
Finding bugs in HPC Systems with
the perf fuzzer

Vince Weaver
vincent.weaver@maine.edu

University of MaineUniversity of Maine

ICL Lunch Talk — 27 May 2022

10 Years since my last ICL Lunch Talk

Which was partially presented on an old Apple II computer

1

What Have I Been Up To Since Then?

2

Validating DRAM RAPL Power
Measurements

https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_validation.html

3

https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_validation.html

Validating GPU Power Measurements

4

PAPI / perf event / HPC Work

• Fast performance counter reads on x86 and ARM

• Raspberry Pi Cluster

https://web.eece.maine.edu/~vweaver/projects/pi-cluster/

5

https://web.eece.maine.edu/~vweaver/projects/pi-cluster/

VMWos – a custom Raspberry Pi
Operating System

http://www.deater.net/weave/vmwprod/vmwos/

6

http://www.deater.net/weave/vmwprod/vmwos/

Fun Hardware Projects

• Related to Embedded Systems course I teach

• Lots of projects with blinking lights/music

7

Apple II/II+ Background (1977)

• 1MHz 6502

• 4k-48k RAM

• Discrete 7400 series logic

• cassette (later 140k disks)

• Bitbang Speaker

• 40x24 text mode

• 40x48 15 color lo-res

• 140x192 6-color hi-res

• need 16k for hi-res graphics

• BASIC in ROM

8

Joined the Demoscene

• Essentially European Programming Competitions

• I specialize in Apple II and Raspberry Pi demos, especially

size-coding (demos less than 256 bytes)

• Ongoing! (Ascension Holiday in Europe)

9

Game Demakes

10

More Game Demakes

http://www.deater.net/weave/vmwprod/demakes/

11

http://www.deater.net/weave/vmwprod/demakes/

Back to Academic HPC Work

12

Are there bugs in HPC code/systems?

• More worrying, are there security bugs in such systems?

• If there are, does anyone care?

(I’ve been told that large HPC installations are so

hardened they wouldn’t be affected by regular security

bugs)

13

This work came from a bug where PAPI
crashed Linux

• Just running PAPI unit tests crashed Linux machine

completely

• Managed to trigger this on ICL server during the ICL

retreat while we were all remote

(I think the statute of limitations has passed so I can

admit that)

14

How Can You Avoid a Crash?

• Send a bug report / bugfix upstream to the Linux

developers (we did)

• Make a test suite you run on every new kernel to make

sure the same bug doesn’t happen again

https://github.com/deater/perf_event_tests

• These are reactionary though, can only help after a bug

is found, which is too late

• Can we pre-emptively find new bugs before they are
a problem?

15

https://github.com/deater/perf_event_tests

Why do we need an Operating System
anyway?

• On most processors to gather performance info need to

access special hardware registers (MSRs on x86)

• Giving a user full access to these can be dangerous, on

x86 can easily take over whole system if unrestricted

MSR access

• The Operating System can abstract away differences in

machines, as well as make sure only good MSR accesses

are happening

16

How Can User Code Crash Linux?

• Linux Kernel is written in C, which famously doesn’t

check bounds when accessing memory

• If you can get code to write values off the end of memory

allocations, can corrupt data

• Worse, if you can over-write code you can take control

of computer

• Local variables are stored on the stack, off the end of

that is stored return value

• Anything that crashes program can be exploitable

17

How Does User Code Talk to the Kernel?

• System Calls (syscalls)

• Syscalls are implemented in various ways on modern

systems

• The traditional way on Linux was:

◦ Put the syscall number in a register

◦ Set the parameters in various registers

◦ Run a syscall instruction (often a software interrupt).

◦ The kernel then notices and calls the appropriate

internal code

18

A Simple Syscall

ssize_t write(int fd , const void *buf , size_t count);

• Only three inputs, in theory could audit all possible paths

to code.

• Even with just 3 inputs, inside the kernel there are a lot

of issues (file descriptors have many types, etc).

19

A Complex Syscall — perf event open()

int perf_event_open(struct perf_event_attr *attr ,

pid_t pid , int cpu , int group_fd ,

unsigned long flags);

• The perf event attr struct has 40+ fields that

interact in complex ways with the other arguments

• For more info check the (extremely long) manpage

documentation

• It’s a convoluted and complex manpage, (I can say that

as I wrote most of it)

20

Testing perf event open()

• PAPI and other perf tools use this interface

• There are too many combinations of arguments to test

every possible combination in a reasonable amount of

time

• Is there a way to automatically scan for errors?

21

fuzzing

• Automatically scanning for errors by trying random

inputs

• Term invented by Barton Miller (Wisconsin) in the

1980s when noticed line noise on bad dial-up connection

crashed many UNIX utils

• It is now a well-established technique, with many fuzzers

being available for code at all levels of the programming

stack

22

First steps with Trinity

• Kernel developer Dave Jones has a generic kernel fuzzer

known as Trinity

• I contributed perf event open support to Trinity

• This found a serious root-exploit, CVE-2013-2094

• This led me to making a more targeted fuzzer

23

The perf fuzzer

https://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/

• Targeted fuzzer, aimed only at perf event open()

interface

• It knows what valid events look like, and creates almost

but not quite valid events when testing

• Also tests other, related, system calls that operate on

file descriptors returned by perf event open()

close, read, write, ioctl, mmap, prctl, fork, poll, access

24

https://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/

Why not just use Syzkaller?

• Since the introduction of perf fuzzer other more

advanced kernel fuzzers have been developed

• Most well known is probably Vyukov’s Syzkaller

• perf fuzzer still finds bugs missed by this, due to its

targeted nature (rather than pure random search)

• Could probably spend time enhancing Syzkaller to do

better

25

List of Bugs Found

• Over 30 major (crashing or exploitable bugs found)

• Many WARNING or BUG messages triggered

• Also various correctness and compatibility bugs found

26

Short Summary of Major Bugs Found
Linux perf event security bugs found by fuzzers. (T=Trinity, P=perf fuzzer, H=honggfuzz, S=Syzkaller)

Which Type CVE Fixed in Linux Description

T root exploit CVE-2013-2094 3.9 8176cced706b5e5d 32/64 bit cast

P crash - 3.10 9bb5d40cd93c9dd4 mmap accounting hole

P crash - 3.10 26cb63ad11e04047 mmap double free

P panic - 3.11 d9f966357b14e356 ARM array out of bounds

P root exploit CVE-2013-4254 3.11 c95eb3184ea1a3a2 ARM event validation

P panic - 3.11 868f6fea8fa63f09 ARM64 array out of bounds

P panic - 3.11 ee7538a008a45050 ARM64 event validation

P panic - 3.13 6e22f8f2e8d81dca alpha array out-of-bounds

P/T crash CVE-2013-2930 3.13 12ae030d54ef2507 perf/ftrace wrong permissions check

P crash - 3.14 0ac09f9f8cd1fb02 pagefault ftrace cr2 corruption

P crash - 3.15 46ce0fe97a6be753 race when removing event

P crash - 3.15 ffb4ef21ac4308c2 function cannot handle NULL return

P reboot - 3.17 3577af70a2ce4853 race in perf remove from context()

P crash - 3.19 98b008dff8452653 misplaced parenthesis in rapl scale()

P crash - 3.19 c3c87e770458aa00 fix the grouping condition

P crash - 3.19 a83fe28e2e453924 Fix put event() ctx lock

P crash - 3.19 af91568e762d0493 IVB-EP uncore assign events

27

Short Summary of Major Bugs Found
(page2)

P crash - 4.0 d525211f9d1be8b5 Fix perf callchain() hang

H memleak - 4.0 a83fe28e2e453924 fix put event() ctx leak

P crash - 4.1 8fff105e13041e49 arm64/arm reject groups spanning PMUs

P crash - 4.1 15c1247953e8a452 snb uncore imc event start crash

P crash - 4.2 57ffc5ca679f499f Fix AUX buffer refcounting

P panic - 4.5 fb822e6076d97269 powerpc: Oops destroying hw breakpoint event

P crash - 4.8 0b8f1e2e26bfc6b9 crash in perf cgroup attach

P crash - 4.9 7fbe6ac02485504b vmalloc stack unwinder crash

P(?) exploit CVE-2017-6001 4.10 321027c1fe77f892 perf event open() vs. move group race

S bug - 4.11 e552a8389aa409e2 Fix use-after-free in perf release()

P crash - 4.15 99a9dc98ba52267c BTS causes crash with KPTI meltdown fixes

P crash - 4.20 472de49fdc53365c BTS crash, uninitialized ptr

S crash - 5.3 1cf8dfe8a661f046 Race between close() and fork()

P panic - 5.5 242bff7fc515d8e5 i915 null pointer dereference

P crash - 5.12 d88d05a9e0b6d935 NULL pointer dereference with PEBS on haswell

28

perf fuzzer is open source

• This means other people have used it to find bugs

• A number of bugs found in ARM devices, Android phones

famously had really buggy perf implementations (why

was it even enabled)

• Someone (not me) possibly was even getting bug

bounties for reporting these

29

Use by Community

• Linux Kernel perf developers use the perf fuzzer to test

patches before submitting

• Most notably the ARM developers heavily use it

30

Fuzzing Setup

• Run fuzzer on one machine

• Logging machine over serial port

• Why separate machine? Crashes can crash so hard the

log doesn’t make it to disk or even the display

• I’ve had machines crash so hard they took out the whole

Ethernet subnet

Machine
Fuzzing

Machine
Logging

Serial Cable

*** perf_fuzzer

Linux version 5.1

Fuzzing now

31

Fuzzing Output

*** perf_fuzzer 0.32-rc0 *** by Vince Weaver

Linux version 5.18.0-rc1+ x86_64

Processor: Intel 6/60/3

Stopping after 50000

Watchdog enabled with timeout 60s

Will auto-exit if signal storm detected

Seeding RNG from time 1653664198

To reproduce, try:

echo 1 > /proc/sys/kernel/nmi_watchdog

echo 0 > /proc/sys/kernel/perf_event_paranoid

echo 750 > /proc/sys/kernel/perf_event_max_sample_rate

./perf_fuzzer -t OCIRMQWPFpAi -s 50000 -r 1653664198

Fuzzing the following syscalls: mmap perf_event_open close read write ioctl fork prctl poll

Also attempting the following: busy-instruction-loop accessing-perf-proc-and-sys-files trashing-the-mmap-page

NOT attempting the following: signal-handler-on-overflow

Pid=2351163, sleeping 1s

32

==

Starting fuzzing at 2022-05-27 11:09:59

==

Cannot open /sys/kernel/tracing/kprobe_events

Iteration 10000, 124955 syscalls in 42.79 s (2.920 k syscalls/s)

Open attempts: 120366 Successful: 942 Currently open: 902

EPERM : 23

ENOENT : 1049

E2BIG : 9450

EBADF : 6826

EACCES : 5030

ENODEV : 4

EINVAL : 96821

ENOSPC : 5

EOVERFLOW : 4

EOPNOTSUPP : 212

Trinity Type (Normal 90/29979)(Sampling 18/30089)(Global 800/30137)(Random 34/30161)

Type (Hardware 227/16831)(software 294/16366)(tracepoint 64/16025)(Cache 55/15082)(cpu 266/16221)(breakpoint 8/15690)(kprobe 0/921)(power 1/960)(msr 9/1059)(uncore_imc 0/1041)(uncore_cbox_0 4/955)(uncore_cbox_1 3/957)(uncore_cbox_2 2/986)(uncore_cbox_3 6/951)(uncore_arb 1/967)(cstate_core 1/927)(cstate_pkg 1/1050)(i915 0/931)(#18 0/8)(>19 0/12438)

Close: 40/42 Successful

Read: 45/60 Successful

Write: 0/50 Successful

Ioctl: 21/67 Successful: (ENABLE 8/8)(DISABLE 2/2)(REFRESH 3/8)(RESET 3/4)(PERIOD 0/3)(SET_OUTPUT 0/5)(SET_FILTER 0/4)(ID 3/3)(SET_BPF 0/4)(PAUSE_OUTPUT 2/4)(QUERY_BPF 0/2)(MOD_ATTR 0/8)(#12 0/0)(#13 0/0)(#14 0/0)(>14 0/12)

Mmap: 418/1082 Successful: (MMAP 418/1082)(TRASH 154/169)(READ 130/133)(UNMAP 182/193)(AUX 0/104)(AUX_READ 0/0)

33

Prctl: 900/900 Successful

Fork: 445/445 Successful

Poll: 890/902 Successful

Access: 136/961 Successful

Overflows: 0 Recursive: 0

SIGIOs due to RT signal queue full: 0

34

Bug Found

[96289.009646] BUG: kernel NULL pointer dereference, address: 0000000000000150

[96289.017094] #PF: supervisor read access in kernel mode

[96289.022588] #PF: error_code(0x0000) - not-present page

[96289.028069] PGD 0 P4D 0

[96289.030796] Oops: 0000 [#1] SMP PTI

[96289.034549] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G W 5.11.0-rc5+ #151

[96289.043059] Hardware name: LENOVO 10AM000AUS/SHARKBAY, BIOS FBKT72AUS 01/26/2014

[96289.050946] RIP: 0010:intel_pmu_drain_pebs_nhm+0x464/0x5f0

[96289.056817] Code: 09 00 00 0f b6 c0 49 39 c4 74 2a 48 63 82 78 09 00 00 48 01 c5 48 39 6c 24 08 76 17 0f b6 05 14 70 3f 01 83 e0 0f 3c 03 77 a4 <48> 8b 85 90 00 00 00 eb 9f 31 ed 83 eb 01 83 fb 01 0f 85 30 ff ff

[96289.076876] RSP: 0000:ffffffff822039e0 EFLAGS: 00010097

[96289.082468] RAX: 0000000000000002 RBX: 0000000000000155 RCX: 0000000000000008

[96289.090095] RDX: ffff88811ac118a0 RSI: ffffffff82203980 RDI: ffffffff82203980

[96289.158414] Call Trace:

[96289.161041] ? update_blocked_averages+0x532/0x620

[96289.166152] ? update_group_capacity+0x25/0x1d0

[96289.171025] ? cpumask_next_and+0x19/0x20

[96289.175339] ? update_sd_lb_stats.constprop.0+0x702/0x820

[96289.181105] intel_pmu_drain_pebs_buffer+0x33/0x50

[96289.186259] ? x86_pmu_commit_txn+0xbc/0xf0

[96289.190749] ? _raw_spin_lock_irqsave+0x1d/0x30

35

Tracking down and Reporting Bugs

• Time consuming

• Kernel oops report usually isn’t enough

(for security modern kernels make it harder to match

symbols/addresses)

• If new bug can “git-bisect” kernel to find where

introduced

• Even if straightforward bug can take a while to make

sure bug gets fixed properly (kernel bureaucracy)

36

Reproducible Test Cases

• Devs like small repeatable test cases

• By saving random number seed and other info can often

(but not always) get repeatable fuzzer runs

• These can still be millions of instructions

• Sometimes can get those by recording traces, but this

takes forever

37

Is this the only security issue with perf
measurement?

• perf event is often disabled by default. Why?

• Partly this was due to the bugs found by fuzzer (sorry!)

• Other types of attacks, information leakage, where one

user can figure out what another is doing be carefully

measuring time / cycles / other metric of a shared

resource (cache, CPU)

• This is much easier if perf enabled, so often disabled

38

Current Status

• Can now fuzz for months with no bugs

• Linux kernel developers run the fuzzer before submitting

so bugs happen less often

• Can’t rest! new platforms and perf features added all

the time

• Many of the features are hardware dependent so might

not catch all issues on the few machines I test on

• Other fuzzers (Syzkaller) with more manpower behind

39

Results of Research

• It took 7+ years but the perf event open() syscall

seems to be robust against fuzzing

• Lots of trouble getting published / grant money

• Did get a couple of non-academic publications, including

a relatively highly cited tech report

40

Future Work: Is other software vulnerable?

What about the perf tool?

• Can easily crash on malformed (poorly documented)

perf.data analysis file

• Was trying to generate these from PAPI

• Making a small perf.data fuzzer found more bugs

• In theory could write an exploit where you write a

malicious perf.data file and get/trick someone to open

it with a buggy version of perf

• This work is ongoing

41

Questions?

vincent.weaver@maine.edu

https://web.eece.maine.edu/~vweaver/

We’re always looking for Grad Students

42

https://web.eece.maine.edu/~vweaver/

