
1

Errata of
Embedded Systems with ARM Cortex-M3 Microcontrollers in Assembly Language and C

ISBN-10: 0982692625
Yifeng Zhu

For the printing dated August 5, 2014

March 23, 2015

Thank you all for providing me feedbacks and corrections!

Chapter 1. See a Program Running
 Page 6: “we can allocate a 4KB region for the data memory and a 156KB region for the

instruction memory, as shown in Figure 1-6” should read as “we can allocate a 4KB region for

the instruction memory and a 256KB region for the data memory, as shown in Figure 1-6.”

 Page 10, Figure 1-9, the 0x00000000-0x08000000 range is 128 MB, not 126 MB.

 On Page 16, in Tab 1-2, add the last entry (hex 0x2000) and (binary 0010000000000000) in

column "Machine Program"

 On Page 18, in the last sentence, “takes four types in memory" should be "bytes", not “types”

Chapter 2. Data Representation
 Page 35: “Carry = Not Barrow” should be “Carry = Not Borrow”

 Page 41: With the text box on the right, it should be “A processor sets up both the carry flag and

overflow flag.”

 Page 45, “0b11101 = 3” should be “0b11101 = -3”

 Page 48, at the end of the first paragraph, "The ASCII value of the ZERO character is 0x50"

should read as "The ASCII value of the ZERO character is 0x30".

 Page 48, Table 2—7, the letter of ASCII value 0x72 and 0x74 should be ‘r’ and ‘t’, respectively.

 Page 49, the character comparison order listed in the first paragraph '9' > '0' > '1' should be '9' >

'1' > '0’.

 Page 51, 2.6 Exercises, Question 2, “Assume a five-bit system” should be “Assume a six-bit

system”

Chapter 3. ARM Instruction Set Architecture
 Page 57, in Figure 3-3, “x DCW -1” should be “x DCW -2”.

 Page 64, in the table, the description of SMULL and UMULL are incorrect.

SMULL (signed long multiply),

SMLAL (signed long multiply, with accumulate),

UMULL (unsigned long multiply),

UMLAL (unsigned long multiply, with subtract)

 Page 64, in the middle table, the explanation of REVSH should be “reverse byte order in the

bottom halfword, and sign extend to 32 bits.”

 Page 65, in the table, "LTRH" should be "LDRH", and all "SDxx" should be "STxx"

2

Chapter 4. Arithmetic and Logic
 Page 74: “RRX (rotate right with extend) works similarly to ROR except the carry bit joins the

rotate circle. Similarly, the carry bit may be used to update the carry flag.” This statement is
incorrect. The correction is “RRX (rotate right with extend) works similarly to ROR except that

the carry bit joins the rotate circle and RRX rotates the data by only one bit”

 Page 77, “r0 = r0 + r0 << 3 = 10 × r0” should be “r0 = r0 + r0 << 3 = 9 × r0”.

 Page 80, “r1 = r0 + r0 >> 3 = r0 + r0/9 (unsigned)” should be “r1 = r0 + r0 >> 3 =

r0 + r0/8 (unsigned)”.

 Page 80, “r1 = r0 + r0 >> 3 = r0 + r0/9 (signed)” should be “r1 = r0 + r0 >> 3 =

r0 + r0/8 (signed)”.

 Page 80,
ADD r1, r0, r0, LSL #3 ⟺ MOV r2, #11 ; r2 = 11

 MUL r1, r0, r2 ; r1 = r0 * 11

should be

ADD r1, r0, r0, LSL #3 ⟺ MOV r2, #9 ; r2 = 9

 MUL r1, r0, r2 ; r1 = r0 * 9

 Page 86, In Example 4-4, “signed int_32 c; // a signed 21-bit integer” should be “signed int_32 c;

// a signed 32-bit integer”

 Page 86, "-2" is 0xFFFE, not 0xFFFF in Example 4-4.

 Page 87, switch TEQ and TST in Table 4-9.

CMP Rn, Op2 Compare Set flags on Rn – Op2

CMN Rn, Op2 Compare negative Set flags on Rn + Op2

TST Rn, Op2 Test Set flags on Rn AND Op2

TEQ Rn, Op2 Test equivalence Set flags on Rn EOR Op2

 Page 87, “Note TEQ instruction cannot check the equivalence of two operands” Should
be “Note TST instruction cannot check the equivalence of two operands”.

Chapter 5. Load and Store

 On page 95, at the beginning "A load instruction is used to" => "used" missing

 Page 100, two questions are numbered as “3”. The last one should be numbered as “4”.

3

Chapter 6. Branch and Conditional Execution
 On Page 107, at the end of the third paragraph, “ADDED” should be “ADDEQ”.

 On Page 109, Example 6-5

C Program Assembly Program
// x is a signed integer
if(x <= 20 || x >= 25){
 a = 1
}

 ; r0 = x
 CMP r0, #20 ; compare x and 20
 BGT endif ; go to endif if x > 20
 CMP r0, #25 ; compare x and 25
 BLT endif ; go to endif if x < 25
then MOV r1, #1 ; a = 1
endif

The assembly program should be

C Program Assembly Program
// x is a signed integer
if(x <= 20 || x >= 25){
 a = 1
}

 ; r0 = x
 CMP r0, #20 ; compare x and 20
 BLE then ; go to then if x ≤ 20
 CMP r0, #25 ; compare x and 25
 BLT endif ; go to endif if x < 25
then MOV r1, #1 ; a = 1
endif

 Page 111, Section 6.5. In the flow chart, the then clause should be “b=3” and the else clause

should

be “b = 4”.

 Page 116, Section 6.10, “LDRB r2, [r1]” should be “LDRB r2, [r0]”

Chapter 7. Structured Programming

Chapter 8. Subroutines

Chapter 9. 64-bit Data Processing

4

Chapter 10. Mixing C and Assembly

 Page 218, Exercise Question 4,

Textbook Correction
char * search (char * s, char c) {
 char *p = NULL;
 for(; *s; s++)
 p = s;
 return p;
}

char * search (char * s, char c) {
 char *p = NULL;
 for(; *s; s++)
 if (*s == c)
 p = s;
 return p;

}

Chapter 11. Fixed-point and Floating-point Arithmetic

 Page 239, Table 11-2, the rounding up result of -0.123456 should be -0.12345, instead of -

0.12344.

 Page 240, Table 11-3, “3. If bm+1 = 1 and bS = 1” should be “3. If bm+1 = 1 and bS = 0”.

Chapter 12. Interrupt

 Page 254, Table 12-1, “Softer trigger bit” should be “Software trigger bit”

 Page 255, at the end of the page, “enable the ADC1 interrupt” should be “enable the Timer 7

interrupt”

 Page 256, Example 12-1,
“LSR r2,r0,#3 ; Memory offset (in bytes): IRQn >> 3”
should be
“LSR r2,r0,#5 ; Memory offset (in bytes): IRQn >> 5”

 Page 257,

“we only shift right IRQn by three bits instead of five bits This is because the register array index

is based on words in the above in C code. However, in the assembly code, the STR instruction is

based on the memory address, which is always in terms of bytes.

𝑴𝒆𝒎𝒐𝒓𝒚 𝑨𝒅𝒅𝒓𝒆𝒔𝒔 𝑶𝒇𝒇𝒆𝒕𝒔 (𝒊𝒏 𝒃𝒚𝒕𝒆𝒔) = 𝑰𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕 𝑵𝒖𝒎𝒃𝒆𝒓 ÷ 𝟖

”

should be

“we shift right IRQn by five bits. This is because the register array index is based on words in the

above in C code and the STR instruction is based on the memory address, which is always in

terms of bytes.

𝑴𝒆𝒎𝒐𝒓𝒚 𝑨𝒅𝒅𝒓𝒆𝒔𝒔 𝑶𝒇𝒇𝒆𝒕𝒔 (𝒊𝒏 𝒃𝒚𝒕𝒆𝒔) = 𝑰𝒏𝒕𝒆𝒓𝒓𝒖𝒑𝒕 𝑵𝒖𝒎𝒃𝒆𝒓 ÷ 𝟑𝟐

”

5

 Page 255, “STM32L has only 44 peripheral interrupts” should read as “STM32L has only 45

peripheral interrupts”

 Page 259, Figure 12-8

Textbook Correction

8 bits
base = NVIC_BASE + NVIC_IPR0

base + 0

base + 1

base + 2

base + 3

base + 4

base + 5

base + 6

base + 7

base + 9

base + 16

base + 15

base + 14

base + 13

base + 12

base + 11

base + 10

Memory

Address

Interrupt

Priority

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Interrupt

Number

DMA1 Channel 6

DMA1 Channel 5

DMA1 Channel 4

DMA1 Channel 3

DMA1 Channel 2

DMA1 Channel 1

EXTI Line 4

EXTI Line 3

EXTI Line 2

EXTI Line 1

EXTI Line 0

RCC

FLASH

PVD

Window Watch Dog

Interrupt

Name

8 bits
base = NVIC_BASE + NVIC_IPR0

base + 0

base + 1

base + 2

base + 3

base + 4

base + 5

base + 6

base + 7

base + 9

base + 16

base + 15

base + 14

base + 13

base + 12

base + 11

base + 10

Memory

Address

Interrupt

Priority

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Interrupt

Number

Interrupt

Name

DMA1 Channel 4

DMA1 Channel 3

DMA1 Channel 2

EXTI Line 4

EXTI Line 3

EXTI Line 2

EXTI Line 1

EXTI Line 0

RCC

FLASH

RTC_WKUP

TAMPER_STAMP

PVD

Window Watch Dog

DMA1 Channel 1

DMA1 Channel 5

 Page 259, “For example, the following code changes the priority of EXTI Line 0, whose interrupt

number is 4, to the lowest priority.” should be corrected as “whose interrupt number is 6”.

 Page 259, “NVIC->IP[4] = 0xF0;” should read as “NVIC->IP[6] = 0xF0;”.

 Page 263, in Figure 12-9 Caption, “HIS” should be “HSI”.

Chapter 13. Instruction Encoding and Decoding

Chapter 14. Generic-purpose I/O

 Page 294, in Figure 14.1, the “output pin” should be “input pin.” The “output” should be

“input”. The figure title should be “The input pin is pulled up internally”.

 Page 294, in Figure 14.2, the “output pin” should be “input pin.” The “output” should be

“input”. The figure title should be “The input pin is pulled down internally”.

 Page 298 on the third paragraph of 14.4, "higher slow rate" should be "higher slew rate".

 Page 302, in the 3rd bullet, “push-pall” should be “push-pull”

 Page 307, in the example program, “10 Mhz (01)” should be “10 Mhz (10)”

 Page 311, in the first paragraph, “a row pin is set to one” should be “a row pin is set to zero”. In

the same paragraph, “its output value is one” should be its output value is zero”.

 Page 319, in the example program, “10 Mhz (01)” should be “10 Mhz (10)”

6

Chapter 15. General-purpose Timers

 Page 325, “In this example, the prescaler factor is set as 15” should be “In this example, the

prescaler factor is set as 63”.

 Page 325, We set the ARR register as 199. Therefore, the timer generates a pulse in each period

of

𝑇𝑃𝑊𝑀 =
𝐴𝑅𝑅 + 1

𝑓𝐶𝐾_𝐶𝑁𝑇
=

200

215𝐻𝑧
= 6.1 𝑚𝑠

 Page 333, Figure 15-14 is repeated.

 Page 325, In PWM mode 1, we have

𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =
𝐶𝐶𝑅

𝐴𝑅𝑅
× 100% Correction: 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =

𝐶𝐶𝑅

𝐴𝑅𝑅+1
× 100%

In PWM mode 2, we have

𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 = (1 −
𝐶𝐶𝑅

𝐴𝑅𝑅
) × 100% Correction: 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 = (1 −

𝐶𝐶𝑅

𝐴𝑅𝑅+1
) × 100%

 Page 336, Example 15-6,
“ NVIC_EnableIRQ(TIM4_IRQn); // Enable EXTI0_1 interrupt in NVIC”
should be

 “ NVIC_EnableIRQ(TIM4_IRQn); // Enable Timer 4 interrupt in NVIC” Page 341, “:
the PWM output is high if the counter is larger than the content of CCR.” Should be “: the PWM
output is high if the counter is larger than or equal to the content of CCR.”

Chapter 16. Stepper Motor Control

 Page 350, In Example 16-3, “unsigned char FullStep[4] = {0x9, 0x8, 0xa, 0x2, 0x6, 0x4,
0x5, 0x1};” should be “unsigned char FullStep[8] = {0x9, 0x8, 0xa, 0x2, 0x6, 0x4, 0x5,
0x1};”

Chapter 17. Liquid-crystal Display (LCD)
 Page 356, second paragraph, “The voltage across segment lines 1, 2, 3, 4, 5 and 7 has” should be

“The voltage across segment lines 1, 2, 4, 5, 7 and 8 has”

 Page 365, in the flow chart (Figure 17-7), the LCD configuration function LCD_Configure needs

to set up the pulse on duration to eliminate the disappearance of some segments.

// Set Pulse ON duration

// Use high drive internal booster to provide large drive current

// Set the duration that the low-resister voltage divider is used

LCD->FCR |= 0x7 << 4; // PON[2:0] = 0x111

 On Page 365, in the flow chart (Figure 17-7), “Wait until the LCD is enabled by checking LCDEN

bit bit of LCD_CR “ should be corrected as “Wait until the LCD is enabled by checking the ENS bit

of LCD_SR”.

7

 On Page 366, in the 'A' and ‘2’ examples, the fifth row should be "Q K Col P", not "Q K Q P"

Chapter 18. Real-time Clock (RTC)

Chapter 19. Direct Memory Access (DMA)

Chapter 20. Analog-to-Digital Converter

 Page 390, “For example, when the switch is closed for a time period of 𝟐𝑇𝑐, the voltage across

the capacitor 𝑉𝐶 is only 95.02% of the input voltage Vin “ should read as “For example, when
the switch is closed for a time period of 𝟑𝑇𝑐, the voltage across the capacitor 𝑉𝐶 is only 95.02%

of the input voltage Vin”

 Page 395,

𝑉 =
𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

2𝑛
× 𝑉𝑅𝐸𝐹

should be

𝑉 =
𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

2𝑛 − 1
× 𝑉𝑅𝐸𝐹

 Page 407, in Figure 21-1, we should remove the ground. Vref cannot be shorted to the ground.

Chapter 21. Digital-to-Analog Converter

Chapter 22. Serial Communication Protocols

Chapter 23. Multitasking

Appendix A: Cortex-M3 16-bit Thumb-2 Instruction Encoding

Appendix B: Cortex-M3 32-bit Thumb-2 Instruction Encoding

Appendix C: HID Codes of a Keyboard

Bibliography

Index

