perf .data file and get/trick someone to open
it with a buggy version of perf

e [his work Is ongoing

THE UNIVERSITY OF
LJMAINE n WA A4

Questions?

vincent.weaver@maine. edu
https://web.eece.maine.edu/~vweaver/

We're always looking for Grad Students

THE UNIVERSITY OF
LIMAINE 42
. 2

https://web.eece.maine.edu/~vweaver/

