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Abstract—As more public cloud computing platforms are emerg-
ing in the market, a great challenge for these Infrastructure as
a Server (IaaS) providers is how to measure the cost and charge
the Software as a Service (SaaS) clients for the cloud com-
puting services. This problem is compounded as virtualization
technology is deployed in many cloud platforms to consolidate
servers and improve their utilization. This paper studies three
different but related models for apportioning costs in a private or
public cloud environment supported by virtualized data centers.
With given workload placement scenarios and randomly selected
workloads, these models estimate the cost for each workload.
Through simulations and thorough comparisons of the results,
we finally champion the RO-BURST model tailored for the ser-
vice providers’ need, that is characterized by robustness and
burstiness. What is more, we import Cost Volatility Factors to
ensure that our model is able to adjust itself to the market and
multiform demands in power and hardware components, such
as disks and CPU, showing its compatibility and extensibility.
We also come up with a pricing strategy with respect to servers
the workload employs, which generates an applicable and less
placement-sensitive fee for the clients.

Keywords-IaaS and SaaS, Cost model, Pricing strategy, Work-
loads, and Clouds;

I. INTRODUCTION

A. Preface
In the past, many enterprises, especially the small ones,

had to host their computing service and software applications
on infrastructure they owned and maintained at high costs.
Recently they start to resort to an advanced technology for
more cost-efficient and flexible IT service. The bringing for-
ward of cloud makes the computing power a kind of new-style
commodity possible with the computing power of 10 trillion
times per second, enough to simulate nuclear explosion and
predict climate fluctuations. In addition, virtualization helps
to expand hardware capacity and effectively reduces the ex-
penses through dividing an integrated server into considerable
different virtual resources. Therefore, under the pay-as-you-go
model [1], IaaS providers must utilize the virtualization to ob-
tain the flexibility and stability that those end-users require in
both private or public clouds. One of those present challenges
for IaaS providers is that when virtual machines and different
resource demands are assigned into resource pools, how to
accurately estimate the costs and place reasonable charges to
SaaS clients according to the demand of each workload in the
competitive cloud environments.

B. Example of Motivation

Why is an efficient and reliable cost estimate model of great
importance to both IaaS providers and SaaS clients?First of all,
workload characteristics can influence the service charge. Two
applications with the same average demand of computation
resources could be charged differently. Figure 1 shows the de-
mands of disks of two different workloads. Workload A shares
22% peak demands in disks, and its average demands lies in
0.2%. Workload B also has 0.2% average demands but the
peak value only amounts to 6%. We can easily infer that they
both share similar average demands in disks but huge differ-
ence in peak demands, which conducts dissimilarity in bursty
demands. Such dissimilarity makes the number of servers that
host each workload varied. As a result, workload A must be
assigned to more servers than workload B to meet its much
higher peak demands.Secondly, workload placement strategies
also impact the service costs. For example, we assumed that
10 workloads are allocated into a resources pool with two
servers. In the first scenario, 8 workloads are assigned to one
server and the remaining 2 are assigned to the other server. In
the second scenario, 5 workloads are assigned to each server.
We have same amount of servers and workloads here, but
the cost of each workload under such two placement scenar-
ios may vary significantly.Thirdly, unallocated part of each
server resulting from the influence of burstiness and workload
placement strategies should also be taken into account when
evaluate whether the cost model is reliable and robust enough.

C. Contributions

In this paper, we study and compare three different cost
estimate models. We obtain 20 workloads on a company’s
shared service platform. After analyzing the costs and charac-
teristics of various workloads in different workload placement
strategies, we find that the third model, named as RO-BURST,
is the best one and is deployable in real systems. This model
has the following four salient features.

• RO-BURST finely reflects the bursty attribute of each
workload over the cloud.

• RO-BURST takes into account the unallocated resources,
this model is much less sensitive to workload placement
and is more robust.

• Such model has strong malleability and compatibility,
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Fig. 1. Disk demands under workload A and B

which can not only be applied to disks, but also CPU,
memory, network and power, etc.

• Based on the result of RO-BURST model, the service
for SaaS clients can be appropriately priced by their IaaS
provider, and such price is more competitive than others
because RO-BURST is able to adjust itself to market
trend.

The remainder of this paper is organized as follows. Section
II presents background knowledge. Three cost models and
pricing strategy are well defined in Section III. We discuss
our experiments and evaluate the model and pricing strategy in
Section IV. Section V introduces the related works. Conclusion
and description of our future work are presented in the last
section.

II. BACKGROUND

A. SaaS and IaaS

Software as a Service (SaaS) providers, which are partly
deployed on the basis of Infrastructure as a Service (IaaS),
such as Google and Oracle, offer consumers the convenience
to request applications directly over the cloud through Internet.
Consumers do not need to install or manage infrastructure such
as network, servers, operating system and storage, and avoid
high cost of locally invested software and hardware. The IaaS
model guarantees basic resources for the clients to host their
applications, which involves complicated infrastructure man-
agement that could be handled by IaaS providers themselves
like Amazon and Microsoft.

B. Cloud Storage

Cloud storage is a notion developed and extended from
cloud computing. By employing cluster and grid technology,
and distributed file systems, cloud storage leverage massive
storage devices work together to provide the capacity and
throughput required by end applications. Cloud computing
users do not need to own the space of a specific storage device
over the clouds but the data access service brought by whole

cloud storage system. Strictly speaking, cloud storage is a kind
of service rather than pure ’storage’ itself. The core of cloud
storage is to convert storage devices into storage service by
integrating application software and storage devices. There are
some key advantages for cloud storage, e.g., cloud storage
providers offer distant system and data backup to keep the
most important data of clients from being destroyed by natural
disasters or man-made damage. As the emergence of PaaS and
SaaS, in most circumstances, it is always an excellent choice
for people to transfer local storage to the cloud for its simpli-
fication of management, reliability and cost-effectiveness.

C. Workload Consolidation

Before virtualization came into being, thousands of servers
were used together, which could generate a lot of heat and thus
shorten the working lifetime of these machines, and of course,
accompanied with an increased costs on the hardware acqui-
sitions and maintenance. In order to make IT infrastructure
such as servers, network and database better meet the current
and predictable future demands of different kinds of applica-
tions in the cloud environment, we often choose to simplify
and optimize end-to-end infrastructures by bringing workload
consolidation. Nowadays, there exist many tools to simulate
such consolidation, one of which is HP capacity advisor [2].
The capacity advisor’s purpose is to find optimal solution for
workload placement. It firstly traverses former workloads to
predict upcoming peak demands, and then finishes the search
by applying genetic algorithm [3] while ensuring peak de-
mands less than the capacity of the attribute for each server.

D. Cost Estimation in Cloud Environment

Among the biggest companies offering cloud computing,
Amazon AWS [4] charges customers by the number of virtual
instances an application occupies and how long it uses them:
cost=price×t (t is the total running time, price is the price per
VM), while Google’s AppEngine charges by the number of
CPU cycles a customer’s application consumes, and recently
Microsoft started to charge for its Azure cloud computing
service. More and more large IT giants start to accelerate the
development and cooperation of business model on cloud com-
puting. Gartner Research predicts the market scale of cloud
computing will amount to $150 billion by 2014, and small
and medium will spend over $100 billion on cloud computing
by 2014 [5].

This pay-as-you-go model makes resource-consumption based
pricing particularly sensitive to how a system is designed,
configured, optimized, monitored, and measured.

III. COST MODELING

A. Service Framework

The architecture of our presented RO-BURST framework is
shown in Figure 4. Numerous workloads of SaaS applications
firstly go through the Consolidation Engine [6] which is able to
find an appropriate workload placement [7] for each workload,
and then the workloads will be assigned into different servers
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Fig. 2. Service Framework

lying in the resource pool.

Our RO-BURST system consists of two components, in-
cluding Cost Generator and Price Generator. The Cost Gener-
ator takes the reports of server usage to automatically estimate
the costs and the Price Generator implements the pricing strat-
egy based on the result of cost estimates to come up with a
reasonable and robust price for IaaS providers.

B. Parameter Explanations

In this paper, we limit our study to disk and CPU utilization
when estimating the cost of an individual workload. However,
our model can be easily extended to consider the utilization
of other components, such as network and memory. Important
parameters used in the three different models are elaborated
in Table I and Table II

Complement explanations:

• If U cpu
s,w (t) is 20%, it means workload w takes 20% CPU

resources of server s at time instant t; if U cpu
s,w (t) is 0,

that means workload w does not use server s at time t.
• We introduce a new concept, named bursty utilization

Û cpu
s,w and Ûdisk

s,w to model the burstiness of workloads. We
define the burstiness as the difference between the peak
and average utilizations. For example, the bursty utiliza-
tion for CPU is Û cpu

s,w = max(U cpu
s,w (t))−mean(U cpu

s,w (t)).
• To incorporate the impact of burstiness of workloads and

unallocated server resources of placement strategies, we
propose the concepts of average cost (C̄cpu

s , C̄disk
s ), bursty

cost (Ĉcpu
s , Ĉdisk

s ,), and unused cost (Čcpu
s , Čdisk

s ).
• Our models also involve parameters α and β as the CPU

and Disk volatility factors in order to adjust our models to
current inconstant market trend (e.g., Thailand flood that
occurred in November 2011 resulted in a considerable
rise in hard disk price)

• We introduce the basic cost Ccpu
s and Cdisk

s here for the
consideration of importing volatility factors. In addition,
according to current market, the costs of a 1TB disk and
a CPU with 42.8MHz are $128 and $175 respectively, we
set the value at $100 for the convenience of calculations.

C. Three Models

Next, we introduce three cost estimate models for the IaaS
providers. We refer to these as Average-based, Bursty-based,
and RO-BURST.

Firstly, we consider the Average-based model (model 1)
which only takes into account the average demand of a work-
load on a server. It is a model most widely employed by IaaS
providers. For a given set of workloads W running a set of
servers S, the model can be expressed as follows:

C̄cpu
s,w = Ccpu

s ×
Ū cpu
s,w∑

w′∈W
Ū cpu
s,w′

(1)

C̄disk
s,w = Cdisk

s ×
Ūdisk
s,w∑

w′∈W
Ūdisk
s,w′

(2)

The total cost of Average-based model(Model 1):

C̄w =
∑

s′∈S

C̄cpu
s′,w × α+

∑

s′∈S

C̄disk
s′,w × β (3)

where Ū cpu
s,w and Ūdisk

s,w are the average utilization of workload
w on server s, and α and β are the volatility factors of CPU
and disks.

The key weakness of the Average-based model is that it does
not take the impact of burstiness and unallocated resources
into considerations. To address this weakness, we propose the
Bursty-based model (model 2). This model has three major
steps. First of all, we calculate the average cost of a workload
w on a server s. Next, we use both bursty demands of each
workload hosted on server s and the result of first step to
evaluate the bursty portion of the total cost of the server. In the
third step, the unallocated cost of the server s is apportioned
based on the bursty cost. At last, we sum up the results and
bring volatility factors α and β to the model. The Bursty-based
model is presented below.

Cost of CPU C̃cpu
s,w :

C̄cpu
s,w = C̄cpu

s ×
Ū cpu
s,w∑

w′∈W
Ū cpu
s,w′

(4)

Ĉcpu
s,w = Ĉcpu

s ×
C̄cpu

s,w + Û cpu
s,w × Ccpu

s∑
w′∈W

C̄cpu
s,w′ + Û cpu

s,w′ × Ccpu
s

(5)

Čcpu
s,w = Čcpu

s ×
Ĉcpu

s,w∑
w′∈W

Ĉcpu
s,w′

(6)

C̃cpu
s,w = C̄cpu

s,w + Ĉcpu
s,w + Čcpu

s,w (7)

where C̄cpu
s , Ĉcpu

s , and Čcpu
s are the average, bursty, and

unused cost of CPU on server s, respectively, and Û cpu
s,w is

the bursty CPU utilization of workload w on server s.
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TABLE I
KEY PARAMETERS USED IN MODEL 1

Parameters Descriptions Remarks and Equations
Ūcpu
s,w , Ūdisk

s,w Mean CPU and disk physical utilization on server s by
workload w

Value range : [0,100%]

Ccpu
s , Cdisk

s Basic costs of CPU and disk on server s. We set the value at $100
in this paper

α, β Volatility index of CPU and disk costs, their values are actual
cost/basic cost

The value of basic cost is
$100 in this paper

TABLE II
KEY PARAMETERS USED IN MODEL 2 AND 3

Parameters Descriptions Remarks and Equations
Ûcpu
s,w , Ûdisk

s,w Bursty CPU and disk physical utilization (i.e.,the difference
between peak and average utilization) of workload w running
on server s

Value range:[0,100%]
Ûcpu
s,w = max(Ucpu

s,w )− Ūcpu
s,w , and

Ûdisk
s,w = max(Udisk

s,w )− Ūdisk
s,w

Ǔcpu
s,w , Ǔcpu

s,w Unused CPU and disk physical utilization of server s. Value range: [0,100%]
Ǔcpu
s,w = 100%−max(Ucpu

s,w ) and
Ǔdisk
s,w = 100%−max(Udisk

s,w )

C̄cpu
s , C̄disk

s , Ĉcpu
s ,

Ĉdisk
s , Čcpu

s , Čdisk
s

Average cost, bursty cost, and unused cost respectively. C̄cpu
s = Ccpu

s × Ūcpu
s,w

C̄disk
s = Cdisk

s × Ūdisk
s,w

Ĉcpu
s = Ccpu

s × Ûcpu
s,w

Ĉdisk
s = Cdisk

s × Ûdisk
s,w

Čcpu
s = Ccpu

s × Ŭcpu
s,w

Čdisk
s = Cdisk

s × Ǔdisk
s,w

C̄w Total costs of workload w by using Average-based model
C̃w Total costs of workload w by using Bursty-based model
#Cw Total costs of workload w by using RO-BURST model

Cost of Disks C̃disk
s,w :

C̄disk
s,w = C̄disk

s ×
Ūdisk
s,w∑

w′∈W
Ūdisk
s,w′

(8)

Ĉdisk
s,w = Ĉdisk

s ×
C̄disk

s,w + Ûdisk
s,w × Cdisk

s∑
w′∈W

C̄disk
s,w′ + Ûdisk

s,w′ × Cdisk
s

(9)

Čdisk
s,w = Čdisk

s ×
Ĉdisk

s,w∑
w′∈W

Ĉdisk
s,w′

(10)

C̃disk
s,w = C̄disk

s,w + Ĉdisk
s,w + Čdisk

s,w (11)

where C̄disk
s , Ĉdisk

s , and Čdisk
s are the average, bursty, and

unused cost of disks on server s, respectively, and Ûdisk
s,w is

the maximum (peak) disk utilization of workload w on server
s.

The total cost of Bursty-based model(Model 2):

C̃w =
∑

s′∈S

C̃cpu
s′,w × α+

∑

s′∈S

C̃disk
s′,w × β (12)

The third model, named as RO-BURST model, inherits the
advantages of former two proposed models. However, this
model differs from model 2 in that it uses measurement of
a given set of S servers in the shared resource pool instead of
the individual server to evaluate the average, bursty and un-
allocated cost respectively. RO-BURST model is well defined

as follows.

Cost of CPU #Ccpu
s,w :

C̄cpu
s,w =

(
∑

s′∈S

C̄cpu
s′

)
×

Ū cpu
s,w

w′∈W∑
s′∈S

Ū cpu
s′,w′

(13)

Ĉcpu
s,w =

(
∑

s′∈S

Ĉcpu
s′

)
×

C̄cpu
s,w + Û cpu

s,w × Cdisk
s∑

s′∈S,w′∈W
C̄cpu

s′,w′ + Û cpu
s′,w′ × Ccpu

s

(14)

Čcpu
s,w =

(
∑

s′∈S

Čcpu
s′

)
×

Ĉcpu
s,w∑

s′∈S,w′∈W
Ĉcpu

s′,w′

(15)

#Ccpu
s,w = C̄cpu

s,w + Ĉcpu
s,w + Čcpu

s,w (16)

Cost of Disks #Cdisk
s,w :

C̄disk
s,w =

(
∑

s′∈S

C̄disk
s′

)
×

Ūdisk
s,w∑

s′∈S,w′∈W
Ūdisk
s′,w′

(17)

Ĉdisk
s,w =

(
∑

s′∈S

Ĉdisk
s′

)
×

C̄disk
s,w + Ûdisk

s,w × Cdisk
s∑

s′∈S,w′∈W
C̄disk

s′,w′ + Ûdisk
s′,w′ × Cdisk

s

(18)
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Čdisk
s,w =

(
∑

s′∈S

Čdisk
s′

)
×

C̄disk
s,w∑

s′∈S,w′∈W
Ĉdisk

s′,w′

(19)

#Cdisk
s,w = C̄disk

s,w + Ĉdisk
s,w + Čdisk

s,w (20)

The total cost of RO-BURST model(Model 3):

#Cw =
∑

s′∈S

#Ccpu
s′,w × α+

∑

s′∈S

#Cdisk
s′,w × β (21)

D. Pricing Strategy
Apart from employing RO-BURST model to calculate the

infrastructure costs of cloud service, we also provide an appli-
cable pricing strategy based on our RO-BURST model. There
are two advantages of RO-BURST for the IaaS’s pricing: firstly,
its robustness helps to stabilize cost estimates and make the
pricing neither far beyond nor much lower than actual cost.
Secondly, a price based on RO-BURST model owns more
competitiveness for IaaS providers with its dynamic adjust-
ment to the market trend. The equation for pricing strategy
is introduced as below (θ represents the number of servers
hosted by a workload w, S means the total number of servers
in the pool (1 ≤ θ ≤ S), δ represents profit index and we set
it 120% here).

Price = #Cw × S/θ × δ (22)

where θ represents the number of servers hosted by a workload
w, S means the total number of servers in the pool (1 ≤ θ ≤
S), δ represents profit index and we set it 120%

In the next section, we will evaluate these three models
under a variety of workloads in details.

IV. MODEL CHARACTERIZATION AND PRICING STRATEGY

To testify whether the three proposed models are efficient,
robust and feasible enough, we collected 20 workloads from
one IT company’s shared data center, each of which is as-
signed to different servers in real IT application environments,
including ERP, OA, Code Tracking, Web Service, et al.

These workloads have been traced for 20 days and recorded
every 5 minutes, so we have 5,760 records for each workload,
and each trace describes a workload’s resource usage. We
conduct a comprehensive study to compare the competiveness,
stability and robustness in term of cost estimates of these three
models under different workload placement scenarios. Unless
particularly specified, Ccpu

s and Cdisk
s are set at $100, and α

and β are 100%.

A. Workload Characteristics
show the relationship between the peak

and average demand in CPU and disks of 20 workloads re-
spectively. We summarize three characteristics about workload
as follows:

• If we define a workload as one with bursty demand when
the peak-average ratio is higher than 5, for 100% of these

workloads, they share such feature in disk usage. For
example, the ratio of disk could range from hundreds to
tens and has a mean value of 110.27. As for CPU, 65%
of the workloads show burstiness and the average ratio
amounts to 10.93.

• For those workloads with high disk demands, they may
not have high usage in CPU (e.g., workload 2, 5, 19).
However, we also find that workload 14 and 15 have both
high CPU and disk requirements, so there is no apparent
relevance between disks and CPU demands.

• For 20% of these workloads, both peak and average disk
demands are much more intensive than others, and they
conduct burstiness more easily

B. Influence of Burstiness on Cost Estimates

Without loss of generality, this paper considers an experi-
ment setting with 5 servers in a shared resource pool and 3
workload placement scenarios.

• Scenario I is an equal distributed strategy. It assigns 20
workloads to 5 servers, and ensures that a server consis-
tently keeps hosting 4 workloads and the peak demands
less than the capacity of each server.

• Scenario II is a greedy distributed strategy. A second
server could not be assigned a workload until the first
server is used up.

• Scenario III is a balanced strategy, employing 4 servers
to host 20 workloads, with each server assigned 5 work-
loads.

Due to space limitation, this paper only presents the detailed
research results of two workloads, named as C and D, in this
paper. The results of the other traces are very similar to the
ones presented. Figure 5 shows their CPU demands for the
cost interval(20 days).

For workload C and D, they have almost the same aver-
age CPU usage, i.e., 0.2625% and 0.2569%. However, their
peak CPU demands, vary significantly, with 4.00% and 1.15%
respectively. Apparently, workload C is much more bursty
than workload D. For most of workloads, such performance
results in complication of workload placement, so workload
C calls need for more servers and the charge of that should
be much higher. Table III presents CPU cost estimates of
workload C and D calculated by three proposed models under
scenario III. The close results of Average-based model fail to
reflect workload’s burstiness, whereas Bursty-based and RO-
BURST models noticeably show the difference between two
workloads and objectively incorporate the impact of burstiness
and unallocated utilization.

TABLE III
COST OF WORKLOAD C AND D IN SCENARIO III

Workload Model 1 Model 2 Model 3
Workload C $33.5 $37.5 $26.2
Workload D $32.7 $11.0 $7.7
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Fig. 3. The peak and average CPU demands of
20 workloads
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Fig. 4. The peak and average disk demands of 20
workloads
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Fig. 5. CPU demands under workload C and D
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Fig. 6. Costs of 20 workloads calculated by the
Average-based model
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Fig. 7. Costs of 20 workloads calculated by the
Bursty-based model
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Fig. 8. Costs of 20 workloads calculated by the
RO-BURST model

C. Robustness in Proposed Models
Figure [6, 7 and 8] show the costs of these 20 workloads

reported by these three models (The cost range was shown in
yellow). It is observed that the cost range of 20 workloads un-
der Average-based and Bursty-based models are considerably
wider than RO-BURST.

For model 1 and 2, the maximum costs exceed minimum
cost by 90% and 53%, while the percentile of RO-BURST only
reaches 20%, as shown in Figure 9. In other words,Average-
based and Bursty-based model are much more sensitive to
workload placement and thus lack robustness. In contrast, RO-
BURST is a more reliable, predictable, and robust cost esti-
mate model with less sensitivity to placement decisions.

D. Cost Volatility Factors
Due to numerous factors contributing to hardware and power

(e.g, CPU, disks, Memory and network) costs, the fluctuation
in their price could be frequent. Hence, we import α and β
as volatility factors in order to appropriately temper our cost
estimates to better press to market. Thailand takes up 60%
shares of global hard disk production. The recent (Nov. 2011)
floods in Thailand led to severe shortage of resources and
thus resulted in huge rise to the acquisition price (e.g., most
500GB and 1TB disk prices have risen by an average of 80%).
According to current market prices, the costs of a 1TB disk
and a CPU with 4 x 2.8 MHz are $128 and $175 respectively,
so we set α 1.75 and β 1.28 here. Their costs are presented
in Figure 10. On the contrary, if real-time updates fail to be
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Fig. 9. The difference between maximum and minimum cost of three models,
i.e. the cost range of each model

made, and we still use the volatility factors a month ago with
α 1.75 and β 0.7, the results of cost estimates would be not
objectively conducted, making IaaS providers suffer from a
average loss of 23% (shown in Figure 11)

E. Pricing Strategy Characterizations

Figure 12 and 13 show the performance of 20 workloads
calculated by Eq.(22) in section III in scenario I and scenario
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Fig. 10. CPU, disk and total cost of 20 workloads calculated by model
3 in scenario I when α = 1.75 and β = 1.28
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Fig. 11. CPU, disk and total cost of 20 workloads calculated by model
3 in scenario I when α = 1.75 and β = 0.7

III respectively (the introduction of scenario I and scenario III
is presented in section 4). The prices that IaaS providers charge
SaaS clients which are depicted by blue lines are almost the
same between scenario I and scenario III. The costs of infras-
tructure that SaaS applications occupy, which are depicted by
red line, however, are apparently dissimilar due to different
workload placement. Scenario III, a better placement choice
with fewer servers and less resources occupied save more
money for IaaS providers. As a result, IaaS providers which
employ a more favorable placement can earn an additional
profit than those do not.

V. RELATED WORK

Recently, there are many researches on the cost of appli-
cations over the cloud by discussing and evaluating workload
consolidation in virtual environment. Ref. [8] provides a gen-
eral approach, which is able to estimate the compensation (i.e.,
additional resource requirement) incurred by an application’s
transition from real hardware to a virtual machine. To achieve
service level objectives, a dynamic AutoControl system that
involves an online model estimator and multi-input, multi-
output (MIMO) resource controller is raised in Ref. [9].

In Ref. [10], it comes up with an approach to determine the
beneficial time frame for VM reassignment, aiming to save
energy consumption to maximize the possible profit by reduc-
ing the complexity of resource and workloads management in
the data center.

In addition, it is also important to determine what kind of
application placement should be used for enhancing reliability
and efficiency of cloud computing system, which necessarily
brings a reduction in cost for IaaS providers. By comparing
centralized and distributed decision making, Ref. [11] presents
a distributed capacity agent manager to make service providers
process and assign their resource more quickly and accurately.

Concerning workload characterization in the cloud, Ref. [12]
uses data trace in the real data center to realize the prediction
of workloads hosted on servers by offering a prediction model.

The focus on their work lies in workload characterization
based on each server and aims to predict workload changes
for co-clusters. Our paper, however, presents workload char-
acteristics based on workload itself in section IV, and mainly
concentrates on the generality of a workload’s burst attribute
and its considerable influence on cost estimates.

Amazon.com Inc.’s Elastics Compute Cloud, or EC2, charges
clients by fixed-size virtual machines requested per hour. They
omit the variation among different workloads, which could
generate a waste of fixed machine size and thus result in
more infrastructure cost for IaaS providers. Another Usage-
based pricing strategy based on clients’ actual usage, which
is applied by many companies, such as Cisco [1]; also fail to
take into account the burst attribute of workload. However, our
RO-BURST is a more robust cost estimate model compared
with Usage-based charge model, for ours less sensitivity to
workload placement and burst consideration.

Closest in spirit to our work is HP lab’s [13]. Their work
also put forward a model with robustness, while our RO-
BURST not only considers robustness, but also involves it-
eration thus making our estimates more reliable. In addition,
our model has extensibility for requirement of Disk, CPU,
memory and etc. Moreover, RO-BUST adjusts itself to the
market trend by importing volatility factors, based on which
the IaaS providers could offer competitive pricing strategy for
their SaaS clients.

VI. CONCLUSION AND FUTURE WORK

We firstly raise the issue that an important task for IaaS
providers is to seek a refined cost model to estimate the cost
of the infrastructure consumed by SaaS applications. Then we
present three different and somewhat connected cost models.
We experiment 20 workloads in the shared pool and consider
the impact made by bursty and unallocated resources, aiming
to find a robust model with less sensitivity to consolidation
placement. Features of workload performance and cost es-
timates calculated by each model are elaborated and com-
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Fig. 12. The charge and cost for 20 workloads under Scenario I
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Fig. 13. The charge and cost for 20 workloads under Scenario III

parisons are made in this paper. Eventually, based on shared
resources pool rather than resources within a server, we pro-
pose a RO-BURST model that enjoys properties of reliability
and generality. To take into considerations the market impacts,
we also import volatility factors of key hardware components,
such as disks and CPU, into our model. At last, we offer IaaS
providers a pricing strategy to better charge the SaaS for the
infrastructure rent.

Complexity and multiformity are major issues for thousands
of applications hosted in data centers. Our introduced model,
RO-BURST, based on considerations of burstiness and shared
resource pool, aims to help IaaS providers to evaluate the costs
of numerous kinds of workloads with strong robustness. RO-
BURST is a model that congregates robustness - less sen-
sitive to the workload placement, and scalability - can be
applied to all kinds of hardware resource demands, such as
disks, CPU, memory, and network. In addition, based on our
model, IaaS providers are able to set up reliable charges for
their clients with the imported volatility factors, which take
into considerations the volatility of market prices of hardware
components. We also demonstrate that, the better workload
placement scenarios our RO-BUST system employs, the more
cost-effective and profitable the IaaS and SaaS will achieve by
using the pricing strategy proposed in this work.

Our future work includes: improving our RO-BURST model,
making the volatility factors α,β automatically updated rather
than manually regulated; extending our model to other realms,
i.e., telecommunication, power plants and hydro-electric sta-
tions, etc.; finding a better expression of burstiness in workload
instead of difference between peak and average value. We also
seek to propose a more sophisticated and refined pricing strat-
egy based on our RO-BURST model to help IaaS providers
and SaaS clients achieve win-win.
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