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CHAPTER 1

INTRODUCTION AND MOTIVATION

Energy and power consumption are increasingly important design constraints

in modern computing systems, yet gathering information on these metrics remains

di�cult. This work describes the instrumentation and analysis of energy and power

on modern systems with the intention of gaining insight into how these machines

consume energy.

There are many existing frameworks for gathering power and energy usage of a

system. Typically they have low resolution (1Hz or less), are expensive (requiring

costly calibrated voltage meters), do not provide data in real time (data is gathered

for later analysis), are not fully validated, and are not easily obtained.

This research looks into providing high-resolution, low-cost, validated, well-

documented power meters that can be easily procured and installed into systems

allowing detailed, �ne-grained analysis of power and energy.

1.1 Motivation

Motivations for this kind of power and energy measurement are varied. In general

it is always good to save power and energy, if only because this saves the consumer

money when it is time to pay the power bill. Reducing power consumption also

helps in other ways; often, reduced power correlates to reduced heat generation,

which can help with cooling costs and fan noise, and other side e�ects. A group

with the most to gain is those who have large numbers of computers, including

large data centers and supercomputers. Some of the fastest supercomputers in the

world [5] have millions of processors and use many Megawatt s of power (an amount
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equal to the consumption of a small town). By just saving 1 watt per core you can

save 1 megawatt of electricity which is a major accomplishment.

Another area where power savings matter are embedded or mobile devices (one

common example is a cell phone). Saving power in this case will directly correspond

to longer battery life, or the possibility for using smaller, more lightweight batteries

so there is a large interest in conserving power and energy in this �eld too.

Power measurement can also provide bene�ts more than just reducing overall

power bills. One problem is not the total amount of power, but using a constant

amount. Cameron [14] gives an example where a large cluster of Xeon/Tesla ma-

chines can have power swings of as much as 62% within 50ms in some workloads. If

many machines have swings like this at once it can put a large strain on the power

distribution network. Being able to monitor and maybe avoid such large swings can

also help when implementing large computer systems.

1.2 Background

Power and energy are commonly used terms that have speci�c meanings. They

are often used interchangeably, but the terms mean di�erent things. Power describes

instantaneous electrical usage whereas energy describes the total amount of electrical

work done over a period of time.

1.2.1 Power

Power is most generally de�ned as the rate of doing work. In an electrical

system the power is de�ned as the rate of transmission of electricity in a circuit

and is measured in watts. Power usage is important to consider when designing

an electrical system because it dictates the nature of the power supply. Exceeding

power supply limits may result in system failure.
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Instantaneous power is de�ned in Equation 1.1 as the relationship between volt-

age, current, and resistance, in accordance with Ohm's Law.

P = V · I = I2 ·R =
V 2

R
(1.1)

To measure power experimentally, two of the three values must be known. For

a complex system such as a CPU the resistance cannot be directly measured. This

means that the input voltage and the current must be used to calculate the power.

1.2.2 Energy

Power is not su�cient to describe the electrical usage of a system. Power simply

provides an instantaneous snapshot of the system and since computational tasks

run for long periods, time must also be considered. Where power describes the

instantaneous electrical usage of a system energy describes the electrical usage over

time and can most easily be seen in an electrical bill at the end of the month.

Average energy over a time period can be found by multiplying the average power

over that time by the length of the time period as shown in Equation 1.2.

E = W · t (1.2)

More accurately, energy can be described as the integral of power over time as

shown in Equation 1.3. This relationship between power and energy is essential

when designing instrumentation. It is as important to get accurate timestamps as

it is to get accurate power measurement data.

E =

∫ t

0

Pdt (1.3)
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1.2.3 Energy Delay

Simply optimizing for energy does not necessarily provide the best performance

of a system. Using very low energy is useless if the system takes a long time to

provide results. Various attempts have been made to provide a metric that takes into

account the con�icting demands of fast response time and low energy consumption.

The most popular variants are some variation on the Energy Delay Product [37, 54].

The aim of energy delay is to provide a single metric for comparing a compu-

tational task's energy usage and execution time. This is accomplished by adding

another time factor into the typical energy equation. Depending on the importance

of run time versus energy the time factor can be raised to a power to highlight its

contribution to the metric. Equation 1.4 shows this relationship.

ED = E · delayn (1.4)

1.3 Power and Energy Measurement

Power and energy are important metrics but generally are overlooked in favor

of execution time when optimizing for performance. This is likely due to an almost

universal lack of easily accessible metrics provided to the user. Program run time

can be measured directly but measuring the power and energy usage for a given

computing task is not as straightforward.

A myriad of related factors must be considered:

• Should static overheads such as cooling be included?

• Should peripherals such as disk usage and network I/O be included?

• Should operating system overhead be included?
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When measuring power and energy at the system level at a low temporal resolu-

tion it can be di�cult to isolate all of the various factors that impact measurement.

Finer resolution power data can be acquired by measuring subsystems individually

(when possible) and by sampling at much higher data rates.
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CHAPTER 2

RELATED WORK

Power and energy have been design concerns for a long time, and there is much

related work. My research contribution is in constructing a tool that can provide low-

cost �ne-grained measurements to the user in real-time. Results are also compared to

and validated against other existing o�-the-shelf measurement tools and integrated

power measurement metrics.

The related work has two primary areas: projects that measure power (with

validation) and existing tools that provide power readings.

2.1 Power Measurement

There are various existing ways to determine the energy and power used by

computing systems. One way is by direct measurement of the current �owing into

the various components. Often it is not possible to instrument each part of a system

(or any part at all) so work has been done to estimate the power based on related

performance metrics. Even when power is estimated, studies typically also do some

manner of actual measurement as a way of validating their models.

There are various components that combine to create the total power used in a

system. This includes the CPU, the RAM, any disks, GPUs, network adapters, and

any other I/O. In addition power distribution, power-supply ine�ciency, and cooling

also consume power. Previous work has looked both at the power consumption of

individual components as well as full-system power.

In my work I design an infrastructure that measures the actual power used by

systems (no estimation is involved) at a �ne granularity using inexpensive instru-

mentation. The CPU, memory, and total power are measured (although not all of
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the systems allow measuring all of the values). This information is then provided

to the user to allow program power optimization.

2.1.1 CPU Power Measurement

CPU power is di�cult to measure directly as the lines connecting the power

supply to the CPU are often not directly broken out and thus hard to access. For

this reason it is often more common to estimate CPU power usage rather than

directly measure it. A model for CPU power is often constructed from hardware

performance metrics.

According to some Intel documentation [40], the 4-conductor auxiliary (P4) 12V

ATX connector is dedicated to the CPU Voltage. In this case the CPU power can

be estimated by measuring this connector, and this is a common way of measuring

CPU power. A more destructive way of measuring power involves tapping into the

voltage regulator circuitry or even cutting traces on the motherboard to insert sense

resistors.

Joseph and Martonosi [44] estimate power of a Pentium Pro processor; Contreras

and Martonosi [17] estimate power on ARM, and Wu et al. [77] do this for Pentium 4.

Goel et al. [30] and Singh, Bhadauria and McKee [70] look at using machine learning

to create accurate CPU power models using performance counter results.

Some modern CPUs have the capability of generating power estimates on the

�y, based on performance counter results, thermal measurements, and other fac-

tors. This includes Intel's Running Average Power Limit (RAPL) [19, 66, 42] and

AMD's Application Power Management (APM) [7], and similar functionality on

IBM's Power7 [26]. These readings are only estimates, but some work has been

done to validate them showing reasonable accuracy [21, 34, 66].

Molka et al. [58] use a ZES LMG450 power meter sampling at 10Hz to measure

the power consumption of individual x86-64 instructions, although they are limited
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by extracting the CPU power from full-system measurements (they do not monitor

the CPU power directly).

Porier et al. [64] describe the �Foxton Technology� on an Itanium processor that

has an embedded processor with four A/D converters that measure temperature

and power (using an on-die resistor) every 8µs. The measurements are used for

frequency scaling and are not exposed to the user.

Mesa-Martinez et al. [56] measure the temperature of a CPU in detail using an

oil bath and an infrared camera. They then estimate the power consumption based

on thermal measurements. They validate this against power readings taken with a

multi-meter (compensating for a 10% loss in the CPU voltage regulator circuitry).

Hamann et al. [35] do similar work with estimating power from temperature.

2.1.2 DRAM Power

The power consumption of main memory is of interest, although usually it is

overlooked since it tends to be much smaller than the power used by the CPU.

Power is not often measured; more common is to simulate it and use values from

datasheets to provide a basis for the models. When actual power is measured it is

usually done by modifying a DIMM extender board to have a sense resistor.

Gottscho et al. [31, 32] measure DRAM power using a 2Ω sense resistor and a

digital multimeter sampling at 10 samples/second. Rahmati et. al [65] measure

DRAM power using a 200Ω sense resistor and an A/D board.

DIMM power can also be estimated, often by utilizing CPU cache miss informa-

tion. Intel RAPL can provide DRAM power estimates on some machines (primarily

servers). Contreras et al. [17] estimate DRAM energy on ARM processors.

Schmidt and Wehn [67] measure the power consumption of DRAM on an em-

bedded board and compare it against existing simulators and models.
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2.1.3 GPU Power

On modern computing systems the graphics processor (or GPU) can use a large

amount of power. This is especially true of machines used for gaming, as well as

supercomputers where GPGPU work is done (large calculations done on the graphics

device).

Measuring the power involves intercepting the PCIe power lanes and measuring

the current. Some GPUs, such as high-end NVIDIA cards, support the NVML

library [61] which can provide power measurements. Also Intel RAPL can also

provide GPU power estimates for GPUs integrated into the CPU package.

In this work I do not measure the GPU power.

2.1.4 Hard Drive Power

Storage devices also consume power. In typical desktop systems the power usage

is overshadowed by the CPU power, but in situations with large number of disks

(such as a RAID arrays) the power consumption can be signi�cant. Measuring the

power often involves intercepting the power connectors as they come into the disk;

hard drives are a lot easier to instrument for power than most of the other hardware

components. It is also possible to estimate power usage. Often operating system

metrics are used to determine when I/O happens, and models are constructed of

the various moving parts in the drive based on actual measurements.

Hylick et al. [39] measure in detail power consumption of 10 di�erent hard drives

by placing .02Ω resistors on the power lines and logging 12-bit values at 1100Hz. Lee

et al. [52] measure power consumption using Hall E�ect sensors at 16-bit resolution.

Yan et al. [78] measure power of hard drives using the DEEP/LEEP framework [69,

68] which provides samples at 10kHz.

In this work I do not measure hard drive power values.
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2.1.5 Full-system Measurements

The easiest way to obtain full-system measurements is to measure the A/C power

at the wall outlet. O�-the-shelf tools such as the watts up? PRO (WUP) [23] meter

can yield a decent estimate for total system power usage but fail to expose subsystem

measurements. The WattsUpPro also has poor temporal resolution, only recording

one measurement per second.

Some server nodes provide similar low-frequency power measurements via the

IPMI subsystem, which can often be accessed either remotely or using helper utilities

as described in Section 4.4.3.

I break the full-system measurement methods out into those of server systems

and those of embedded systems.

2.1.5.1 Servers

The Powerpack [28] project describes a fully instrumented x86 cluster. Pow-

erMon2 [10] involves small boards that can measure 8-channels of the ATX power

supply at high resolution. Hackenberg et al. [34] describe many cluster measurement

techniques, including RAPL.

LEAP [69] is most similar to my work. They instrument an Intel Atom low-

end machine and gather power measurements of the CPU (by tapping into the

power converter), DRAM (with a DDR2 extender and sense resistor), and hard

drive (.01Ω sense resistor), and provide results over the serial port that can be time

correlated with execution time. It uses a dedicated A/D converter for providing the

measurements at 10kHz.

Cui et al. [18] instrument a full system. They measure disk (with a 0.02 ohm

resistor and a 50x ampli�er) at 20us resolution. They also measure the CPU via

the 12V lines, DIMMs with an 0.02 ohm resistor, and the network and video cards

with a PCI extender. They use a digital multimeter to gather results.
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Power on servers can also be estimated. Economou et al. [22] look at performance

in a server; they use micro-benchmarks to determine rough power consumption and

then generate estimates for the various components in a system (CPU, RAM, hard-

drive, etc.) Lee and Brooks [51] use machine learning to predict the power usage of

a full system.

Bircher and John [12] generate models to estimate full system behavior using

performance counters. They look at estimating Disk, DRAM, and I/O power us-

age based on various CPU counters and validate using various benchmark suites

(SPEC2k, dbt-2, SPECjbb). They use sense resistors for instrumentation with the

data recorded for later analysis, synchronized with a pulse over serial port.

Various papers look at the various ATX wires in an attempt to �nd out which

powers what component [28, 24, 15]. Chen et al. [15] use a multimeter to measure

CPU power (using the dedicated ATX line) and the �brown wires� on the ATX con-

nector to measure memory and a WattsUpPro for full system power measurement.

Feng et. al [24] measure the power consumption on a cluster. They instrument the

machines at the ATX level with 0.1 Ohm resistors and logging multimeters. They

�nd the CPU powered by 5V pins, memory and others through 3.3V pins, and the

12V pins primarily for fans. Castaño et. al [59] measure the 12V ATX power supply

lines and use those to create a model for predicting full system behavior, includ-

ing CPU and disk activity. Khoshbakht and Dimopoulos [46] investigate system

power, measuring current on the ATX CPU power connector with an acquisition

device sampling at 15k samples/second (which is then smoothed) and then compar-

ing against the MARS86 simulator. Diouri et al. [20] validate a variety of power

meters that measure A/C power (OmegaWatt, WattsUpPro?) and ones that mea-

sure ATX power lines (PowerMon2, NI and DCM). They use the pmlib framework.

They �nd the external meters give similar results, but the internal ones vary with
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PowerMon2 giving di�erent results than the others. Piga et al. [63] use hall-e�ect

sensors to investigate in detail the power consumption of all of the ATX lines.

Mahesri and Vardhan [53] break down the power consumption of a laptop using

an oscilloscope and a clamping current probe.

The IBM BlueGene series of supercomputers is based o� of an embedded design

and often ranks highly in the Top Green 500 supercomputers list [4]. The BluegGene

P and Q systems provide an interface for measuring system power [79, 74, 36].

Laros et al. [49] utilize the i2c connection to the voltage regulator board on Cray

computers to gather detailed power information.

Economou et al. [22] propose Mantis which is a detailed full-system power esti-

mation environment that is based on results gathered from an instrumented server

blade. They measure the various power planes, and split the 12V plane to add a

sense resistor to enable splitting of memory and CPU values.

Hsu and Poole [38] describe power measurement details for supercomputing clus-

ters starting with the utility connection down to the individual processors.

In this work not only do I measure the ATX power on desktop systems, but I

also measure the power on the custom HP connector. I have not found any reference

of others attempting to measure power on this common type of server power supply.

2.1.5.2 Embedded Systems

Power is not only important for servers, but also in embedded systems. In my

work I restrict my measurements to desktop and server machines, but the same

measurement tools I develop could be used on embedded systems.

Typically on embedded systems it is hard to access the internal power lines

(unless the board designer provided test points). Therefore you are usually limited to

full-system measurements by tapping into the input power line. Some boards, such

as the Beagleboard, provide a sense resistor connected to a built-in A/D converter
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allowing power measurements. However most embedded boards have a System-on-

Chip (SoC) design where as much functionality as possible is included in a single

chip, so breaking out detailed powered measurements is di�cult.

Stanley-Marbell and Cabezas [73] compare Beagleboard, PowerPC, and x86 low-

power systems for thermal and power. Aroca et al. [9] compare Pandaboard, Bea-

gleboard, and various x86 boards and measure FLOPS/W. Jarus et al. [43] compare

the power and energy e�ciency of Cortex-A8 systems to x86 systems. Laurenzano et

al. [50] compare Cortex A9, Cortex A15 and Intel Sandybridge and measure power

and performance on a wide variety of HPC benchmarks.

Cloutier et al. [16] investigate power and performance of a wide variety of ARM

boards as well as on a cluster built of Raspberry Pi nodes. These nodes are instru-

mented to measure power, by having a sense resistor across the input power which

is ampli�ed by an opamp and measured by an SPI A/D converter.

2.1.6 Pro�ling Tools

In addition to measuring power, I provide a tool that allows gathering real time

power information along with other performance info.

There are many tools that provide power information. Many of them are just

reading the Intel RAPL values, often in conjunction with the PAPI [13, 75] library.

In this work I modify the perf utility to provide actual power readings alongside

the RAPL values that perf can already access.

2.1.6.1 RAPL based tools

A number of tools are capable of reading and generating energy results by ac-

cessing the Intel RAPL counters. Khan et al. describe IgProf [45] which uses PAPI

and RAPL.
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Moghaddam et al. [57] summarize some di�erent tools used for gathering RAPL

and IPMI data in a production environment.

Pmlib [6] is a power measurement utility used by various groups when gathering

power results from A/D converters.

2.1.6.2 Power and Energy Application Programming Interfaces

The Intel Energy Checker SDK [41] provides a software interface allowing access

to various power meters, including the WattsUpPro.

Pmlib [6] is a power measurement utility used by various groups when gathering

power results from A/D converters.

PowerScope [25] is a tool that allows optimizing code for energy use on embedded

platforms. It provides an interface that allows placing calipers around code and then

gathering power information via an external digital volt meter.

Knapp et al. [47] use an existing tool called PerfTrack when investigating the

impact of cooling technologies on power consumption of supercomputers.

Laros et al. [48] propose the PowerAPI which is designed to let applications

gather power information from all levels of the hardware stack and environment.
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CHAPTER 3

INSTRUMENTATION AND SOFTWARE DESIGN

This chapter covers the design and construction of the custom instrumentation,

the serial embedded logging device, and the modi�cation of the perf utility to allow

for real-time transmission of data.

3.1 Instrumentation

The instrumentation can be divided into two main categories: high power in-

strumentation and low current instrumentation. Both types of instrumentation use

di�erent methods in an attempt to accurately measure the current through the sys-

tem while minimizing the impact on the system. The complete system schematic

is given in Figure 3.1. Both methods are used in conjunction to gain information

about di�erent components in a system.

3.1.1 High Power Measurements

High voltage lines are the primary transmission lines in a modern system. These

are likely 12V lines that transmit power from the power supply to the various sub-

systems which regulate the 12V signal down to a more useful level. A higher voltage

transmission line means lower losses over a length of wire and allows for smaller

gauge wires. These high power lines can transmit up to 700W and in excess of 50A.

The high power measurement circuit takes these characteristics into consideration

and can be seen in Figure 3.2.

When measuring high-power (and thus high-current) lines it is often best to

use Hall e�ect sensors. Hall e�ect sensors measure current indirectly by sensing

the magnetic �eld generated by an electric signal. To the circuit being measured,
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Figure 3.1: Power Measurement System

the sensor looks like a very small resistor on the order of 1mΩ in series with the

system. The sensing circuitry outputs a voltage proportional to the magnitude of

the magnetic �eld. This allows very high currents to be measured with minimal

impact on the system. The circuit employs an Allegro MicroSystems Hall E�ect

Sensor (ACS715) for current measurements which requires a 5V supply and can

measure DC currents up to 30A. As the test systems can have currents up to 60A,

two ACS715 are used.
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Figure 3.2: Hall E�ect Sensor Circuit

The high power measurement system uses quick disconnect electrical connectors

in order to connect the Hall e�ect sensors to various power supplies. The quick

disconnects o�er a simple, �exible way to connect the measurement circuitry up to

any instrumented power supply.

3.1.2 Low Power Measurements

There are various subsystems in a computer that use relatively little power (this

includes the memory system, the disk drive, network card, and several others). For

example, common DRAM power consumption is around 5W with a 1.35V supply.

This means the current through the RAM is approximately 3.7A = 5.0W/1.35V .
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With such a low current the DRAM line is not suitable to be measured by the

Hall e�ect sensors mentioned in Section 3.1.1. The resolution of the Hall e�ect

sensors is too low to accurately gauge low currents. Instead, a small value power

resistor and an instrumentation ampli�er is used to measure the current. The power

resistor is placed in series with the system and a voltage drop proportional to the

current can be seen across it. An instrumentation ampli�er is used to amplify the

small di�erential signal to levels that the embedded system can accurately read. An

instrumentation ampli�er is similar to an op-amp di�erential ampli�er, but with

additional stages added to bu�er the signal and avoid impedance mismatch. The

circuit can be seen in Figure 3.3.
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This low power measurement circuit uses a small value power resistor and an

Burr-Brown Instrumentation Ampli�er (INA122) to measure the voltage drop across

the power resistor. The INA122 runs on a wide range of supply voltages and has an

easily con�gurable gain via a single resistor. The INA122 accepts two di�erential

inputs and can output an ampli�er result. The gain is set to be 18.3 with a 15kΩ

resistor. The gain equation is given in Equation 3.1 The ease-of-use �exibility were

the determining factors for choosing the INA122.

G = 5 +
200000

RG

(3.1)

3.2 Power Supplies

The source of all power in a computing system is the power supply which con-

verts wall-outlet high-voltage alternating current electricity to the low-voltage di-

rect current electricity used internally. In this work we instrument two common

types of power supplies: Advanced Technology eXtended (ATX) power supplies and

Hewlett-Packard (HP) Common Slot (CS). ATX supplies are most commonly used

in desktops and CS power supplies are used in some server systems.

3.2.1 ATX Power Supply

One of the most commonly used power supplies in computing is the ATX power

supply. The ATX speci�cation was designed by Intel in 1995 to simplify power sup-

ply design and as such ATX supplies are prevalent on most modern day desktops.

Figure 3.4 shows the common 24-pin connector and the accompanying 4-pin connec-

tor that is often used to provide large amounts of power to the CPU or GPU. Only

the 4-pin ATX connector is instrumented for these tests, as previous work [40, 28, 15]

has shown that the 4-pin connector powers the CPU and the other power lines on

the 24-pin connector are not used for much.
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Figure 3.4: 24-Pin and 4-Pin ATX Connectors

Figure 3.5: 4-Pin Advanced Technology eXtended Connector Instrumentation

3.2.2 Hewlett-Packard Common Slot Power Supply

The instrumentation uses the quick disconnects mentioned in Section 3.1.1. The

ATX P4 connector was cut and quick disconnects were crimped to all eight con-

nectors which allows the 12V lines to connected to the Hall e�ect circuitry. One of

the ground signals is also passed into the circuitry so the ATX power supply and

measurement system share a common reference. These modi�cations are shown in

Figure 3.5.
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The CS power supply provides several bene�ts over the ATX supply, including

redundancy and ease of replacement in the case of a failure. The drawback of the

CS design is that solid metal contacts are used instead of wires and as such are much

harder to access and instrument to measure power and energy. Figure 3.6 shows

these solid contacts.

Figure 3.6: HP Common Slot Power Supply Contacts

The power supplies used are capable of providing up to 700W of power at 60A.

Instrumentation was designed with these speci�cations in mind. The compact form

factor of the CS power supply is space e�cient and ideal for a dense server rack. A

CS power supply is shown in Figure 3.7

3.2.2.1 Common Slot Extender

In order to tap into these inaccessible power lines, special extender boards were

designed and built. The extender boards allow a CS power supply to be plugged

into the female end and the male end of the extender to be plugged into the server

rack as normal. The extender board breaks out all power and signal lines in the CS

power supply. The extender board PCB layout is shown in Figure 3.8.

The extender board is designed to handle high currents on the 12V and ground

lines. Each high current line has four 16AWG wires that can handle up to 80A. The
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Figure 3.7: HP Common Slot Power Supply

Figure 3.8: HP Common Slot Extender

traces themselves are 32mm wide and can handle up to 25A each. With two traces

per channel and two channels (one on each side of the power supply contacts) this

allows for up to 100A to be transmitted. A complete table of current considerations

is given in Table 3.1.

The CS power supply contacts were also duplicated to allow the extender to

be plugged directly into a female CS power supply slot. This extender tongue and

the signals on each contact can be seen in Figure 3.9. Note that extender tongue is
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Table 3.1: Current Considerations

Features Dimension Current Per Feature Number
Traces 32mm 25A 4
Vias .5mm 3.5A 20
Through-Hole 1.5mm 7.5A 8
Wire 16 AWG 18A 8

identical in layout on both sides with varying pin functions. The important signals to

recognize are the large 12V and GND signals. The 12V lines transport a majority of

the power to the system motherboard while the GND signal is needed as a reference.

The boards were custom designed using KiCad [1] and fabricated by OSHPark.

Something else to consider is the length of the extender board. The board is

just over ten inches long to allow room for power measurement wires to come out of

the power supply slot. Such a length means that the power supply rests completely

outside the power supply slot and does not block access to the slot.

3.3 DRAM Instrumentation

The DRAM instrumentation uses the low power measurement circuits discussed

in Section 3.1.2 as well as a JET-5464 DDR3 DIMM extender. The JET-5464 is a

simple pass through extender with the addition of current sensing resistors across

the supply lines. The power resistor measures 3.33mΩ which is small enough to not

in�uence the supply voltage signi�cantly. A 10A current through the resistor results

in a .0333V drop across the resistor which is likely small enough to be ignored by

most systems. Leads were connected to measure the voltage drop across the sense

resistor as well as to the voltage reference of the DIMM. A picture of the extender

and leads is shown in Figure 3.10.

Originally, a JET-5452 DIMM DDR3 extender was modi�ed to allow power

measurement but it turns out to be very di�cult to cut the traces and connect to

23



Figure 3.9: HP Common Slot Tongue

all 22 power lines to the low power measurement system. In the end it was much

easier to buy the already instrumented DIMM extender.

3.4 Integrated and O�-the-Shelf Solutions

For comparison, total system power is gathered with a WUP as well as Intelligent

Plaform Management Interface (IPMI).

The WUP functions as a standalone solution by sitting between the wall outlet

and the power supply. Once plugged in, the WUP gathers data automatically which
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Figure 3.10: JET-5464 DDR3 DIMM Extender

can be downloaded with an easy-to-use Windows interface called the Watts Up USB

Data Logger. The WUP can be con�gured to log data about a variety of metrics

including current, voltage, power, and energy. The data can be saved to a CSV

format with the Windows USB interface.

IPMI is an integrated system that appears on a system-by-system basis. Two of

the test systems include IPMI functionality. IPMI data can be queried from a remote

system or locally using the ipmitool under Linux. If querying remotely, a username

and password are required. Querying locally requires no authentication. Requesting

IPMI power readings is as simple as executing ipmitool -c sensor get 'Power

Meter' in a shell. Some sample output that might be seen while benchmarking

is seen in Figure 3.11. Note that an extra timestamp is prepended to the sample

of data. This is added by a bash script described in Section 4.4.3 and is used to

synchronize the IPMI data with the various other sources.

1433796529 ,679545361

Locating sensor record ...

Power Meter ,156,Watts ,ok ,7.9, Device Enabled

Figure 3.11: IPMI Output
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Table 3.2: Table of Test Systems perf Features

Architecture RAPL CPU RAPL RAM APM IPMI
Haswell YES YES NO NO
Deneb NO NO NO NO
Sandy Bridge YES NO NO YES
Piledriver NO NO YES YES

3.4.1 Estimated CPU Power

Information about estimated CPU power is gathered from Running Average

Power Limit (RAPL) and Application Power Management (APM) interfaces. Both

methods o�er ways to gain insight into CPU power usage but their methods di�er.

A complete table of the test systems and their features is shown in Table 3.2

3.5 Serial Power Logging Device

To facilitate real-time power and energy feedback from a system, an embedded

system with USB-to-serial capabilities was used. Initially, an STM32F4 development

board was used but when it was found that the STM32F4 did not have enough

analog-to-digital converter (ADC) channels for future tests it was substituted for a

Teensy 3.1 [3]. The main program logic is shown in Figure 3.12.

The main loop is a simple client-server model with the Teensy as the server and

the benchmarked system as the client. The client sends commands to the server and

The server responds with the requested information or by executing the requested

actions.

3.5.1 Analog-to-Digital Converter

The Teensy ADC features two separate ADC modules. These are able to sample

simultaneously for maximum performance. Overall, 20 channels are available for

use while only 10 are easily accessible. The ADC has a 16-bit resolution at over

300kHz and is accessed through a third party library.
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while (1) {

request = Serial.read ();

switch (request) {

case MY_SERIAL_INT:

interval = get_interval ();

break;

case MY_SERIAL_CHX:

channels = get_channels ();

break;

case MY_SERIAL_BEG:

begin_sample(interval , channels , samples );

break;

case MY_SERIAL_REQ:

transmit_sample(channels , samples );

break;

case MY_SERIAL_TBO:

nbo = test_network_byte_order ();

case MY_SERIAL_END:

break;

case MY_SERIAL_NUL:

default:

break;

}

}

Figure 3.12: Teensy 3.1 Main Program Logic

3.5.2 USB-to-Serial Communication

In order to transmit data in real-time a USB-to-Serial library was used. The

library emulates a serial port on the client side and allows the server to easily read

and write data. The serial device can be accessed from Linux with the termios

library as a normal serial port. Communication is at 115200 baud with an 8n1 data

format.

3.5.3 Embedded System Con�guration

The embedded system is con�gurable in two ways; The sampling interval and

channel list can be con�gured with commands from the client. MY_SERIAL_INT
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is used to specify the interval. The list of channels to gather data about can be

speci�ed by sending an integer containing a bitmap to the embedded device. The bits

in the integer correspond to the channels to sample with bit 0 mapping to channel

0 and so on. For example, Figure 3.13 shows an example of how to con�gure the

embedded system with channels de�ned as int channels = 0b00001101; (channels

1, 3, and 4).

int length = 0, bytes_written = 0;

char channel_string [64];

length = sprintf(channel_string , "%c%i", MY_SERIAL_CHX , my_channels );

do {

length -= bytes_written;

bytes_written = write(my_tty_fd , channel_string + bytes_written , length );

} while (bytes_written < length );

Figure 3.13: Sending a Channel Bitmap

3.5.4 Miscellaneous Concerns

Although the power lines of most modern supplies can be up to 12V, it is almost

never a concern while measuring them with the custom instrumentation that they

will exceed the 3.3V max of the Teensy's ADC. The Hall e�ect sensor, however, will

output nearly 4V when measuring a 30A supply line. This was an oversight that

could lead to problems and could possibly damage the Teensy's ADC pins and as

such it may be necessary to step down the output of the Hall e�ect sensors in order

to protect the Teensy and ensure accurate readings. The 12V signal is also stepped

down to get an accurate voltage reference for the power calculation.

3.6 The Linux Perf Tool

The main performance monitoring tool used under Linux is the perf tool [29].

Perf is included in the Linux kernel's main source code tree under the tools directory.

The primary use of perf is to read hardware performance counters and display them
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to the user; a common use case is to examine branch and cache miss behavior of a

program. Many software counters are also available that give information about the

operating system.

Perf allows for process speci�c metrics and can be used to analyze a speci�c

program or to hook into a running process. The results may reveal that a program

should be rewritten or optimized to improve cache or branch behavior.

The perf tool is modi�ed so that in addition to the standard performance coun-

ters, it can also provide real-time power measurements from the serial power mea-

surement infrastructure.

3.6.1 Compiling Perf

Detailed instructions for compiling the Linux kernel are readily available so an

abbreviated list of steps necessary to compile and run a custom version of perf are

given. To compile a custom version of the perf tool on Debian use instructions

similar to those in Listing 3.14. These instructions assume the instrumentation

repository is in the same directory as the root of the Linux kernel source.

wget https ://www.kernel.org/pub/linux/kernel/v3.x/linux

-3.18.13. tar.xz

tar xf linux -3.18.13. tar.xz

cd linux -3.18.13/ tools/perf

mv builtin -stat.c builtin -stat.c.bak

ln -s ../../../ instrumentation/power_measurement_system/

simple_serial_program

ln -s simple_serial_program/src/builtin -stat.c

ln -s simple_serial_program/src/ssplib.c

cd util

ln -s ../ simple_serial_program/util/my_defines.h

ln -s ../ simple_serial_program/util/ssplib.h

cd ..

make perf

Figure 3.14: Compiling Perf
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perf stat ./ stream

Figure 3.15: Basic perf example

perf stat -I100 -a -e /power/energy -cores/ mpiexec -np 24 xhpl

Figure 3.16: Typical perf Usage

3.6.2 Using Perf

Using perf is straightforward. A simple use case is shown in Figure 3.15.

The perf tool can take a large set of options which enable gathering informa-

tion about other performance counters, output the results to a �le, print results

periodically, and many other useful things.

A typical usage of perf in this research is given in Figure 3.16. For the serial

code to be executed the interval option must be speci�ed. RAPL counters are

speci�ed with -a -e /power/energy-cores/ and mpiexec -np 24 ./xhpl is the

benchmark to be run. The -a �ag is used to tell the perf tool to look at system wide

performance counters which is needed for RAPL counters to function The resulting

performance counters and serial data will be printed directly to standard out.

3.6.3 Perf Patch

For this research the perf tool was modi�ed and code was inserted in strate-

gic locations in order to gather and associate real-time power readings with perf's

performance counters. The patch can be found in Appendix A.

In order to avoid modifying kernel make�les and streamline the compilation pro-

cess all functions were written in their own source �le and included in builtin-stat.c.

This means that the library is compiled when builtin-stat.c is so no dependencies

are added to the perf make�le. Serial initialization is done in the __run_perf_stat()

function. The serial device �le is opened, the baud rate and bu�ering options, and
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the embedded system itself is con�gured. The embedded system is told to start

polling when perf enters the handle_initial_delay() function. Samples are re-

quested and printed to standard out in the print_counter_aggr() function.
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CHAPTER 4

BENCHMARKS AND EXPERIMENTAL METHODOLOGY

Four machines were instrumented with custom hardware, benchmarked, and

measured for power and energy. The custom instrumentation is used to measure

power usage in tandem with integrated and o�-the-shelf solutions including WUP,

APM, RAPL, and IPMI

4.1 Test Systems

A variety of test systems were used for experimentation with a range of archi-

tectures and features, including a mix of high-end server systems and consumer

desktops. Server systems often have additional administrative features via embed-

ded interfaces such as Integrated Lights Out (iLO) and IPMI. These interfaces allow

for remote management of the system and in some instances allow for monitoring

power and energy usage. Two of the systems used have this capability.

Note that all tests were run with Dynamic Voltage Frequency Scaling (DVFS)

and Turbo modes enabled. This introduces more unpredictability into the tests as

far as the CPU is concerned but it also gives more realistic results as most systems

in practice will have these options enabled.

Modern architectures also include a variety of performance counters that allow

measurement of various metrics such as: instructions per second, instructions per

cycle, branch miss rate, and a variety of others. In recent years manufacturers have

also added performance counters that expose information about energy usage in

various parts of the system. Intel RAPL uses performance counters and a �nely

tuned mathematical model to estimate the energy usage of their CPUs and CPU

subsystems. RAPL allows measurements of CPU components such as the complete
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Table 4.1: Table of Test Systems

Architecture Model Clock Threads RAM
Haswell Intel i5-4570S 2.90GHz 4 4GB
Deneb AMD Phenom II X4 955 3.20GHz 4 2GB
Sandy Bridge Intel E5-2640 2.50GHz 24 8GB
Piledriver AMD Opteron 6376 2.30GHz 32 8GB

CPU package, CPU core, and DRAM. AMD APM system is comparable but uses

hardware measurements to estimate power usage.. An overview of the test machines

is given in Table 4.1

4.1.1 Desktop Systems

4.1.1.1 Haswell

The Haswell system has an Intel i5-4570S Haswell processor with a 2.90GHz

clock and four cores; it is a good representation of a common desktop system. It

is important to note that the Haswell system does have RAPL energy counters

including DRAM counters.

4.1.1.2 Deneb (Phenom)

Deneb has an AMD Phenom II X4 955 with a Deneb architecture. The system is

comparable to the Haswell system with a 3.2GHz clock and four cores. This system

does not have any integrated power or energy counters.

4.1.2 Server Systems

A rack with two high-end server systems was also used. Both Intel and AMD

are represented. Great di�culty was experienced in directly measuring power and

energy with custom instrumentation as both systems use HP Common Slot Power

Supplies. The connection between the power supply and the system is via direct

contacts unlike a standard ATX power supply which transmits power via wires. To
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solve this problem a custom extender board was designed and built. The common

slot extender is discussed in detail in Section 3.1.

4.1.2.1 Sandy Bridge

The Intel server machine has two 2.5GHz E5-2640 Sandybridge-EP processors,

each with six cores and two threads per core which allows for a total of 24 threads

of execution. The system is an HP ProLiant DL360P Gen8 server which features

the IPMI interface mentioned earlier in Section 4.1 as well as Intel RAPL counters.

The hardware should have DRAM RAPL counters available but for some reason

they are disabled by the �rmware. The IPMI interface is currently o�-line on the

system; one of the power supplies was damaged during testing and IPMI has not

worked since then.

4.1.2.2 Piledriver

The AMD server system is equipped with an Opteron 6376 clock at 2.30GHz.

It also has two physical processors which have eight cores each with two threads

per core for a total of 32 threads of execution. The AMD machine is an HP Pro-

Liant DL385P Gen8 and also has the aforementioned IPMIinterface as well as APM

performance counters.

4.2 Benchmarks

Several benchmarks were used for experimentation in order to stress a range of

architectural features. Benchmarks were chosen in order to isolate and test system

submodules separately in order to gain information about power and energy usage

of those subsystems. The four primary benchmarks are High Performance Linpack

(HPL), STREAM, IOzone, and equake which were chosen as each exercises a di�er-

ent part of the system (overall, memory, disk I/O and �oating point respectively).
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4.2.1 Parallel Libraries

There are a couple things to consider when running parallel benchmarks: which

Message Passing Interface (MPI) is going to be used, and in the case of some bench-

marks, what Basic Linear Algebra Subprograms (BLAS) package will be used. These

decisions should be made on a case-by-case basis as di�erences in architecture, and

interprocess communication can highly in�uence performance of each interface.

4.2.1.1 Message Passing Interface Implementations

The MPI speci�cation is designed to allow for e�ciency and portability. The

speci�cation de�nes how communication occurs between nodes in a distributed sys-

tem. MPI provides many functions for synchronization, locking, data dissemination,

and data aggregation. MPI can take complex data structures and divide the work-

load between nodes in an intelligent fashion. The main choices for MPI libraries are

MPICH (MPICH) [33] and Open Message Passing Interface (Open MPI) [27]. Both

interfaces are intended for highly parallel distributed memory applications. MPICH

is used in all systems for this research.

4.2.1.2 Basic Linear Algebra Subprograms

BLAS is a speci�cation for highly e�cient linear algebra operations. Common

operations include vector addition, scalar multiplication, linear combinations, ma-

trix multiplication, and dot products. Most BLAS libraries have C and Fortran in-

terfaces. Some well known BLAS implementations are Automatically Tuned Linear

Algebra Software (ATLAS) [76], Netlib Basic Linear Algebra Subprogram (Netlib

BLAS) [8], and Open Basic Linear Algebra Subprograms (Open BLAS) [2]. For

simplicity, all test systems use ATLAS in an attempt to increase consistency while

possibly sacri�cing some performance.
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4.2.2 High-Performance Linpack

HPL [62] is widely used to benchmark highly parallel computing systems. HPL

stresses the �oating point capabilities of a system by solving �a (random) dense linear

system in double precision (64 bits) arithmetic on distributed-memory computers�.

HPL's most widely visible contribution is in the TOP500 list of super computers [5]

where computing clusters around the world run HPL and submit their results in an

attempt to claim a spot on the list. The HPL benchmark is run with the command in

Listing 4.2.2. The -np �ag is used to specify the number of execution threads to be

used in the benchmark. The bulk of the con�guration is in a text �le called HPL.dat

which controls the problem size, how to split the problem up between nodes, and a

large number of other options controlling the algorithm.

mpirun −np24 . / xhpl

4.2.3 STREAM

The STREAM [55] benchmark was used to test the memory subsystems by

loading large amounts of data into memory. STREAM is designed to report an

accurate estimate of a system's practical memory bandwidth. STREAM can be

used to benchmark both single-core processors as well as distributed systems by

using a message passing interface. The STREAM benchmark is run by simply

calling the executable as follows ./stream_c or ./stream_omp. The problem size

can be modi�ed at compile time by change a value in the Make�le.

4.2.4 IOzone

IOzone [60] tests the �lesystem performance by investigating a wide range of

�lesystem operations including read, write, re-read, re-write, backward read, strided

read, fread, fwrite, random read and several others. The command ./iozone -a

runs an automated version of IOzone that adjusts to the system limitations.
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4.2.5 Equake

The equake benchmark is an example of a more realistic workload that might

be seen in academia or in the scienti�c community. Equake is a part of the Stan-

dard Performance Evaluation Corporation (SPEC) CPU 2000 [71] benchmark suite.

Equake simulates �the propagation of elastic waves in large, highly heterogeneous

valleys�. The result is a highly data-driven benchmark that stresses multiple aspects

of a system and is an example of a realistic workload. equake is run simple by call-

ing the executable like and redirecting the input sample into the program as follows

./equake < ./inp.in.

4.3 Performance Counters

Performance counters will be used where possible in order to gauge performance

and energy usage. A mix of hardware and software performance counters will be

used on a system-by-system basis. On test systems that have specialized power and

energy performance counters they will be compared to experimental instrumentation

results. Further information on system speci�c performance counters is detailed in

Section 4.1.

4.4 Experimental Procedure

The experimental procedure requires careful coordination of several hardware

components, an embedded system, a modi�ed perf program, and a variety of bench-

marks. Several tools including git, mpirun, and bash scripting were used to stream-

line this process.

4.4.1 Git

Several git repositories were used to gather together information about the in-

strumentation and perf source code, benchmarks, and resulting data from tests. Git
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sudo env INTERVAL =1000 IPMI=1 RAPL=1 RAPL_DRAM =0 APM=0 ./
bench_template.sh ../ workload

sudo env INTERVAL =100 IPMI=1 RAPL=0 RAPL_DRAM =0 APM=1 ./
bench_template.sh ../ workload

Figure 4.1: Benchmark Template Usages

allows for an easy way to track and distribute changes to individual parts of the

system. Any computer with internet access and a user account can easily get access

to these repositories.

4.4.2 mpirun

Mpirun is provided by MPICH and is used to dispatch benchmarks and distribute

them over the test system nodes. The number of threads and the benchmark must

be speci�ed during use. A common usage is similar to mpirun -np 24 ./xhpl.

4.4.3 Benchmark Script

A bash script was written in order to automate some of the con�guration of

the system and the benchmarking tools. With perf, RAPL, APM, and IPMI it can

become di�cult to know what to execute when running a benchmark. These options

can be speci�ed as environmental variables which will be recognized by the script

in order to con�gure test features on the �y. Some usages are shown in Figure 4.1.

The �rst line is an example of a benchmark run on the Sandy Bridge test system

which has IPMI and RAPL features. The second is run on the Piledriver system

which has IPMI and APM counters.

The benchmark script is included in Appendix B. The script performs several

functions to assist in automating and aggregating data from a variety of sources.

Data can come from three major sources: perf, IPMI, and APM. All data gathered

from perf is associated automatically with a timestamp but data from IPMI and
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APM is simply given as a value with a one time request. The script uses the Linux

watch tool in order to periodically request data from IPMI and APM. Watch is also

used to generate a timestamp for each sample.

4.4.4 Benchmark Inputs

The test inputs to the benchmarks are included for the sake of completeness. All

equake benchmarks were run using the same test input that is omitted due to its

size. The input data set is roughly 8MB. The IOzone benchmark uses the -a option

which automatically adjusts the workload size. Tests with the STREAM benchmark

vary in problem size over the architectures to keep runtime at roughly two minutes.

Haswellian uses an array size of 100000000, Phenom 75000000, Piledriver 100000000,

and Sandy Bridge 100000000. The Phenom array size had to be lowered to 75000000

as the full 100000000 size array exceeded physical memory and cause large decreases

in performance. The HPL.dat input �les are available in Appendix E
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter goes over the experimental results and attempts to compare and

validate the custom serial power logging interface with existing integrated and o�-

the-shelf solutions including IPMI, RAPL, APM, and WUP. The power usage over

the courses of a benchmark and the power trends will be compared as well as the total

energy usage. The equake benchmark will also be looked at with the energy delay

metric in an attempt to gain insight into the power and performance characteristic

of the four test machines.

5.1 Results

This section covers experimental results and compares collected serial power

and energy readings with built in performance counters and o�-the-shelf solutions.

Serial power supply readings will be compared with IPMI, APM, WUP, and RAPL

values. Serial DRAM values will be compared only to RAPL DRAM values. These

comparisons will be made on an architecture-to-architecture basis covering all four

test machines. Both the power trend over the course of the benchmark and the total

energy consumed will be discussed. Although several instances of each benchmark

were run, only a single �gure will be shown in each case. Aggregated energy data

over all instances will be discussed.

To summarize the major features detailed in Section 4.1: Sandy Bridge has IPMI

and RAPL counters, Piledriver has IPMI and APM features, Haswellian has RAPL

features including DRAM RAPL counters, and Phenom has no dram or embedded

power or energy metrics. All tests are also compared side-by-side with WUP data.
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It is important to note that the WUP is measuring the power coming out of

the wall outlet whereas the serial system is measuring the power out of the power

supply. Power supplies are not 100% e�cient so some power is lost in the transition.

The CS power supplies claim an e�ciency from 89% to 94% under load (with a

higher e�ciency under higher load).

5.1.1 Sleep

First, the idle power of the system is measured with all available metrics using

a simple sleep benchmark. The benchmark is run for 60 seconds and all results are

shown in Figure 5.1.

It can be clearly seen that all metrics give a decent picture of the power trends of

the idle systems. The sleep benchmark shows what is mostly expected: a constant

power reading across all architectures. Some small variations do exist such as in the

Sandy Bridge test. This is likely due to background noise or processes as it is only

on the order of 10W. These small spikes are seen in all available metrics so it can

be assumed to be a variation in system power and not an erroneous deviation in the

metrics themselves. The IPMI readings for Piledriver also shows a small increase at

20 seconds into the benchmark. Overall, the sleep benchmark does a reasonable job

of establishing a baseline for power usage.

The WUP data for the two server architectures increases slightly while running

the sleep benchmark. This is likely due to the overhead from gathering the IPMI

data, APM data, and possibly from the serial overhead of the perf hack. The CPU

conducting the measurement possibly cannot go into deep sleep states if it is being

woken up periodically to do measurements. The relatively stable levels of Haswellian

and Phenom seem to indicate that the serial overhead is less of a factor compared

to the IPMI and APM polling.
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(a) Sandy Bridge (b) Piledriver

(c) Haswellian (d) Phenom

Figure 5.1: Sleep on all architectures

5.1.2 High Performance Linpack

Next, HPL is used to stress a variety of subsystems including memory and the

�oating point modules. Figure 5.2 shows the resulting power trends.

For Sandy Bridge and Piledriver, the serial power can be seen to closely follow

the WUP data although slightly low. Regular dips in power may be related to

synchronization across the many cores; this needs further investigation. The IPMI

readings for Piledriver closely coincide with both the serial readings and the WUP

data. For Haswellian and Phenom, no clear claims can be made as only the CPU

is being measured by the serial system while the WUP is measuring total system
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(a) Sandy Bridge (b) Piledriver

(c) Haswellian (d) Phenom

Figure 5.2: HPL on all Architectures

power. The RAPL features of Haswellian closely follow the serial CPU power and

the many spikes and lulls are seen in the three metrics (though o� by a constant

factor). Phenom shows that the serial and WUP readings follow the same general

trend.

5.1.3 STREAM

Next, the STREAM benchmark is used to stress the memory subsystems. The

total system power is much lower than seen from HPL in Figure 5.2 as only the
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(a) Sandy Bridge (b) Piledriver

(c) Haswellian (d) Phenom

Figure 5.3: Parallel STREAM on all Architectures

memory subsystems are being stressed. Figure D.4 gives insight into the behavior

of the single-threaded STREAM benchmark.

Unlike the HPL �gures, it is very di�cult to see the trend in power in these

graphs due to the small change in power from the baseline (on the order of 20 to

40 watts). The power trends are generally constant throughout the length of the

benchmark which is to be expected from a benchmark of this nature.

Next, the parallel STREAM benchmark is shown in Figure 5.3. The paral-

lel version of STREAM uses Open Multi-Processing (Open MP) to parallelize the

workload.
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(a) Sandy Bridge (b) Piledriver

(c) Haswellian (d) Phenom

Figure 5.4: IOzone on all Architectures

Again, the STREAM results look almost the same as the single-threaded work-

load. The overall power consumption can be seen to increase compared to their

single-threaded counterparts. As before, WUP, IPMI, and serial readings can be

seen to follow the same trends.

5.1.4 IOzone

The IOzone benchmark stresses �le I/O. Some of the variations seen in these

results are unexpected. Figure 5.4 shows the relevant graphs.
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All architectures exhibited a large amount of variation during the workload.

Sandy Bridge experienced swings in power from roughly 110 watts to 130 watts.

Piledriver stayed quite steady at roughly 200 watts while Haswellian and Phenom

exhibited large spikes in power when looking at RAPL counters and serial readings

(the WUP sampling rate appears be too low to re�ect this behavior).

5.1.5 Equake

Equake was intended to show results of a realistic benchmark that might be seen

in the scienti�c world. The benchmark failed to stress the system in any signi�cant

way. All graphs can be seen in Figure 5.5.

Only Piledriver IPMI power readings show any sort of interesting behavior, in-

creasing by 50 watts at roughly 10 seconds into the benchmark and again by 10

watts at about 25 seconds into the benchmark before leveling out.

Next, the Haswell DRAM RAPL counters will be brie�y compared with the

serial DRAM measurements. Figure 5.6 shows �ve plots for the various benchmarks

and their serial DRAM measurements and the RAPL DRAM estimations.

5.1.6 DRAM Results

The RAPL values are very clean with little variation that might be expected

when switching between multiple threads and the kernel. The serial DRAM mea-

surements on the other hand are quite noisy and some interesting trends can be seen

across the benchmarks. Few of these trends are consistently re�ected in the RAPL

values however which might be due to the fact that the RAPL readings are results

of a mathematical model based on memory related instructions. It is possible that

the model does not account for some of the �ner details in the DRAM module such

as refresh.
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(a) Sandy Bridge (b) Piledriver

(c) Haswellian (d) Phenom

Figure 5.5: Equake on all Architectures

Additionally, the RAPL values appear to be consistently low by a factor of two.

I am still investigating the source of this error. One possibility is that the published

scaling factor is wrong, as until recently the Haswell-EP (server Haswell) RAPL

driver had an improper scaling factor.

5.1.7 Energy Results

This section presents several tables of energy usage statistics. All benchmarks

and their energy usage behaviors are investigated. Energy delay will be will be

looked at for only the equake benchmark. A value of 0.00 means that the metric
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(a) Sleep (b) HPL

(c) equake (d) IOzone

(e) STREAM (f) Parallel STREAM

Figure 5.6: Haswell DRAM RAPL results on all Benchmarks
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is unavailable for that architecture. It should be noted that due to the manual

synchronization of the WUP data and the fact that the range of the WUP data

extends both before and after the range of all other data sources that the WUP

energy results may be slightly skewed to the high side. Care is taken during data

processing to minimize this source of error.

First, the sleep benchmark is used to establish a baseline of energy usage over

a 60 second period. Table 5.1 and Table 5.2 show the sleep benchmark results.

Comparing the serial system energy values for Piledriver and Sandy Bridge in column

three with the WUP data in column four shows a very close relationship between the

two. Percent error for serial energy usage for Piledriver only deviates by 0.75% from

the WUP values. Sandy Bridge serial energy usage deviates by 3.07%. Comparing

the Piledriver serial energy usage with the IPMI values also results in a very small

percent error of 1.03%. The Piledriver APM values however deviate wildly and as

mentioned in Section 5.2; it is likely that they are non-functional. Nothing signi�cant

can be said of DRAM energy usage in three of the tests machines. A brief analysis

will be done comparing RAPL DRAM energy values with serial DRAM values in

Section 5.1.8.

Comparing the serial and RAPL readings for Sandy Bridge reveal inconclusive

results. The serial measurements on the ATX P4 line are measuring total CPU

power while the Core and PKG RAPL values are measuring subsets of the CPU

functionality. The results support this idea as the serial energy values are always

larger than both the RAPL readings.

Table 5.3 and Table 5.4 show the energy usage statistics of the equake bench-

marks across all four systems. Again, the energy usage data for the serial system and

the WUP correspond quite closely with a percent error of 0.58% for Piledriver and

1.98% for Sandy Bridge. The IPMI has a 1.67% error compared to the WUP. Again,

the Haswellian results show that the serial ATX P4 measurements and the RAPL

49



Table 5.1: PSU and CPU Energy Results for Sleep

Architecture Delay PSU WUP IPMI Core PKG
Haswellian 59.90s 562.07J 1643.10J 0.00J 1.45J 218.27J
Phenom 59.93s 1201.80J 4271.60J 0.00J 0.00J 0.00J
Piledriver 59.11s 9898.47J 10099.50J 10001.84J 0.00J 0.00J
Sandy Bridge 59.90s 6044.02J 6111.50J 0.00J 1355.44J 3027.81J

Table 5.2: DRAM Energy Results for Sleep

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 59.90s 70.76J 28.64J
Phenom 59.93s 55.93J 0.00J
Piledriver 59.11s 178.94J 0.00J
Sandy Bridge 59.90s 54.26J 0.00J

Table 5.3: PSU and CPU Energy Results for equake

Architecture Delay PSU WUP IPMI Core PKG
Haswellian 23.64s 625.62J 1064.35J 0.00J 253.66J 465.55J
Phenom 46.31s 2146.64J 4724.05J 0.00J 0.00J 0.00J
Piledriver 46.59s 8403.20J 8452.80J 8311.60J 0.00J 0.00J
Sandy Bridge 31.58s 3859.35J 3809.30J 0.00J 1219.75J 2119.07J

Table 5.4: DRAM Energy Results for equake

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 23.64s 101.67J 46.57J
Phenom 46.31s 96.58J 0.00J
Piledriver 46.59s 172.80J 0.00J
Sandy Bridge 31.58s 64.31J 0.00J

readings have similar levels of energy consumption. The di�erences appear to be

scaled when comparing them to the sleep benchmark which supports the idea that

the RAPL readings are omitting certain modules or functionality when computing

the results. RAPL Core di�ers by 147.03% and PKG di�ers by 34.41%.

The HPL energy usages �gures show similar trends to the previous benchmarks.

The serial power supply measurements, IPMI, and WUP. Sandy Bridge has a 2.68%

error for the serial power measurements while Piledriver has 3.49% and 0.92% for

serial and IPMI respectively. Once more, Haswellian energy results show a clear
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Table 5.5: PSU and CPU Energy Results for HPL

Architecture Delay PSU WUP IPMI Core PKG
Haswellian 108.66s 5163.08J 7818.28J 0.00J 3286.84J 4123.00J
Phenom 71.56s 6694.87J 11070.18J 0.00J 0.00J 0.00J
Piledriver 212.65s 64953.20J 67302.84J 66681.55J 0.00J 0.00J
Sandy Bridge 152.31s 35142.29J 36110.10J 0.00J 17717.70J 22158.96J

Table 5.6: DRAM Energy Results for HPL

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 108.66s 447.34J 205.99J
Phenom 71.56s 211.97J 0.00J
Piledriver 212.65s 1474.15J 0.00J
Sandy Bridge 152.31s 560.35J 0.00J

di�erence between the three metrics. Serial ATX P4 readings di�er from RAPL

Core readings by 57.77% and from RAPL PKG readings by 25.70%. The di�erence

in percent error between the equake and HPL benchmarks lends support to the fact

that the missing energy information is not simply a scale factor or a static overhead

or leakage but is a large and dynamic factor in energy consumption within the CPU.

Table 5.7 and Table 5.8 show that Piledriver has 2.30% and 1.91% error for serial

and IPMI. Sandy Bridge has 2.37% error for serial results. Haswellian RAPL results

are even more skewed than previous benchmarks with 1640.25% error on Core and

128.77% on PKG. These enormous di�erences may indicate that the RAPL counters

are ignoring some factor concerned with disk I/O.

For the STREAM benchmark, Piledriver has a 3.79% error for serial measure-

ments and a 2.45% error for IPMI readings. Sandy Bridge has a 2.59% error for serial

energy measurements. Haswellian shows a 182.61% error on RAPL Core readings

and a 38.18% error on PKG.

Finally, the parallel STREAM benchmarks reveals the same trend as all the

other benchmarks with the serial energy measurements and IPMI measurements

being within a few percentage points of the WUP data. Piledriver has a serial
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Table 5.7: PSU and CPU Energy Results for IOzone

Architecture Delay PSU WUP IPMI Core PKG
Haswellian 524.74s 5621.91J 16181.20J 0.00J 323.89J 2457.10J
Phenom 521.73s 12707.48J 41775.20J 0.00J 0.00J 0.00J
Piledriver 98.00s 17629.14J 18045.95J 17701.87J 0.00J 0.00J
Sandy Bridge 85.29s 12892.32J 13233.15J 8396.71J 1304.91J 2399.37J

Table 5.8: DRAM Energy Results for IOzone

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 524.74s 554.95J 332.22J
Phenom 521.73s 681.81J 0.00J
Piledriver 98.00s 311.53J 0.00J
Sandy Bridge 85.29s 222.67J 0.00J

Table 5.9: PSU and CPU Energy Results for STREAM

Architecture Delay PSU WUP IPMI Core PKG
Haswellian 106.26s 2439.94J 4841.37J 0.00J 863.25J 1765.64J
Phenom 117.49s 5266.59J 12190.47J 0.00J 0.00J 0.00J
Piledriver 166.99s 30396.62J 31595.37J 30818.35J 0.00J 0.00J
Sandy Bridge 122.88s 15345.50J 15753.70J 0.00J 4859.53J 8387.49J

Table 5.10: DRAM Energy Results for STREAM

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 106.26s 465.04J 246.42J
Phenom 117.49s 347.33J 0.00J
Piledriver 166.99s 762.93J 0.00J
Sandy Bridge 122.88s 392.13J 0.00J

power error of 3.00% and an IPMI error of 2.89% Haswellian again shows large

deviations in RAPL and serial readings with 97.8% error on the Core counter and

31.76% on the PKG.

5.1.8 DRAM Energy Results

The tables in Section 5.1.7 show results for both system and CPU energy and

DRAM energy usage. DRAM energy statistics can only be compared on the Haswellian

test system as it has RAPL DRAM counters and was instrumented with the JET-

5464. The results show no clear relationship between the serial measurements and
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Table 5.11: PSU and CPU Energy Results for Parallel STREAM

Architecture Delay PSU WUP IPMI Core PKG
Haswellian 107.21s 3240.50J 5670.30J 0.00J 1638.03J 2459.05J
Phenom 112.78s 7157.16J 13937.83J 0.00J 0.00J 0.00J
Piledriver 158.76s 37756.66J 38927.37J 37801.11J 0.00J 0.00J
Sandy Bridge 126.48s 21445.60J 21988.40J 0.00J 10414.41J 14083.71J

Table 5.12: DRAM Energy Results for Parallel STREAM

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 107.21s 465.97J 264.35J
Phenom 112.78s 361.03J 0.00J
Piledriver 158.76s 1022.66J 0.00J
Sandy Bridge 126.48s 581.39J 0.00J

the DRAM performance counters. The serial measurements are scaled by roughly a

factor of two compared to the RAPL counters. It is possible that there is a problem

with the RAPL counters on the architecture or with the instrumentation itself.

5.1.9 Energy Delay of Equake

Next, the equake benchmark is examined across all architectures with the energy

delay metric. Energy delay is used in an attempt to objectively characterize the

performance and power behavior of systems over a single workload. The equation

for energy delay is giving in Equation 1.4 and is most simply described as an energy

measurement with another factor of time added in. The resulting energy delay

values are given in Table 5.14 and Table 5.13.

Energy delay values put more emphasis on time instead of just purely on energy

as a way of measuring performance. The resulting value is essentially the energy

usage scaled by the time it takes each test system to run the benchmark. A slow

test machine will have a larger energy delay value than a much faster machine if

both machines have the same energy usage. A low energy delay value is desirable.

In order of energy delay performance, Haswellian is �rst with 25157.89Js, then

Sandy Bridge with 119975.39Js, followed by Phenom with 218783.34Js, and �nally
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Table 5.13: PSU and CPU Energy Delay Results for equake

Architecture Delay (s) PSU (Js) WUP (Js) IPMI (Js) Core (Js) PKG (Js)
Haswellian 23.64s 14787.66 25157.89 0.00 5995.61 11004.26
Phenom 46.31s 99416.70 218783.34 0.00 0.00 0.00
Piledriver 46.59s 391534.88 393845.75 392566.67 0.00 0.00
Sandy Bridge 31.58s 122404.46 119975.39 0.00 38675.55 67204.18

Table 5.14: DRAM Energy Delay Results for equake

Architecture Delay Serial DRAM RAPL DRAM
Haswellian 23.64s 2403.22 1100.88
Phenom 46.31s 4472.79 0.00
Piledriver 46.59s 8051.39 0.00
Sandy Bridge 31.58s 2033.18 0.00

Piledriver with 393845.75Js. These values indicate that Haswellian provides the best

mix of performance and energy usage for the equake benchmark.

5.2 Discussion

This section will cover the relative e�ectiveness of each method used to gather

power and energy data as discussed in Section 5.1. IPMI, APM, RAPL, and the

serial measurement system will be discussed. The perf tool and a brief look at energy

delay will also be shown.

5.2.1 Intelligent Plaform Management Interface

IPMI was found to be rather accurate compared to other methods. Although

the temporal resolution is low at one sample per second, the power readings can

be closely correlated with WUP and serial power data with an average error of

1.79% across all benchmarks. As mentioned before some of this error may be due

to incorrect windowing mentioned in Section 5.1.
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5.2.2 Application Power Management

APM accuracy is currently unable to be determined, possibly due to some sort of

hardware or software bug. The output of the APMmodule reads as a nearly constant

value throughout each test, regardless of load. Further testing and troubleshooting

needs to be done in order to determine the usefulness of APM.

5.2.3 Running Average Power Limit

RAPL results appear to be reasonably accurate compared to other methods. It

is di�cult to use Sandy Bridge results to verify CPU RAPL counters because all

other power measurement methods are looking at total system power and not just

CPU power. Haswellian results can be used to a degree to show the accuracy of

RAPL counters in predicting general trends. The serial values, RAPL Cores, and

RAPL PKG can be seen to closely show the same behavior while di�ering by a

varying amount. This large di�erence in energy usage may be due to an omission

of certain CPU functions in the RAPL energy model.

5.2.4 DRAM Measurements

DRAM values appear to be consistently o� for RAPL and serial instrumenta-

tion. The general power trends seen between the two exist but are not nearly as

pronounced as the trends seen in CPU or system power results. The RAPL DRAM

values tend to be a fairly consistent factor of two smaller than the serial DRAM

readings. It is possible that this is due to a Kernel scaling bug or a problem with

the RAPL hardware support. It is also possible that the custom instrumentation is

�awed in some way.
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5.2.5 watts up? PRO

As the only o�-the-shelf solution the WUP claims a 1.5% accuracy. The WUP

results are used as a reference although the low sampling rate makes �ne details

hard to see.

5.2.6 Serial Instrumentation

The serial instrumentation can be seen to closely follow trends seen in the other

methods. Measuring both the CS supplies and ATX connectors reveals results that

very closely follow the WUP, RAPL values, and IPMI readings. The serial results

are o� by a small constant factor to the WUP data in cases measuring the CS

supplies. This factor may be attributed to the power supply e�ciency which ranges

from 89% to 94%. Measuring the ATX supplies shows that the serial results are

o� by a slightly larger factor (as much as 20%). This large deviation is expected

though as the ATX P4 connector transmits power only to the CPU and not to the

rest of the system whereas the WUP is measuring total system power.

5.2.7 Perf

An unfortunate side-e�ect of using perf as the tool to sample data is that the

events closely surrounding the start and end of the system cannot be measured. It

can be di�cult to see the increase in power as a result of a benchmark as only the

trends during the benchmark can be seen. The only helpful reference is the WUP

data gathered.

5.2.8 Equake Energy Delay

The equake energy delay results from Section 5.2.8 describe which test systems

performs the best as far as energy and execution time are concerned. The re-

sults reveal that Haswellian performs best, followed by Sandy Bridge, Phenom, and
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Piledriver. These results have little e�ectiveness in determining which system per-

forms best in the general case as the equake benchmark does not appear to put a

large amount of stress on the various parts of the system. The energy delay metric

only indicates which machine performed the best for this set of benchmarks.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This section summarizes the �ndings regarding the integrated power and energy

metrics, the serial power measurement system, and o�-the-shelf solutions. Problems

and potential improvements to the serial power measurement system, instrumenta-

tion, and accompanying real-time perf interface will be discussed as well as possible

future applications of the work.

6.1 Conclusion

The custom instrumentation, embedded system, and perf interface tentatively

provide an accurate and precise alternative to current methods of gathering power

and energy data such as IPMI, APM, WUP, and RAPL counters. However, more

data is needed before any claims can be made to accuracy of the system's Common

Slot power supply, ATX P4 or DRAM measurement capabilities.

The custom instrumentation measures high power and low power lines with

moderate accuracy and has been tested with as small as a 100ms sampling period.

The high power measurements have been tested on CS and ATX power supplies. CS

supplies reveal that serial instrumentation has very accurate energy readings with

error as large as 3%. ATX P4 power supply lines are di�cult to verify as the WUP

measures system power and the P4 connector exposes CPU power. It is di�cult to

validate DRAM measurements as the only alternative metric, RAPL, appears to be

in some way �awed on the test machine used. It is also possible that the error lies

in our test setup; these possibilities should be investigated further.

The embedded system successfully samples and transmits all necessary voltages

in real-time. The perf interface requests and receives the real-time data and asso-
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ciates it with the necessary timestamp before printing to the user. Trends over time

in the power data from the various metrics show that synchronization of the various

sources of data is sound. Even though the several sources of power and energy data

have di�erent timestamps, the benchmarking script manages to bring together all

metrics and align them with respect to time. Currently, the overhead and possi-

ble impact of the added serial calls to the perf code on a variety of benchmarks is

unknown.

6.2 Problems and Improvements

A variety of problems were encountered during the design, implementation, and

experimentation with the serial power measurement system. These problems range

from the serial protocol, to the perf interface, to problems with the integrated met-

rics. All problems and possible solutions will be discussed.

6.2.1 Instrumentation

Although the high power instrumentation appears to measure power quite accu-

rately, the low power instrumentation has unveri�ed results. Inconsistencies between

the integrated RAPL DRAM readings and the serial DRAM measurements mean

that neither are veri�ed with any accuracy. More work should be done to trou-

bleshoot Kernel drivers for the Haswell machine. The low power instrumentation

should also be veri�ed using other means such as a logging oscilloscope.

Another possible problem might arise if the Hall e�ect sensors are maxed out.

If the Hall e�ect sensors are used to measure the maximum of 30A the output

voltage will be above the 3.3V ADC reference of the Teensy. This is easily solved

by stepping down the output of the Hall e�ect sensor with an ampli�er or a simple

resistive voltage divider.
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6.2.2 Embedded System

Section 5.1 shows that the embedded system functions quite well in showing

trends in power usage as well as being accurate in showing overall system power.

Some improvements can be made to the embedded system including: debugging

some non-functional ADC channels and improving the serial protocol.

During testing, some ADC lines were found to not respond as expected to test

voltages. It is unknown at this time whether this is a con�guration problem or a

result of hardware failure.

Currently, the embedded system only samples values when instructed to do so

by the perf client. An improvement over this would be to have the embedded system

continuously sample in the background and provide samples when instructed. This

would allow for non-blocking spontaneous requests compared to the current system

which must be queried, sample for the desired period, and then transmit results.

The improved system would be able to immediately provide serial power data upon

request for the previous time interval

6.2.3 Perf

Many problems arose from the perf interface and source code. The current

implementation uses a hack to insert calls into the perf stat routine. A massive

improvement would be to implement the serial calls as an actual perf event which

would allow the usage of other perf tools including source code analysis with perf

record.

A memory leak also exists in the current implementation. Due to the possible

improvements in the perf interface it may not be practical to hunt down and solve

the leak as the implementation is likely to change completely in the future.
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6.2.4 Integrated Metrics

When functional, the integrated counters and interfaces provide reasonably ac-

curate results. Due to implementation bugs or hardware failure, these integrated

features fail to provide useful result on some occasions. APM was found to be un-

reliable and only output a power reading that �uctuated around a constant value.

A hardware failure also caused the IPMI interface on Sandy Bridge to produce

constant 0.0W at all times. The failure is a result of possible shorting the supply in

one of the CS supply slots. The slot is now non-functional and the IPMI interface

ceased to function soon after. The second power supply slot still functions and the

system continues to run. A blinking orange light on the front of the server indicates

�Flashing amber = System health is degraded�. The system cannot be powered

from the outer CS supply slot anymore and the inner one must be used. These bugs

and failures should be investigated and solved in order to move forward and work

towards validating their accuracy.

6.2.5 Haswellian Running Average Power Limit DRAM

Initial data seems to indicate that the RAPL DRAM counters for the Haswellian

machine are o� by roughly a factor of two. This may be a Linux Kernel bug

or a hardware problem. It is also a possible problem with the serial low power

instrumentation. Further steps should be taken to analyze the current state of

Haswell DRAM RAPL counters and the low power instrumentation so any potential

bugs or problems might be found.

6.3 Future Work

There are various pieces of future work related to this research. First will be to

get the bottom of the various discrepancies in measurements, including the APM

issue and the RAPL DRAM issue. More detailed results should be taken with
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complete benchmark suites, such as SPEC CPU 2006 [72] or PARSEC [11]. More

complete system instrumentation needs to be done, including hard-drive, GPU, and

fans, in order to determine where all energy in a system is going. Finally, the

infrastructure can be used for power and energy optimization of programs. With

the instrumented perf utility it should be possible to gather insights into program

power behavior that were not possible before.

62



REFERENCES

[1] KiCad EDA software suite website. http://www.kicad-pcb.org.

[2] OpenBLAS an optimized BLAS library website. http://www.openblas.net/.

[3] Teensy USB development board website. https://www.pjrc.com/teensy/.

[4] Top green 500 list:: Environmentally responsible supercomputing. http://www.
green500.org/.

[5] Top 500 supercomputing sites. http://www.top500.org/, 2014.

[6] P. Alonso, R. Badia, J. Labarta, M. Barreda, M. Dolz, R. Mayo, E. Quintana-
Ortí, and R. Reyes. Tools for power-energy modelling and analysis of parallel
scienti�c applications. In In Proc. 41st International Conference on Parallel
Processing, pages 420�429, 2012.

[7] AMD. AMD Family 15h Processor BIOS and Kernel Developer Guide, 2011.

[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users' Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[9] R. Aroca and L. Gonçalves. Towards green data centers: A comparison of x86
and ARM architectures power e�ciency. Journal of Parallel and Distributed
Computing, 72:1770�1780, 2012.

[10] D. Bedard, R. Fowler, M. Linn, and A. Porter�eld. PowerMon 2: Fine-grained,
integrated power measurement. Technical Report TR-09-04, Renaissance Com-
puting Institute, 2009.

[11] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In Proc. IEEE/ACM Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pages
72�81, Oct. 2008.

[12] W. Bircher and L. John. Complete system power estimation: A trickle-down
approach based on performance events. In Proc. IEEE International Symposium
on Performance Analysis of Systems and Software, pages 158�168, Apr. 2007.

[13] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable program-
ming interface for performance evaluation on modern processors. International
Journal of High Performance Computing Applications, 14(3):189�204, 2000.

63



[14] K. Cameron. Energy oddities part 1: Why the energy world is odd. Computer,
46(1):83�84, 2013.

[15] H. Chen, S. Wang, and W. Shi. Where does the power go in a computer system:
Experimental analysis and implications. In International Green Computing
Conference, pages 1�6, July 2011.

[16] M. Cloutier, C. Paradis, and V. Weaver. Design and analysis of a 32-bit em-
bedded high-performance cluster optimized for energy and performance. In
First International Workshop on Hardware-Software Co-Design for High Per-
formance Computing, Nov. 2014.

[17] G. Contreras and M. Martonosi. Power prediction for Intel XScale processors
using performance monitoring unit events. In Proc. IEEE/ACM International
Symposium on Low Power Electronics and Design, pages 221�226, Aug. 2005.

[18] Z. Cui, Y. Zhu, Y. Bao, and M. Chen. A �ne-grained component-level power
measurement method. In International Green Computing Conference, July
2011.

[19] H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and C. Le. RAPL: Memory
power estimation and capping. In ACM/IEEE International Symposium on
Low-Power Electronics and Design, Aug. 2010.

[20] M. Diouri, M. Dolz, O. Glück, L. Lefèvre, P. Alonso, S. Catalán, R. Mayo,
and E. Quintana-Ort. Solving some mysteries in power monitoring of servers:
Take care of your wattmeters! In Energy E�ciency in Large Scale Distributed
Systems conference, Apr. 2013.

[21] J. Dongarra, H. Ltaief, P. Luszczek, and V. Weaver. Energy footprint of ad-
vanced dense numerical linear algebra using tile algorithms on multicore ar-
chitecture. In Proc. of the 2nd International Conference on Cloud and Green
Computing, Nov. 2012.

[22] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan. Full-system power
analysis and modeling for server environments. In Proc. Workshop on Modeling,
Benchmarking, and Simulation, June 2006.

[23] Electronic Educational Devices. Watts Up PRO. http://www.wattsupmeters.
com/, May 2009.

[24] X. Feng, R. Ge, and K. Cameron. Power and energy pro�ling of scienti�c
applications on distributed systems. In Proc. 19th IEEE International Parallel
and Distributed Processing Sumposium, page 34, Apr. 2005.

[25] J. Flinn and M. Satyanarayanan. PowerScope: a tool for pro�ling the energy
usage of mobile applications. In Proc. of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, pages 2�10, Feb. 1999.

64



[26] M. Floyd, M. Allen-Ware, K. R. K, B. Brock, C. Lefurgy, A. Drake, L. Pesantez,
T. Gloekler, J. T. J, P. Bose, and A. Buyuktosunoglu. Introducing the adaptive
energy management features of the power7 chip. IEEE Micro, 31(2):60�75,
2011.

[27] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham,
and T. Woodall. Open MPI: Goals, concept, and design of a next generation
MPI implementation. In In Proc. 11th European PVM/MPI Users' Group
Meeting, Sept. 2004.

[28] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron. PowerPack:
Energy pro�ling and analysis of high-performance systems and applications.
IEEE Transactions on Parallel and Distributed Systems, 21(6), May 2010.

[29] T. Gleixner and I. Molnar. Performance counters for Linux, 2009.

[30] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati.
Portable, scalable, per-core power estimation for intelligent resource manage-
ment. In First International Green Computing Conference, Aug. 2010.

[31] M. Gottscho, A. Kagalwalla, and P. Gupta. Analyzing power variability of
ddr3 dual inline memory modules. Technical report, University of California,
Los Angeles, 2011.

[32] M. Gottscho, A. Kagalwalla, and P. Gupta. Power variability in contemporary
DRAMs. IEEE Embedded Systems Letters, 4(2):37�40, 2012.

[33] W. Gropp. MPICH2: A new start for MPI implementations. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface, page 7, Sept. 2002.

[34] D. Hackenberg, T. Ilsche, R. Schoene, D. Molka, M. Schmidt, and W. E. Nagel.
Power measurement techniques on standard compute nodes: A quantitative
comparison. In Proc. IEEE International Symposium on Performance Analysis
of Systems and Software, Apr. 2013.

[35] H. Hamann, J. Lacey, A. Weger, and J. Wakil. Spatially-resolved imaging of
microprocessor power SIMP: hotspots in microprocessors. In In Proc. 10th In-
tersociety Conference on Thermal and Thermomechanical Phenomena in Elec-
tronics Systems, pages 121�125, May 2006.

[36] M. Hennecke, W. Frings, W. Homberg, A. Zitz, M. Knobloch, and H. Böt-
tiger. Measuring power consumption of IBM Blue Gene/P. Computer Science
� Research and Development, 27:329�336, Nov. 2012.

[37] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In
Proc. of the IEEE Symposium on Low Power Electronics, pages 8�11, Oct. 1994.

65



[38] C.-H. Hsu and S. Poole. Power measurement for high performance computing:
State of the art. In International Green Computing Conference, July 2011.

[39] A. Hylick, R. Sohan, A. Rice, and B. Jones. An analysis of hard drive energy
consumption. In Proc. IEEE 16th International Symposium on Modelling Anal-
ysis and Simulation of Computer and Telecommunication Systems, pages 1�10,
Sept. 2008.

[40] Intel. Voltage regulator-down (vrd) 11.0 processor power
delivery design guidelines for desktop lga775 socket.
http://www.intel.com/content/dam/doc/design-guide/voltage-regulator-
down-11-0-processor-power-delivery-guide.pdf, Nov. 2006.

[41] Intel. Intel Energy Checker: Software Developer Kit User Guide, 2010.

[42] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer's
Manual Volume 3: System Programming Guide, Feb. 2014.

[43] M. Jarus, S. Varette, A. Oleksiak, and P. Bouvry. Performance evaluation
and energy e�ciency of high-density HPC platforms based on Intel, AMD and
ARM processors. Energy E�ciency in Large Scale Distributed Systems, pages
182�200, 2013.

[44] R. Joseph and M. Martonosi. Run-time power estimation in high-performance
microprocessors. In Proc. IEEE/ACM International Symposium on Low Power
Electronics and Design, pages 135�140, Aug. 2001.

[45] K. Khan, F. Nybäck, Z. Ou, J. Nurminen, T. Niemi, G. Eulisse, P. Elmer, and
D. Abdurachmanov. Energy pro�ling using IgProf. In CCGrid Poster Session,
May 2015.

[46] S. Khoshbakht and N. Dimopoulos. Relating application memory activity to
processor power. In Proc. International Conference on Parallel Processing,
pages 849�857, Oct. 2013.

[47] R. Knapp, K. Karavanic, and A. Márquez. Integrating power and cooling data
into parallel performane analysis. In Proc. of the 2nd International Workshop
on Green Computing, Sept. 2010.

[48] J. Laros III, D. DeBonis, R. Grant, S. Kelly, M. Levenhagen, S. Olivier, and
K. Pedretti. High performance computing � power application programming
interface speci�cation version 1.0. Technical Report SAND2014-17061, Sandia
National Laboratories, 2014.

[49] J. Laros III, K. Pedretti, S. Kelly, J. Vandyke, C. Vaughan, and M. Swan.
Investigating real power usage on red storm. In Cray Users Group Meeting,
2009.

66



[50] M. Laurenzano, A. Tiwari, A. Jundt, J. Peraza, W. Ward Jr., R. Campbell, and
L. Carrington. Characterizing the performance-energy tradeo� of small ARM
cores in HPC computation. In Proc. of Euro-Par 2014, pages 124�137, Aug.
2014.

[51] B. Lee and D. Brooks. Accurate and e�cient regression modeling for microar-
chitectural performance and power prediction. In Proc. 12th ACM Symposium
on Architectural Support for Programming Languages and Operating Systems,
pages 185�194, Oct. 2006.

[52] D. Lee, M. O'Sullivan, and C. Walker. A framework for measuring the perfor-
mance and power consumption of storage components under typical workload.
GSTF Journal on Computing, 1(2), Feb. 2011.

[53] A. Mahesri and V. Vardhan. Power consumption breakdown on a modern
laptop. In Proc. of the 4th International Workshop on Power-Aware Computer
Systems, pages 165�180, Dec. 2004.

[54] A. Martin, M. Nyström, and P. Pénzes. ET2: A metric for time and energy
e�ciency of computation. In Power Aware Computing, pages 293�315, 2002.

[55] J. McCalpin. STREAM: Sustainable memory bandwidth in high performance
computers. http://www.cs.virginia.edu/stream/, 1999.

[56] F. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau. Power model valida-
tion through thermal measurements. In Proc. 34th IEEE/ACM International
Symposium on Computer Architecture, pages 302�311, June 2007.

[57] F. Moghaddam, T. Geenen, P. Lago, and P. Grosso. A user perspective on
energy pro�ling tools in large scale computing environments. In Sustainable
Internet and ICT for Sustainability, pages 1�5, Apr. 2015.

[58] D. Molka, D. Hackenberg, R. Schone, and M. Muller. Characterizing the energy
consumption of data transfers and arithmetic operations on x86-64 processors.
In Proc. International Green Computing Conference, pages 123�133, Aug. 2010.

[59] M. C. no, S. Catalán, R. Mayo, and E. Quintana-Ortí. Reducing the cost of
power monitoring with DC Wattmeters. Computer Science � Research and
Development, 30(2):107�114, May 2015.

[60] W. Norcott and D. Capps. IOzone �le system benchmark. http://www.

iozone.org.

[61] NVIDIA. NVML Reference Manual, 2012.

[62] A. Petitet, R. Whaley, J. Dongarra, and A. Cleary. HPL � a portable imple-
mentation of the high-performance linpack benchmark for distributed-memory
computers. Innovative Computing Laboratory, Computer Science Department,

67



University of Tennessee, v2.0, http://www.netlib.org/benchmark/hpl/, Jan.
2008.

[63] L. Piga, R. Bergamasci, R. Azevedo, and S. Rigo. Power measuring infrastruc-
ture for computing systems. Technical Report IC-11-09, Universidade Estadual
de Campinas, Mar. 2011.

[64] C. Poirier, R. McGowen, C. Bostak, and S. Na�ziger. Power and temperature
control on a 90nm Itanium R©-family processor. In Proc. IEEE International
Solid State Circuits Conference, pages 304�305, 2005.

[65] A. Rahmati, M. Hicks, D. Holcomb, and K. Fu. Refreshing thoughts on DRAM:
Power saving vs. data integrity. InWorkshop on Approximate Computing Across
the System Stack, Mar. 2014.

[66] E. Rotem, A. Naveh, D. Rajwan, A. Anathakrishnan, and E. Weissmann.
Power-management architecture of the Intel microarchitecture code-named
Sandy Bridge. IEEE Micro, 32(2):20�27, 2012.

[67] D. Schmidt and N. Wehn. DRAM power management and energy consumption:
a critical assessment. In Proc. of the 22nd Annual Symposium on Integrated
Circuits and System Design, Aug. 2009.

[68] D. Singh and W. Kaiser. Energy e�cient network data transport through
adaptive compression using the DEEP platforms. In IEEE 8th International
Conference on Wireless and Mobile Computing, pages 253�260, Oct. 2012.

[69] D. Singh, P. Peterson, P. Reiher, and W. Kaiser. The atom LEAP platform
for energy-e�cient embedded computing: Architecture, operation, and system
implementation. Technical report, University of California, Los Angeles, Dec.
2010.

[70] K. Singh, M. Bhadauria, and S. McKee. Real time power estimation and thread
scheduling via performance counters. Computer Architecture News, 37(2):46�
35, July 2009.

[71] Standard Performance Evaluation Corporation. SPEC CPU benchmark suite.
http://www.specbench.org/osg/cpu2000/, 2000.

[72] Standard Performance Evaluation Corporation. SPEC CPU benchmark suite.
http://www.specbench.org/osg/cpu2006/, 2006.

[73] P. Stanley-Marbell and V. Cabezas. Performance, power, and thermal analysis
of low-power processors for scale-out systems. In Proc of IEEE International
Symposium on Parallel and Distributed Processing, pages 863�870, May 2011.

68



[74] S. Wallace, V. Vishwanath, S. Coghlan, Z. Lan, and M. Papka. Measuring
power consumption on IBM Blue Gene/Q. In Proc. 9th Workshop on High-
Performance Power-Aware Computing, pages 853�859, May 2013.

[75] V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terp-
stra, and S. Moore. Measuring energy and power with papi. In Proc. of The
1st International Workshop on Power-Aware Systems and Architectures, Sept.
2012.

[76] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra software.
In Proc. of Ninth SIAM Conference on Parallel Processing for Scienti�c Com-
puting, 1999.

[77] W. Wu, L. Jin, and J. Yang. A systematic method for functional unit power
estimation in microprocessors. In Proc. 43rd ACM/IEEE Design Automation
Conference, pages 554�557, July 2006.

[78] J. Yan, C. Lonappan, A. Vajid, D. Singh, and W. Kaiser. Accurate and low-
overhead process-level energy estimation for modern hard disk drives. In IEEE
International Conference on Green Computing and Communications, pages
171�178, Aug. 2013.

[79] K. Yoshii, K. Iskra, R. Gupta, P. Beckman, V. Vishwanath, C. Yu, and S. Cogh-
lan. Evaluating power monitoring capabilites on IBM Blue Gene/P and Blue
Gene/Q. In IEEE International Conference on Cluster Computing, pages 36�
44, Sept. 2012.

69



Appendix A

PERF TOOL MODIFICATIONS

*** builtin -stat.c.bak 2015 -05 -20 16:03:20.831743610 -0400
--- builtin -stat.c 2015 -06 -02 12:07:32.227682491 -0400
***************
*** 63,68 ****
--- 63,71 ----

#include <sys/prctl.h>
#include <locale.h>

+ /* Added */
+ #include "ssplib.c"
+

#define DEFAULT_SEPARATOR "␣"
#define CNTR_NOT_SUPPORTED "<not␣supported >"
#define CNTR_NOT_COUNTED "<not␣counted >"

*************** static void print_interval(void)
*** 500 ,505 ****
--- 503 ,515 ----

print_counter_aggr(counter , prefix);
}

+ /* Added serial requests */
+ receive_samples ();
+ for (int i = 0; i < bit_count(my_channels); i++) {
+ fprintf(output , "%s␣␣␣␣␣%d␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣power␣(W)\n",

prefix , my_samples[i]);
+ }
+ begin_sample ();
+

fflush(output);
}

*************** static void handle_initial_delay(void)
*** 515 ,520 ****
--- 525 ,533 ----

evlist__for_each(evsel_list , counter)
perf_evsel__enable(counter , ncpus , nthreads);

}
+
+ /* Added serial start polling */
+ begin_sample ();

}

static volatile int workload_exec_errno;
*************** static int __run_perf_stat(int argc , con
*** 543 ,548 ****
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--- 556 ,575 ----
if (interval) {

ts.tv_sec = interval / 1000;
ts.tv_nsec = (interval % 1000) * 1000000;

+
+ /* Added code for serial init */
+ my_tty_fd = open(my_device , O_RDWR | O_NOCTTY | O_NDELAY);
+ if(my_tty_fd == -1) {
+ fprintf(output , "failed␣to␣open␣port\n");
+
+ return 1;
+ }
+ serial_init ();
+ cfsetospeed (&my_tio ,B115200);
+ cfsetispeed (&my_tio ,B115200);
+ tcsetattr(my_tty_fd , TCSANOW , &my_tio);
+ send_interval(interval);
+ send_channels ();

} else {
ts.tv_sec = 1;
ts.tv_nsec = 0;

*************** static int __run_perf_stat(int argc , con
*** 619 ,624 ****
--- 646 ,654 ----

if (workload_exec_errno) {
const char *emsg = strerror_r(workload_exec_errno , msg ,

sizeof(msg));
pr_err("Workload␣failed:␣%s\n", emsg);

+ if (my_tty_fd != -1) {
+ close(my_tty_fd);
+ }

return -1;
}

*************** static int __run_perf_stat(int argc , con
*** 650 ,655 ****
--- 680 ,690 ----

}
}

+
+ /* Added */
+ if (my_tty_fd != -1) {
+ close(my_tty_fd);
+ }

return WEXITSTATUS(status);
}
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Appendix B

BENCHMARK SCRIPT

#!/usr/bin/env bash

echo "Run␣this␣script␣like␣the␣following:"
echo "sudo␣env␣OUT_FIL=hplnp2␣INTERVAL =1000␣IPMI=1␣RAPL=1␣RAPL_DRAM

=1␣APM=0␣./ bench_template.sh␣../ workload"

: ${OUT_FIL :?"Please␣specify␣the␣output␣filename"}
: ${INTERVAL :?"Please␣specify␣an␣interval"}
: ${IPMI:?"Please␣specify␣IPMI␣support"}
: ${RAPL:?"Please␣specify␣RAPL␣support"}
: ${RAPL_DRAM :?"Please␣specify␣RAPL_DRAM␣support"}
: ${APM:?"Please␣specify␣APM␣support"}

if [ "$#" -eq 0 ]; then
echo "Specify␣a␣workload ..."
exit 1

fi

if [ "$IPMI" -eq 1 ]; then
echo "Insert␣ipmi␣kernel␣modules"
/sbin/modprobe ipmi_msghandler
/sbin/modprobe ipmi_devintf
/sbin/modprobe ipmi_si

IPMI_CMD="ipmitool␣-c␣sensor␣get␣’Power␣Meter ’"
fi

if [ "$RAPL" -eq 1 ]; then
RAPL_CNTRS="-a␣-e␣power/energy -cores/␣\

␣␣␣␣-e␣power/energy -pkg/"
fi

if [ "$RAPL_DRAM" -eq 1 ]; then
RAPL_CNTRS +="␣-e␣power/energy -ram/"

fi

if [ "$APM" -eq 1 ]; then
APM_CMD="sensors␣-u"

fi

PERF="../../ linux -3.18.13/ tools/perf/perf"
PERF_OPTS="stat␣-I$INTERVAL"
# -a is needed for some perf counters
# also need to run this as root or change paranoid values
# Error:
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# You may not have permission to collect system -wide stats.
# Consider tweaking /proc/sys/kernel/perf_event_paranoid:
# -1 - Not paranoid at all
# 0 - Disallow raw tracepoint access for unpriv
# 1 - Disallow cpu events for unpriv
# 2 - Disallow kernel profiling for unpriv

BENCHMARK_WORKLOAD="$@"
OUT_CMD="-o"
OUT_DIR="../../ test_data/‘hostname ‘/ $OUT_FIL/‘date␣+%H-%M-%S-%m-%d

-%Y‘"
mkdir -p $OUT_DIR

PERF_CNTRS="-e␣instructions␣-e␣cycles␣-e␣branches␣-e␣branch -misses"
COMMAND="$PERF␣$PERF_OPTS␣$PERF_CNTRS␣$RAPL_CNTRS␣$OUT_CMD␣$OUT_DIR

/${OUT_FIL}_PERF␣$BENCHMARK_WORKLOAD"

TIME="date␣+%s,%N"
WATCH="watch␣-pn␣‘echo␣$INTERVAL␣/␣1000␣|␣bc␣-l‘"
if [ "$APM" -eq 1 ]; then

eval $WATCH "\"$TIME >> $OUT_DIR/${OUT_FIL}_APM && $APM_CMD >>
$OUT_DIR/${OUT_FIL}_APM\"␣&"

fi
if [ "$IPMI" -eq 1 ]; then

eval $WATCH "\"$TIME >> $OUT_DIR/${OUT_FIL}_IPMI && $IPMI_CMD
>> $OUT_DIR/${OUT_FIL}_IPMI\"␣&"

fi

echo $COMMAND >> $OUT_DIR/${OUT_FIL}
eval $COMMAND >> $OUT_DIR/${OUT_FIL}

# Kill the period IPMI and APM jobs
KILL="pkill␣-P␣$$"
eval $KILL

echo "Output␣written␣to␣$OUT_DIR/${OUT_FIL}"
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Appendix C

PARTS LIST

Table C.1: Parts List

Item Quantity Price ($)
Serial Data Logger
Teensy 3.1 1 22.80
USB Micro Cable 1 5.99
Breadboard 1 5.95
Various Wires

Subtotal
34.74

CS Instrumentation
CS Extender Board 2 156.00
CS Tongue 1 22.25
32x2 Edge Connector 1 3.30
Ring Terminal Connectors 20 2.99
Quick Disconnect Pairs 20 2.99
16 AWG Stranged Wire 16 feet 3.20
ACS715 Hall E�ect Sensor with Breakout Board 2 19.90

Subtotal
210.63

DRAM Instrumentation
INA 122 1 6.64
Resistor 1 0.04
DIMM Extender 1 130.95
Breadboard 1 5.95

Subtotal
143.58

ATX Instrumentation
P4 Extender 1 2.99
Quick Disconnect Pairs 20 2.99

Subtotal
5.98
Total
394.93
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Appendix D

RESULTS

(a) Sandy Bridge (b) Piledriver

(c) Phenom (d) Haswellian

Figure D.1: Sleep DRAM on all Architectures
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(a) Sandy Bridge (b) Piledriver

(c) Phenom (d) Haswellian

Figure D.2: High Performance Linpack DRAM all Architectures
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(a) Sandy Bridge (b) Piledriver

(c) Phenom (d) Haswellian

Figure D.3: Equake DRAM on all Architectures
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(a) Sandy Bridge (b) Piledriver

(c) Phenom (d) Haswellian

Figure D.4: Parallel STREAM DRAM on all Architectures

78



(a) Sandy Bridge (b) Piledriver

(c) Phenom (d) Haswellian

Figure D.5: STREAM on all Architectures
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Appendix E

BENCHMARK INPUTS
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HPLinpack benchmark input file
Innovative Computing Laboratory , University of Tennessee
HPL.out output file name (if any)
6 device out (6= stdout ,7=stderr ,file)
1 # of problems sizes (N)
20480 Ns
1 # of NBs
256 NBs
0 PMAP process mapping (0=Row -,1=Column -major)
1 # of process grids (P x Q)
2 Ps
2 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left , 1=Crout , 2= Right)
1 # of recursive stopping criterium
4 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left , 1=Crout , 2= Right)
1 # of broadcast
1 BCASTs (0=1rg ,1=1rM ,2=2rg ,3=2rM ,4=Lng ,5= LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin -exch ,1=long ,2=mix)
64 swapping threshold
0 L1 in (0= transposed ,1=no -transposed) form
0 U in (0= transposed ,1=no -transposed) form
1 Equilibration (0=no ,1=yes)
8 memory alignment in double (> 0)
##### This line (no. 32) is ignored (it serves as a separator).

######
0 Number of additional problem sizes

for PTRANS
1200 10000 30000 values of N
0 number of additional blocking sizes

for PTRANS
40 9 8 13 13 20 16 32 64 values of NB

Figure E.1: Haswellian HPL.dat
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HPLinpack benchmark input file
Innovative Computing Laboratory , University of Tennessee
HPL.out output file name (if any)
6 device out (6= stdout ,7=stderr ,file)
1 # of problems sizes (N)
14000 Ns
1 # of NBs
128 NBs
0 PMAP process mapping (0=Row -,1=Column -major)
1 # of process grids (P x Q)
2 Ps
2 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left , 1=Crout , 2= Right)
1 # of recursive stopping criterium
4 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left , 1=Crout , 2= Right)
1 # of broadcast
1 BCASTs (0=1rg ,1=1rM ,2=2rg ,3=2rM ,4=Lng ,5= LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin -exch ,1=long ,2=mix)
64 swapping threshold
0 L1 in (0= transposed ,1=no -transposed) form
0 U in (0= transposed ,1=no -transposed) form
1 Equilibration (0=no ,1=yes)
8 memory alignment in double (> 0)
##### This line (no. 32) is ignored (it serves as a separator).

######
0 Number of additional problem sizes

for PTRANS
1200 10000 30000 values of N
0 number of additional blocking sizes

for PTRANS
40 9 8 13 13 20 16 32 64 values of NB

Figure E.2: Phenom HPL.dat
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HPLinpack benchmark input file
Innovative Computing Laboratory , University of Tennessee
HPL.out output file name (if any)
6 device out (6= stdout ,7=stderr ,file)
1 # of problems sizes (N)
24000 Ns
1 # of NBs
128 NBs
0 PMAP process mapping (0=Row -,1=Column -major)
1 # of process grids (P x Q)
2 Ps
16 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left , 1=Crout , 2= Right)
1 # of recursive stopping criterium
4 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left , 1=Crout , 2= Right)
1 # of broadcast
1 BCASTs (0=1rg ,1=1rM ,2=2rg ,3=2rM ,4=Lng ,5= LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin -exch ,1=long ,2=mix)
64 swapping threshold
0 L1 in (0= transposed ,1=no -transposed) form
0 U in (0= transposed ,1=no -transposed) form
1 Equilibration (0=no ,1=yes)
8 memory alignment in double (> 0)

Figure E.3: Piledriver HPL.dat
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HPLinpack benchmark input file
Innovative Computing Laboratory , University of Tennessee
HPL.out output file name (if any)
6 device out (6= stdout ,7=stderr ,file)
1 # of problems sizes (N)
25000 Ns
1 # of NBs
256 NBs
0 PMAP process mapping (0=Row -,1=Column -major)
1 # of process grids (P x Q)
1 Ps
24 Qs
16.0 threshold
1 # of panel fact
2 PFACTs (0=left , 1=Crout , 2= Right)
1 # of recursive stopping criterium
4 NBMINs (>= 1)
1 # of panels in recursion
2 NDIVs
1 # of recursive panel fact.
1 RFACTs (0=left , 1=Crout , 2= Right)
1 # of broadcast
1 BCASTs (0=1rg ,1=1rM ,2=2rg ,3=2rM ,4=Lng ,5= LnM)
1 # of lookahead depth
1 DEPTHs (>=0)
2 SWAP (0=bin -exch ,1=long ,2=mix)
64 swapping threshold
0 L1 in (0= transposed ,1=no -transposed) form
0 U in (0= transposed ,1=no -transposed) form
1 Equilibration (0=no ,1=yes)
8 memory alignment in double (> 0)
##### This line (no. 32) is ignored (it serves as a separator).

######
0 Number of additional problem sizes

for PTRANS
1200 10000 30000 values of N
0 number of additional blocking sizes

for PTRANS
40 9 8 13 13 20 16 32 64 values of NB

Figure E.4: Sandy Bridge HPL.dat
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Appendix F

EMBEDDED SOURCE CODE

#include "main.h"

#include "WProgram.h"

#include "ADC/ADC.h"

#include "usb_serial.h"

#include "my_defines.h"

#include <stdio.h>

ADC *adc;

extern "C" int main(void)

{

#ifdef USING_MAKEFILE

// To use Teensy 3.0 without Arduino , simply put your code here

.

// For example:

while (1) {

adc_to_serial ();

}

#else

// Arduino ’s main() function just calls setup() and loop()....

setup();

while (1) {
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loop();

yield();

}

#endif

}

ADC* adc_init(void) {

ADC *adc = new ADC();

adc ->setAveraging(MY_ADC_AVG);

adc ->setResolution(MY_ADC_RES);

adc ->setConversionSpeed(ADC_HIGH_SPEED);

adc ->setSamplingSpeed(ADC_HIGH_SPEED);

for (int i = 0; i < 10; i++) {

pinMode(channel_list[i], INPUT);

}

return adc;

}

void serial_init(void) {

Serial.begin (115200);

Serial.setTimeout (-1);

}

void adc_to_serial(void) {

char request = MY_SERIAL_NUL;

int samples[sizeof(channel_list)];

// Default to 1 second samples

int interval = 1000;

// Default to measuring only channel 1
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int channels = 1;

// Network byte order

bool nbo = false;

serial_init ();

adc = adc_init ();

// Configure the LED

#define LED 13

pinMode(LED , OUTPUT);

// First receive a command byte

// Process the command byte

while (1) {

request = Serial.read();

switch (request) {

case MY_SERIAL_INT:

interval = get_interval ();

break;

case MY_SERIAL_CHX:

channels = get_channels ();

break;

case MY_SERIAL_BEG:

begin_sample(interval , channels , samples);

break;

case MY_SERIAL_REQ:

transmit_sample(channels , samples);

break;

case MY_SERIAL_TBO:

nbo = test_network_byte_order ();

case MY_SERIAL_END:
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break;

case MY_SERIAL_NUL:

default:

break;

}

}

delete adc;

}

// Time to delay between each round of samples

int get_interval(void) {

return Serial.parseInt ();

}

// Return a bitmap of the channels to use

int get_channels(void) {

return Serial.parseInt ();

}

void begin_sample(int interval , int channels , int *samples) {

int channel = 0;

// ADC library takes multiple samples automatically

// Channel bitmap controls which channels to grab data from

// /Max of twenty ADC channels

for (unsigned int ch = 0; ch < sizeof(channel_list); ch++) {

samples[ch] = 0;

}

for (int i = 0; i < MY_ADC_AVG; i++) {
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for (unsigned int ch = 0; ch < sizeof(channel_list); ch++)

{

if (channels &(1 << ch)) {

channel = channel_list[ch];

samples[ch] += ((int) adc ->analogRead(channel))/

MY_ADC_AVG;

}

}

delay(interval /( MY_ADC_AVG + 1)/2);

digitalWriteFast(LED , HIGH);

delay(interval /( MY_ADC_AVG + 1)/2);

digitalWriteFast(LED , LOW);

}

}

void transmit_sample(int channels , int *samples) {

// int as uint*_t

uint8_t *iasui;

for (unsigned int i = 0; i < sizeof(channel_list); i++) {

if (channels &(1 << i)) {

// Write the int directly

iasui = (uint8_t *) &( samples[i]);

Serial.write(iasui , sizeof(int));

}

}

Serial.printf("\r\n");

}

// teensy3 .1 appears to be little endian by default

// Cortex M-4s can apparently switch between endianess though

// Client code writes byte 0 of an int to the server
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// Compare received byte 0 and byte 0 of an int on server

bool test_network_byte_order(void) {

int test_int = 1;

char *test_char = (char *) &test_int;

return (test_char [0] == Serial.read());

}

#ifndef MAIN_H_

#define MAIN_H_

#include "ADC/ADC.h"

void adc_to_serial(void);

void serial_init(void);

ADC* adc_init(void);

int get_interval(void);

int get_channels(void);

void begin_sample(int interval , int channels , int *samples);

void transmit_sample(int channels , int *samples);

bool test_network_byte_order(void);

#endif

#ifndef MY_DEFINES_H

#define MY_DEFINES_H

#include <stdint.h>

#define MY_SERIAL_NUL ’N’

#define MY_SERIAL_INT ’I’
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#define MY_SERIAL_CHX ’C’

#define MY_SERIAL_BEG ’B’

#define MY_SERIAL_REQ ’R’

#define MY_SERIAL_TBO ’T’

#define MY_SERIAL_END ’E’

#define MY_ADC_AVG 8

#define MY_ADC_RES 16

#ifdef __arm__

#ifdef ADC_H

// List of ADC channels. Some of these are on the bottom of the

board and hard to access

// Ten are easily accessible on the through hole pins

const uint8_t channel_list [] = {A0, A1 , A2, A3, A4 , A5 , A6, A7, A8 ,

A9, A10 , A11 , A12 , A13 , A14 , A15 , A16 , A17 , A18 , A19 , A20};

#endif

#else

const uint8_t channel_list [] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

#endif

#endif /* end of include guard: MY_DEFINES_H */

75,79c75

< // Make read() blocking

< virtual int read() {

< while (!this ->available ());

< return usb_serial_getchar ();

< }

---

> virtual int read() { return usb_serial_getchar (); }
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