
RACE: A Robust Adaptive Caching Strategy
for Buffer Cache

Yifeng Zhu, Member, IEEE, and Hong Jiang, Member, IEEE

Abstract—Although many block replacement algorithms for buffer caches have been proposed to address the well-known drawbacks

of the LRU algorithm, they are not robust and cannot maintain a consistent performance improvement over all workloads. This paper

proposes a novel and simple replacement scheme, called the Robust Adaptive buffer Cache management schemE (RACE), which

differentiates the locality of I/O streams by actively detecting access patterns that are inherently exhibited in two correlated spaces,

that is, the discrete block space of program contexts from which I/O requests are issued and the continuous block space within files to

which I/O requests are addressed. This scheme combines the global I/O regularities of an application and the local I/O regularities of

individual files that are accessed in that application to accurately estimate the locality strength, which is crucial in deciding which blocks

are to be replaced upon a cache miss. Through comprehensive simulations on 10 real-application traces, RACE is shown to have

higher hit ratios than LRU and all other state-of-the-art cache management schemes studied in this paper.

Index Terms—Operating systems, file systems management, memory management, replacement algorithms.

Ç

1 INTRODUCTION

THIS paper presents a novel approach for buffer cache
management, called the Robust Adaptive Caching

strategy for buffer cache management schemE (RACE),
which is motivated by the limitations of existing solutions
and the need to further improve the buffer cache hit rate, a
significant factor affecting the performance of the supported
file system given the relatively very high buffer cache miss
penalties. RACE is shown to outperform all existing
solutions significantly in most cases. In this section, we
first describe the limitations of existing solutions and then
present the main motivations for this work, followed by an
outline of the major contributions of the paper.

1.1 The Limitations of LRU and Recent Solutions

Designing an effective block replacement algorithm is an

important issue in improving file system performance. In

most real systems, the replacement algorithm is based on

the Least Recently Used (LRU) scheme [1], [2] or its clock-

based approximation [3]: Upon a cache miss, the block

whose last reference was the earliest among all cached

blocks is replaced. LRU has the advantages of simple

implementation and constant space and time complexity.

Although it has been theoretically verified that LRU can

absorb the maximum number of I/O references under a

spectrum of workloads that can be represented by the

independent reference model [4], in reality, LRU often

suffers severely from two pathological cases:

. Scan pollution. After a long series of sequential accesses
to one-time-use-only (cold) blocks, many frequently
accessed blocks may be evicted from the cache
immediately, leaving all of these cold blocks occupy-
ing the buffer cache for an unfavorable amount of
time, thus resulting in a waste of the memory
resources. A wise replacement strategy should con-
sider the reference frequency of each block and, hence,
can distinguish hot data from cold data.

. Cyclic access to a large working set. A large number of
applications, especially those in the scientific com-
putation domain, exhibit a looping access pattern.
When the total size of repeatedly accessed data is
larger than the cache size, LRU always evicts the
blocks that will be revisited in the nearest future,
resulting in perpetual cache misses. For example,
when repeatedly accessing a file that has 100 blocks,
an LRU cache with 99 blocks always evicts the very
block that will be referenced next and leads to a
zero-hit ratio. A clever strategy would observe this
access with long-term locality and only generate
cache misses for the references to the block that is
least accessed.

To address the limitations of the LRU scheme, several

novel and effective replacement algorithms [5], [6], [7], [8]

have been proposed to avoid the two pathological cases

described above by using advanced knowledge of the

unusual I/O requests. Specifically, they exploit the patterns

exhibited in I/O workloads, such as sequential scan and

periodic loops, and apply specific replacement polices that

can best utilize the cache under that reference pattern.
According to the level at which the reference patterns are

observed, these algorithms can be divided into three

categories: 1) At the application level, Detection Adaptive

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008 1

. Y. Zhu is with the Department of Electrical and Computer Engineering,
University of Maine, 5708 Barrows Hall, Orono, ME 04469-5708.
E-mail: zhu@eece.maine.edu.

. H. Jiang is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588-0115.
E-mail: jiang@cse.unl.edu.

Manuscript received 22 May 2006; revised 11 Jan. 2007; accepted 28 June
2007; published online 24 July 2007.
Recommended for acceptance by A. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0195-0506.
Digital Object Identifier no. 10.1109/TC.2007.70788.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Replacement (DEAR) [6] observes the patterns of references

issued by a single application, assuming that the I/O

patterns of each application are consistent, 2) at the file

level, UBM [5], [9] examines the references to the same file

with an assumption that a file is likely to be accessed with

the same pattern in the future, and 3) at the program context

level, PCC [7] and AMP [8] separate the I/O streams into

substreams by program context and detect the patterns in

each substream, assuming that a single program context

tends to access files with the same pattern in the future.
To best exploit the access patterns, the design space

centers on investigating an automatic pattern detection

technique that should satisfy the following requirements:

. Accuracy. Applications often have certain I/O access
patterns. An accurate detection of access patterns
serves as the basis for quantitatively identifying the
locality of accessed blocks and tuning caching
policies accordingly. A misclassification of an access
stream may increase the number of disk accesses by
evicting useful blocks and taking up memory space.
In addition, the detection algorithm should be able
to detect not only reference patterns presented
explicitly in the consecutive address space, but also
implicit patterns in a nonconsecutive way. For
example, a stream of references to blocks with a set
of random addresses may belong to a sequential
pattern category.

. Responsiveness. Real applications within various
phases of execution may exhibit different reference
patterns. The cache replacement algorithm should
adapt to different behaviors within one application
and, thus, a good online detection algorithm is
required to quickly reflect the transition of access
patterns. A detection approach based on aggregate
statistical measures of program behavior, as used by
PCC and AMP, tends to have a large amount of
inertia or reluctance and may not responsively detect
local patterns, although it can correctly recognize
global patterns.

. Stability. A detection-based caching system applies
different replacement policies for different reference
patterns. To achieve this goal, a buffer cache is
divided into multiple partitions and blocks from
different patterns are stored in their corresponding
partitions. An unstable detection scheme swings a
block from different patterns and moves it repeat-
edly among cache partitions accordingly. In an
asynchronous environment with multiple threads,
moving a block between the links of different
partitions relies on locks to ensure consistency and
correctness, which can be quite costly. A stable
classification can eliminate the lock contention and
reduce the overhead of cache maintenance.

The key in the design of an effective pattern detection

scheme is to strike an optimal trade-off among the above

three requirements. A scheme with better stability may

sacrifice its classification accuracy and responsiveness and

vice versa. As strongly suggested by the results obtained

from the extensive simulations conducted in this study,

none of the currently existing schemes is able to maintain a
good balance among the three requirements:

1. Application-level detection [6] has good stability but
suffers in accuracy and responsiveness since many
applications access multiple files and exhibit a
mixture of access patterns, as shown in [5] and later
in this paper.

2. File-level detection [5], [9] has a smaller observation
granularity than the application-based approach but
has two main drawbacks that limit its classification
accuracy. First, a training process needs to be
performed for each new file and is thus likely to
cause a misclassification for the references targeted
at new files. Second, to reduce the running overhead,
the access patterns presented in small files are
ignored. Nevertheless, this approach tends to have
good responsiveness and stability due to the fact that
most files tend to have stable access patterns,
although large database files may show mixed
access patterns.

3. Program-context-level detection [7], [8] trains only
for each program context and has a relatively shorter
learning period than the file-based one. Although it
can make correct classification for new files after
training, it classifies the accesses to all files touched
by a single program context into the same pattern
category and thus limits the detection accuracy. In
addition, it has problems in responsiveness and
stability. It bases its decision on aggregate statistical
information and is thus not sensitive to pattern
changes. The stability problem is caused by the fact
that, in real applications, as explained in Section 3,
multiple program contexts may access the same set
of files but exhibit different patterns if observed
from the program-context point of view.

1.2 Contributions of This Paper

This paper makes three contributions. First, we collect the
I/O traces for 10 real applications and investigate I/O
access patterns in two correlated spaces: the program
context space, from which I/O operations are issued, and
the file space, to which I/O requests are addressed.
Second, our comprehensive pattern study in real applica-
tions reveals pathological behavior related to existing state-
of-the-art cache replacement algorithms, including a file-
level detection method named UBM [5], [9] and two
program-context-level detection methods named PCC [7]
and AMP [8]. This observation motivates us to design a
novel, robust, and adaptive cache replacement scheme,
which is presented in this paper. Our new scheme, called
RACE, which has a time complexity of O(1), can accurately
detect access patterns exhibited in both the discrete block
space accessed by a program context and the continuous
block space within a specific file, which leads to more
accurate estimations and more efficient utilizations of the
strength of data locality. We show that our design can
effectively combine the advantages of both file-based and
program-context-based caching schemes and best satisfy
the requirements of accuracy, responsiveness, and stability.
Third, we conduct extensive trace-driven simulations by

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

using 10 different types of real-life workloads and show
that RACE substantially improves the absolute hit ratio of
LRU by as much as 56.9 percent, with an average of 15.5
percent. RACE outperforms UBM, PCC, and AMP in
absolute hit ratios by as much as 22.5 percent, 42.7 percent,
and 39.9 percent, with an average of 3.3 percent, 6.6 percent,
and 6.9 percent, respectively. These gains in absolute hit
ratios by RACE are likely to have significant performance
implications in the applications’ response times.

1.3 Outline of This Paper

The rest of this paper is organized as follows: Section 2
briefly reviews relevant studies in buffer cache manage-
ment. Section 3 explains our RACE design in detail.
Section 4 presents the trace-driven evaluation method and
Section 5 evaluates the performance of RACE and other
related algorithms and discusses the experimental results.
Finally, Section 6 concludes this paper.

2 RELATED WORK ON BUFFER CACHE

REPLACEMENT STRATEGIES

A large number of replacement algorithms have been
proposed in the last few decades. These algorithms can be
classified into three categories: 1) replacement algorithms
that incorporate longer reference histories than LRU,
2) replacement algorithms that rely on application hints,
and 3) replacement algorithms that actively detect the I/O
access patterns. The following sections describe the theore-
tically optimal replacement algorithm, followed by repre-
sentative replacement algorithms in the above three
categories.

2.1 Offline Optimal Replacement

Offline optimal policy (OPT) [10], [11] replaces the block
whose next reference is farthest in the future. This policy is
not realizable in actual computer systems since it requires
complete knowledge of future block references. However, it
provides a useful upper bound on the achievable hit ratio of
all practical cache replacement policies.

2.2 Deeper-History-Based Replacement

To avoid the two pathological cases in LRU, as described in
the previous section, many cache replacement strategies are
proposed to incorporate the “frequency” information when
making a replacement decision. A common characteristic of
such strategies is that all of them keep longer history
information than LRU. A chronological list of these algo-
rithms by date of publication includes LRU-K [12], 2Q [13],
LRFU [14], EELRU [15], MQ [16], Low LIRS [17], and ARC
[18]. A brief overview of each algorithm is given below.

For every block x, LRU-K [12] dynamically records
the Kth backward distance, which is defined as the
number of references during the time period from the
last Kth reference to x to the most recent reference to x.
A block with the maximum Kth backward distance is
dropped to make space for missed blocks. LRU-2 is
found to best distinguish infrequently accessed (cold)
blocks from frequently accessed (hot) blocks. The time
complexity of LRU-2 is Oðlog2 nÞ, where n is the number
of blocks in the buffer.

The 2Q scheme [13] is proposed to perform similarly to
LRU-K but with considerably lower time complexity. It
achieves quick removal of cold blocks from the buffer by
using a FIFO queue A1in, an LRU queue Am, and a “ghost”
LRU queue A1out that holds no block contents except for
block identifiers. A missed block is initially placed in A1in.
When a block is evicted from A1in, this block’s identifier is
added to A1out. If a block in A1out or A1in is rereferenced,
this block is promoted to Am.

LRFU [14], [19] endeavors to replace a block that is both
least recently and least frequently used. A weight CðxÞ is
associated with every block x and a block with the
minimum weight is replaced:

CðxÞ ¼ 1þ 2��CðxÞ if x is referenced at time t
2��CðxÞ otherwise;

�
ð1Þ

where �, 0 � � � 1, is a tunable parameter and, initially,
CðxÞ ¼ 0. LRFU reduces to LRU when � ¼ 1 and to LFU
when � ¼ 0. By controlling �, LRFU represents a continuous
spectrum of replacement strategies that subsume LRU and
LFU. The time complexity of this algorithm ranges between
Oð1Þ and OðlognÞ, depending on the value of �.

EELRU [15] builds a history queue that records the
identifiers of recently evicted blocks and uses this queue to
detect the recency of evicted blocks. Based on the recency
distributions of referenced blocks, it dynamically changes
its replacement strategies. Specifically, it performs LRU
replacement by default but diverges from LRU and
arbitrarily evicts some pages early to allow not-recently-
touched blocks to remain longer when EELRU detects that
many pages fetched recently have just been evicted.

MQ [16] uses mþ 1 LRU queues (typically m ¼ 8),
Q0; Q1; . . . ; Qm�1, and Qout, where Qi contains blocks that
have been referenced at least 2i times but not more than
2iþ1 times recently and Qout contains the identifiers of blocks
evicted from Q0 in order to remember access frequencies.
On a cache hit in Qi, the frequency of the accessed block is
incremented by 1 and this block is promoted to the most
recently used position of the next level of queue if its
frequency is equal to or larger than 2iþ1. MQ associates each
block with a timer that is set to currentT imeþ lifeTime.
lifeTime is a tunable parameter that is dependent upon the
buffer size and workload. It indicates the maximum amount
of time that a block can be kept in each queue without any
access. If the timer of the head block in Qi expires, this block
is demoted into Qi�1. The time complexity of MQ is Oð1Þ.

LIRS [17], [20] uses the distance between the last and
second-to-the-last references to estimate the likelihood of
the block being rereferenced. It categorizes a block with a
large distance as a cold block and a block with a small
distance as a hot block. A cold block is chosen to be replaced
on a cache miss. LIRS uses two LRU queues with variable
sizes to measure the distance and also provides a mechan-
ism for allowing a cold block to compete with hot blocks if
the access pattern changes and this cold block is frequently
accessed recently. The time complexity of LIRS is Oð1Þ.
Clock-Pro [21] is an approximation of LIRS.

For a given cache size c, ARC [18], [22] uses two LRU
lists, L1 and L2, and they collectively contain c physical
pages and c identifiers of recently evicted pages. Although

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 3

all blocks in L1 have been referenced only once recently,
those in L2 have been accessed at least twice. The cache
space is allocated to the L1 and L2 lists adaptively according
to their recent miss ratios. More cache space is allocated to a
list if there are more misses in this list. The time complexity
of ARC is Oð1Þ. CAR [23] is a variant of ARC based on clock
algorithms.

All of the above replacement algorithms base their
cache replacement decisions on a combination of recency
and reference frequency information of accessed blocks.
However, they are not able to explicitly exploit the
regularities exhibited in past behaviors or histories, such
as looping or sequential references. Thus, their perfor-
mance is confined due to their limited knowledge of I/O
reference regularities [7].

2.3 Application-Controlled Replacement

Application-informed caching management schemes are
proposed in ACFS [24] and TIP [25] and they rely on
programmers to insert useful hints to inform operating
systems of future access patterns. ACFS uses a two-level
cache scheme, where a global cache management policy
decides which application should give up a cache block
upon a miss and the local policy decides intelligently which
block of that application should be evicted by applying
application-specific knowledge. TIP partitions the cache
into three logical domains for hinted-prefetching blocks,
hinted-caching blocks, and unhinted-caching blocks, re-
spectively. Based on the estimated cost benefits, TIP
dynamically allocates file buffers among those three
domains. To free the programmer from the onerous burden,
Profet [26] exploits a compiler-based technique to auto-
matically insert crucial hints to facilitate I/O prefetching.
However, this technique cannot achieve a satisfactory
performance level if the I/O access pattern is only known
at runtime. Artificial intelligence tools [27] are proposed to
learn these I/O patterns at execution time and thus obtain
the hints dynamically.

2.4 Active Pattern-Detection-Based Replacement

Depending on the level at which patterns are detected, the
pattern-detection-based replacement can be classified into
four categories:

1. block-level patterns,
2. application-level patterns,
3. file-level patterns, and
4. program-context-level patterns.

An example of the block-level pattern detection policy is
SEQ [28], which detects the long sequences of page cache
misses and applies the Most Recently Used (MRU) [29]
policy to such sequences to avoid scan pollution.

At the application level, DEAR [6] periodically classifies
the reference patterns of each individual application into
four categories: sequential, looping, temporally clustered,
and probabilistic. DEAR uses MRU as the replacement
policy to manage the cache partitions for looping and
sequential patterns, LRU for the partition of the temporally
clustered pattern, and LFU for the partition of the
probabilistic pattern. The time complexity of DEAR is

Oðn lognÞ, where n is the number of distinct blocks
referenced in the detection period.

At the file level, the UBM [5], [9] scheme separates the
I/O references according to their target files and auto-
matically classifies the access pattern of each individual file
into one of these three categories: sequential references,
looping references, and other references. It divides the buffer
cache into three partitions, one each for blocks belonging to
each pattern category, and then uses different replacement
policies on different partitions. For blocks in the sequen-
tially referenced partition, the MRU replacement policy is
used since those blocks are never revisited. For blocks in the
periodically referenced partition, the block with the longest
period is replaced first and the MRU block replacement is
used among blocks with the same period. For blocks that
belong to neither the sequential partition nor the looping
partition, a conventional algorithm such as LRU is used.

At the program context level, the PCC [7] algorithm
exploits virtual program counters (PCs) that are exhibited
in the application’s binary execution codes to classify the
program signatures into the same three categories as
UBM and then uses the same replacement policies for
these categories, respectively. Although UMB classifies
the I/O access patterns based on files, PCC classifies the
patterns based on the virtual PCs of the I/O instructions
in the program code. The AMP caching scheme [8]
inherits the design of PCC but proposes a new pattern
detection algorithm. It defines an experiential mathema-
tical expression to measure recency and classifies PCs
according to the comparison between the average recency
and a static threshold.

3 THE DESIGN OF A ROBUST ADAPTIVE CACHING

REPLACEMENT (RACE) ALGORITHM

This section presents the design of the RACE caching
algorithm in detail. We first introduce the recently devel-
oped program-context-based technology in buffer caching
and then analyze its limitations that in part motivate our
RACE design, which is followed by the presentation of the
details of our RACE algorithm.

3.1 PC-Based Technology in Caching Replacement

The temporal locality of I/O references in all kinds of
program executions has been extensively demonstrated and
is a well-known program behavior. Cache performance can
be enhanced by taking full advantage of the temporal
locality. Based on this principle, many cache management
algorithms, including PCC [7] and AMP [8], exploit the
temporal locality by using the history information of
program behavior to estimate the reuse distance of cache
blocks. These studies successfully link the past I/O
behavior to their future reoccurrences by borrowing a
computer architectural concept: program counters, which
indicate the location of the instructions in memory. It is
found that a particular instruction which is identified by its
PC usually performs a very unique task and seldom
changes its behavior. Thus, these studies assume that there
is a considerably high probability of the access pattern of a
PC remaining unchanged in the near future.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 1 presents a call graph to further illustrate the key
idea behind the studies of PCC and AMP. A call graph
represents the runtime calling relationships among a
program’s functions or procedures in which a node
corresponds to a function and an arc represents a call. An
I/O instruction which is issued by some function in the
application layer may be interpreted in the I/O wrapper
layer that hides the I/O complexity, provides flexible
interfaces, and eventually invokes system calls to access
data. To uniquely identify the program context from which
an I/O operation is invoked, a PC signature is defined as the
sum of the PCs of all functions along the I/O call path. PC
signatures can be obtained by traversing the function stack
frames backward from the system calls main(). For
simplicity, program signatures are denoted as PCs in the
rest of this paper.

PCC and AMP separate the I/O references into sub-
streams according to their PCs and then classify PCs into
appropriate I/O reference pattern categories. A PC is
assumed to exhibit the same I/O reference pattern in the
future as that into which it has been classified and the target
data blocks referenced by the current PC will be managed
by the corresponding policy. Unfortunately, such an
approach has three significant disadvantages:

1. The first iteration of each new PC in a global looping
pattern will be misclassified as sequential. This is
intrinsically caused by the inability of PC-based
schemes to detect the phenomenon of pattern sharing
among multiple PCs. Pattern sharing in real applica-
tions is not rare. For example, it is highly likely that a
subroutine is called by multiple parent subroutines
but shares the same I/O access pattern. Recursive
functions are another example since they generate a
set of different program signatures but share the
same reference patterns. Multithreading can also
lead to pattern sharing. Figs. 2 and 3 show the traces
of gnuplot and BLAST, whose detailed descriptions
are presented in Section 4. (Throughout this paper,
the terms “block number” and “block address” are
used interchangeably.) In the gnuplot trace, a
sequence of plotting commands is issued in the
order of plot, plot, replot, plot3d, replot to two large
data files. Although the two replot functions access a
data file with the same pattern as their preceding plot
and plot3d functions, they follow a slightly different
I/O path and thus have different PCs with each plot.
Although these plotting functions access the data
repeatedly, a pure PC-based scheme such as PCC or
AMP will erroneously classify these references as
sequential. In the trace of BLAST (also described in
Section 4), as shown in Fig. 3, the program forks

three threads and searches through the database files
simultaneously. Although the database files are
accessed repeatedly, PC-based detectors will not be
able to classify the patterns correctly due to their
inability to retain the “global picture.”

2. Pattern conflicts reduce detection accuracy and
increase management overhead. Fig. 4 presents
traces of the top-six PCs with the highest numbers
of references, collected from the gcc trace described
in Section 4. Although PC1 and PC2 exhibit a
looping pattern, PC5 and PC6 show a sequential
pattern and PC3 and PC4 show a sequential pattern
with a small degree of repetition. Most referenced
blocks thus are classified as sequential if they are
initiated by PC3, PC4, PC5, and PC6 and as looping
if by PC1 and PC2. Since the references of these PCs
are interwoven with one another, blocks need to be
continuously moved between the sequential partition
and the looping partition. Such moves require locks to
ensure consistency and correctness and can cause a
significant maintenance overhead.

3. PC-based schemes cannot accurately distinguish
locality strengths. Locality strength in the PC-based
approach is used for determining which block is
replaced. It is measured by the looping period,
where a longer looping period represents a weaker
locality. PCC uses a single period to measure the
locality of all the blocks accessed by a particular PC
on a cache miss and evicts the block accessed by the

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 5

Fig. 1. An example call graph of some application.

Fig. 2. Block references of gnuplot.

Fig. 3. Block references of BLAST.

PC that has the longest looping period. Although
this period is averaged exponentially1 by weighing
recent periods more heavily than older ones, clearly
a single looping period will not accurately measure
the locality strength when a large amount of data is
accessed. This can be easily observed from the traces
of PC1 and PC2 in Fig. 4. Although PC1 and PC2
show a looping pattern, there is a significant portion
of blocks whose actual looping periods are much
longer than the average looping period.

3.2 The Design of RACE

Our RACE scheme is built upon the assumption that future

access patterns have a strong correlation with both the program

context identified by program signatures and the past access

behavior of currently requested data. Although UBM only

associates its prediction with the data’s past access behavior,

PCC and AMP only consider the relationship between future

patterns and the program context in which the current I/O

operation is generated. Our assumption is more appropriate

for real workloads, as demonstrated by our comprehensive

experimental study presented in Section 5.
Our RACE scheme automatically detects an access

pattern as belonging to one of the following types:

. Sequential references. All blocks are referenced one
after another and are never revisited again.

. Looping references. All blocks are referenced repeat-
edly with a regular interval.

. Other references. All references that are not sequential
or looping.

Fig. 5 presents the overall structure of the RACE caching

scheme. RACE uses two important data structures: a file

hash table and a PC hash table. The file hash table records the

sequences of consecutive block references and is updated

for each block reference. The sequence is identified by the

file description (inode), the starting and ending block

numbers, the last access time of the first block, and their

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 4. Traces of six PCs with the highest numbers of references in gcc. The PCs, in order of decreasing number of references, are from 1 to 6.

1. The exponential average S of a time series uðtÞ is defined as
Sðtþ 1Þ ¼ � � SðtÞ þ ð1� �Þ � uðtþ 1Þ, where 0 < � < 1.

Fig. 5. The key structure of the RACE scheme. The Partition allocator
and the Partition size coordinator take the results of pattern detector to
adaptively fine-tune the size of each cache partition. If a sequence is
found in the file hash table, then the period stored in the file hash table is
used for updating the period field in the PC hash table.

looping period. The virtual access time is defined on the
reference sequence, where a reference represents a time
unit. The looping period is exponentially averaged over the
virtual time. The PC hash table records how many unique
blocks each PC has accessed (fresh) and how many
references (reused) each PC has issued to access blocks that
have been visited previously. Although PCC also uses two
counters, our RACE scheme is significantly different from
PCC in that 1) PCC’s counters do not accurately reflect the
statistical status of each PC process, resulting in a misclassi-
fication of access patterns, as discussed later in this section,
and 2) PCC only considers the correlations between the last
PC and the current PC that accesses the same data block. In
fact, many PCs exist in one application and it is likely that two
or more PCs access the same data blocks.

The detailed pattern detection algorithm is given in
Algorithm 1. The main process can be divided into three
steps. First, the file hash table is updated for each block
reference. RACE checks whether the accessed block is
contained in any sequence in the file hash table. If found,
RACE updates both the last access time and the sequence’s
average access period. When a block is not included in any
sequence of the file hash table, RACE then tries to extend an
existing sequence if the current block address is the next
block of that sequence; otherwise, RACE assumes that the
current request starts a new sequence. Second, RACE
updates the PC hash table by changing the fresh and reused
counters. For each revisited block, fresh and reused of the
corresponding PC are decreased and increased, respec-
tively. On the other hand, for a block that has not been
visited recently, the fresh counter is incremented. The last
step is to predict access patterns based on the searching
results on the file and PC hash tables. If the file table reports
that the currently requested block has been visited before, a
“looping” pattern is returned. The looping period will
identify how often this file has been accessed. If the file
table cannot provide any history information of the current
block, RACE relies on the PC hash table to make
predictions. A PC with its reused counter larger than its
fresh counter is considered to show a “looping” pattern. On
the other hand, a PC is classified as “sequential” if the PC
has referenced a certain amount of one-time-use-only blocks
and as “others” if there is no strongly supportive evidence
to make a prediction. By using the hashing data structure to
index the file and PC tables, which is also used in LRU to
facilitate the search of a block in the LRU stack, RACE can
be implemented with a time complexity of Oð1Þ.

Algorithm 1: Pseudocode for the RACE pattern detection

algorithm.

1: RACE(inode, block, pc, curTime)

2: {IF: File hash table; IP: PC hash table}

3: if PC 62 IP then Insert (pc, 0, 0, 1) into IP;

4: if 9f1 2 IF, f1:inode ¼ inode and

f1:start � block � f1:end then

5: lastTime ¼ curTime� ðblock� f1:startÞ;
{infer “ghost” reference time of the first block}

6: f1:period ¼ � � f1:periodþ ð1� �Þ
�ðlastTime� f1:lastT imeÞ; {exponential average}

7: IP½pc�:reused++; IP½pc�:fresh–;

8: IP½pc�:period ¼ � � f1:periodþ ð1� �Þ � IP½pc�:period;

{exponential average}

9: {update last reference time of the first block}
10: if access direction reversed then

f1:lastT ime ¼ lastTime;
11: return(“looping”, f:period);

12: else if 9f2 2 IF, f2:inode ¼ inode and f2:end ¼ block� 1;

then

13: f2:end ¼ block; {extend existing sequence}

14: IP½pc�:fresh++;

15: else

16: f:inode ¼ inode; f:start ¼ f:end ¼ block;

f:lastTime ¼ curTime; f:period ¼ 1;

17: Insert f into IF; {Insert a new sequence}

18: IP½pc�:fresh++;

19: end if

20: if IP½pc�:reused � IP½pc�:fresh then return(“looping”,

IP½pc�:period);

21: if IP½pc�:fresh > threshold then return(“sequential”);
22: return(“other”);

How to efficiently calculate the average access time for
each access sequence is a challenging issue. It is not realistic
to record the last access time of every accessed block due to
prohibitively high overhead. We choose to only record the
last access time of the very first block of a sequence to
reduce the overhead. The real implementation is slightly
different from the abstract procedure given in Algorithm 1
and Fig. 6 shows an example that illustrates the basic
process. In a repeated I/O stream such as S1, S2, and S3,
the access time of each block reference is virtually projected
back to the time of the start block. Then, the current access
period is the time difference between the projected time and
the recorded last access time of the start block. The access
period of a sequence is exponentially averaged over the
access periods of all block references in that sequence. After
the second reversing point (a decrement in access ad-
dresses) such as the time instant 16 in this example, the last
access time recorded in the file hash table is then updated
for all subsequent reversing points. Occasionally, the access
periods may be erroneously calculated. For example, the
access period of references to blocks 7 and 8 is incorrectly
reported as 5. This approach, however, does not compro-
mise the accuracy significantly, as indicated by our
simulation results presented in Section 5.

The number of repeatedly access blocks, rather than the
number of repeatedly accessed files, is used for identifying
the loop patterns for each PC. This is because we want to
give cold files, which are less frequently accessed, less
weight in the classifying process. Previous studies have
shown that a small fraction of files absorb most of the I/O
activities in a file system [30], [31], [32], [33]. We believe that
this commonly existing file access locality justifies our
choice. Otherwise, biased pattern predictions would be
generated if we place the same weight on all files and do
not consider how many blocks have been accessed from
individual files.

By observing the patterns both at the program context
level and the file level and by exploiting the detection
mechanism in both the continuous block address space
within files and the discrete block address space in program
contexts, RACE can more accurately detect access patterns.

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 7

An example, which is shown in Fig. 7, is used for
illustrating and comparing the classification results of
RACE, UBM, PCC, and AMP, in which all false classifica-
tion results are underscored:

RACE. File A is initially classified as other. After file A is
visited, the fresh and reused counters of PC1 are set to 2
and 0, respectively. After the first block of file B is
accessed, the pattern of PC1 immediately changes to be
sequential since the fresh count becomes larger than the
threshold. Thus, during the first iteration of accesses to
files A and B, RACE incorrectly classifies the first three
blocks as other and then the next three blocks as
sequential. However, after the first iteration, RACE can
correctly identify the access patterns. During the second
and third iterations, the sequences for both files A and B
are observed in the file hash table and are correctly
classified as looping. Although file C is visited for the first
time, it is still correctly classified as looping. This is
because the fresh and reused counters of PC1 are 0 and
6, respectively, before file C is accessed. After that, all
references are made by PC2 and they are classified as

looping since the file hash table have access records of
files B and C.

UBM. Since the total number of blocks in file A is less than
the threshold in UBM, all references to file A are
incorrectly classified as other. The initial references to
the first three blocks and the fourth block of file B are
detected as other and sequential, respectively. After that,
all references to file B are classified as looping. Similar
classification results are observed for references to file C.

PCC. Although the blocks of a sequential access detected by
UBM have to be contiguous within a file, PCC considers
sequential references as a set of distinct blocks that may
belong to different files. The initial three blocks accessed
by PC1 are classified as other and, then, PC1 is classified
as sequential. Although PC2 is accessing the same set of
blocks as PC1, it is still classified first as other and then as
sequential when the threshold is reached. Before file C is
accessed, the values of both seq and loop of PC1 are 6.
Since seq of PC1 is increased and becomes larger than
loop, accesses to file C made by PC1 are classified as
sequential. Before file C is revisited by PC2, the values of
both seq and loop of PC2 have changed to be 0 and 6,
respectively, through the references made by PC1. Thus,
references to file C are detected as looping. After file C is
accessed, the values of both seq and loop of PC2 are 6.
References to file A made by PC2 are classified first as
sequential and then as looping.

AMP. The classification results are reported by the AMP
simulator from its original author. To reduce the
computation overhead, AMP uses a sampling method,
with some sacrifice to the detection accuracy. Since the
sample trace used here is not large, the entire results are
collected without using the sampling function in the
AMP simulator. The initial recency of a PC, defined as the
average ratios between the LRU stack positions and the
stack length for all blocks accessed by the current PC, is
set to be 0.4. Last references to file A made by PC2 are
incorrectly detected as other, which indicates that AMP
has a tendency to classify looping references as other in

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 6. An example to illustrate the calculation of average access period.

Fig. 7. An example of reference patterns. The sequentiality thresholds

for UBM, PCC, and RACE are 3. The sequentiality threshold, looping

threshold, and exponential average parameter for AMP are 0.4, 0.01,

and 4, respectively. All incorrect classification results are underscored.

the long term. We can use a shorter and simpler
reference stream to further explain it. Given a looping
reference stream L ¼ f1; 2; 3; 4; 3; 4; 3; 4g, the average
recency of L is 0.67, which is higher than the threshold,
0.4. Accordingly, AMP falsely considers the pattern of L
as other. In addition, AMP has another anomaly in which
it has a tendency to erroneously classify a sequential
stream as a looping one. For example, for a sequential
reference stream S ¼ f1; 2; 1; 2; 3; 4; 5; 6; 7; 8g, the average
recency of S is 0 and AMP identifies this sequential
pattern as looping. The first anomaly is more commonly
observed in the workload studies in this paper, which
explains why the performance of AMP tends to be close
to that of ARC in our experiments shown in Section 5.

4 APPLICATION TRACES USED IN THE SIMULATION

STUDY

The traces used in this paper are obtained by using a trace
collection tool provided in [7]. This tool is built upon the
Linux strace utility that intercepts and records all system calls
and signals of traced applications. A PC signature is obtained
by tracing backward the function call stack in strace. The
modified strace investigates all I/O-related activities and
reports the I/O triggering PC, file identifier (inode), I/O
starting address, and request size (in bytes).

We use trace-driven simulations with various types of
workloads to evaluate the RACE algorithm and compare it
with other algorithms. These traces are considered typical
and representative of applications in that most of them are
routinely used in other caching algorithm studies. For
example, the cscope, glimpse, and gcc traces are used in [5],
[7], [17], [34], gnuplot in [6], and tpch and tpcr in [35]. Table 1
summarizes the characteristics of these traces and a more
detailed description of each trace is presented below. The
file and PC numbers represent the total numbers of unique
files and PC signatures, respectively:

1. gcc is a GNU C compiler trace and it compiles and
builds Linux kernel 2.6.10.

2. cscope [36] is an interactive utility that allows users
to view and edit parts of the source code relevant to
specified program items under the auxiliary of an

index database. In cscope, an index database needs to
be built first by scanning all examined source code.
In our experiments, only the I/O operations during
the searching phases are collected. The total size of
the source code is 240 Mbytes and the index
database is around 16 Mbytes.

3. glimpse [37] is a text information retrieval tool,
searching for keywords through large collections of
text documents. It builds approximate indices for
words and searches relatively fast with small index
files. Similarly to cscope, the I/O activities during
the phase of index generation are not included in
our collected trace. The total size of text is around
194 Mbytes and the glimpse index file is about
10 Mbytes.

4. gnuplot is a command-line-driven interactive plot-
ting program. Five figures are plotted by using four
different plot functions that read data from two raw
data files with sizes of 52 and 70 Mbytes, respectively.

5. BLAST [38] is a widely used scientific application in
computational biology. It is designed to find regions
of local similarity between a query sequence and all
sequences in a large gene database. In this study, a
large database named human EST is used and it is
roughly 1.8 Gbytes in size. Previous research has
shown that the length of 90 percent of the query
sequences used by biologists is within the range of
300-600 characters [39]. Thus, in this work, we
choose to use a sequence of 568 characters extracted
from the ecoli.nt database as the query sequence.

6. tpch and tpcr benchmarks [40] perform random
access to a few large MySQL database files. The
traces used in this study are obtained from [35]. Butt
et al. [35] suggest that disk I/O prefetching should
be disabled in both tpch and tpcr to prevent cache
pollution. Thus, we only use the traces without
prefetching.

7. multi1 is obtained by executing glimpse and cscope
concurrently, which represents a text-searching
environment.

8. multi2 is obtained by executing gnuplot and BLAST
concurrently, which simulates an environment of
database queries and scientific visualization.

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 9

TABLE 1
Traces Used and Their Statistics

9. multi3 is obtained by concurrently executing three
workloads: cscope, BLAST, and gcc, which provides a
workload of database queries and code programming.

The traces of gnuplot, BLAST, gcc cscope, glimpse, tpch, and
tpcr in Figs. 2, 3, and 8, respectively, show trace address as a
function of the virtual time that is defined as the number of
references issued so far and is incremented for each request.
For the sake of visibility, the tpch and tpcr traces are shown
with a sampling period of 400.

5 PERFORMANCE EVALUATION

This section presents the performance evaluation of RACE
through a trace-driven simulation study with 10 different
but typical traces from real applications. We compare the
performance of RACE with seven other replacement
algorithms, including UBM [5], [9], PCC [7], AMP [8], LIRS
[17], [20], ARC [18], LRU, and OPT. Simulation results of
UBM, LIRS, and AMP were obtained using simulators from
their original authors, respectively. We implemented the
ARC algorithm according to the detailed pseudocode
provided in [22]. We also implemented the PCC simulator
and our RACE simulator by modifying the UBM simulator
code. UBM’s cache management scheme based on the
notion of marginal gain is used in PCC and RACE without
any modification, which allows an effective and fair
comparison of the pattern detection accuracies of UBM,
PCC, and RACE.

The measure of hit ratio is used as our primary metric in
the performance comparison. Hit ratio is defined as the

fraction of I/O requests that are successfully served by the
cache without going off to the secondary disk storage. We
believe that hit ratio is a comprehensive metric for
evaluating the accuracy, responsiveness, and stability of
pattern-detection-based algorithms since these three factors
can directly impact the hit ratios. More specifically, the
accuracy of locality detection, in terms of access periods in
this paper, directly influences the order of block eviction.
Promptly adapting to patterns changes can avoid hit ratio
degradation caused by obsolete information. Stability will
guarantee consistently high hit ratios across different cache
sizes and a wide spectrum of workloads.

5.1 Cache Management Scheme

PCC and RACE use the marginal gain function in the original
UBM [5], [9] simulator to manage the three partitions of the
buffer cache. Marginal gain is defined as the expected extra
hit ratios increased by adding one additional buffer [25],
[41]. The marginal gain of the sequential partition is zero
since no benefit can be obtained from caching one-time-use-
only data. The marginal gain for the looping partition is

1
pmaxþ1 , where pmax is the maximum looping period of blocks
in the looping partition. The marginal gain for the other
partition is estimated according to Belay’s life function [42].
UBM, PCC, and RACE aim at maximizing the expected hit
ratios by dynamically allocating the cache space to the three
partitions: looping, sequential, and other. For the sequential
partition, not more than one buffer is allocated, except when
the buffers are not fully utilized, since its marginal gain is
zero. The cache space is switched between the looping and

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 8. Block references of (a) gcc, (b) cscope, (c) glimpse, (d) tpch, and (e) tpcr.

the other partitions according to the comparison of their
estimated marginal gains. It always frees a buffer in the
partition with a smaller marginal gain and allocates it to the
other partition until both marginal gains converge to the
same value.

AMP proposes a randomized eviction policy to manage
the cache partitions. Upon a cache miss, AMP randomly
chooses a nonempty partition and frees the block at the
MRU position of that partition. Although this randomized
eviction works well for their design, which employs ARC
[18] to manage cache replacement, this replacement algo-
rithm does not work efficiently for UBM, PCC, and RACE
for the simple reason that UBM, PCC, and RACE only use
LRU or MRU to manage cache in order to achieve a low
overhead. Although ARC itself can automatically adapt to
the workload changes, LRU and MRU do not provide such
adaptability.

5.2 Simulation Results

Based on access patterns, the 10 traces used in the simulation
study are divided into two main groups. Traces gnuplot,
BLAST, and cscope fit in the group in which looping patterns
dominate. Traces gcc, glimpse, tpch, tpcr, multi1, multi2, and
multi3 are in the group with mixed patterns. In what follows,
we report our simulation results in both groups and compare
RACE with UBM, PCC, AMP, LIRS, ARC, LRU, and OPT. The
simulation parameters for these algorithms are given in
Table 2 and all of them are suggested by their original authors
in the literature, except that the exponential average para-
meter � is not given in PCC [7].

5.2.1 Performance under Workloads with Looping

Patterns

. gnuplot. Fig. 9a shows the hit ratio comparisons for
the workload gnuplot that has a looping pattern with
long intervals. This workload generates a pathologi-
cal case for LRU when the size of accessed blocks in
the loop is larger than the cache. Accordingly, LRU
performs poorly and has the lowest hit ratios. A
similar behavior is present in ARC as all blocks are
accessed more than once and the frequency list is
consequently managed by LRU. ARC achieves
almost optimal hit rates when the cache is large

since it can successfully evict the least frequently
used blocks. The benefit of LRU and ARC caching is
only observed when the entire looping file set fits in
the cache. Since the long sequential accesses are
made by four PCs, respectively, as presented in
Fig. 2, PCC incorrectly classifies all references as
sequential, as expected, and results in very low hit
ratios. Both UBM and RACE, on the other hand, can
correctly classify the references as looping after the
first long sequence of sequential accesses, achieving
much higher hit ratios. However, the cache manage-
ment scheme employed in AMP is not efficient, thus
resulting in lower performance than UBM and
RACE. In summary, RACE achieves the same
performance as UBM and a maximum of 52.3 percent
and 39.9 percent improvement in hit ratio over LRU
and AMP, respectively.

. BLAST. The performance comparisons under the
BLAST workload are presented in Fig. 9b. The
accesses are dominated by three major PCs initiated
by three concurrently running threads in the BLAST
application. PCC cannot detect the access pattern
sharing among these three PCs and marks many
blocks as sequential. This is the main reason that the
hit ratios of PCC are 20.8 percent, 19.8 percent, and
5.0 percent lower than those of RACE, UBM, and
AMP, respectively, on average. Since there are only
13 files accessed in this trace, the misclassification of
the first iteration of accesses to new files does not
significantly degrade the UBM performance under
this workload. Thus, UBM achieves comparable hit
ratios with RACE. Although RACE improves LRU
by as much as 56.9 percent, for an average of
30.1 percent, ARC only improves LRU by 15.1 per-
cent at the maximum, with an average of 2.3 percent.
ARC is inherently capable of recording a reference
history that is only twice the cache size. Under a
workload with a large working set such as BLAST,
ARC fails to detect the looping patterns due to the
lack of history information. Similarly, LIRS also
suffers from limited history information that is
stored in its two LRU stacks.

. cscope. Fig. 9c shows the hit ratio comparison for the
cscope application. As explained in Section 3, AMP

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 11

TABLE 2
Parameters for Cache Replacement Policies

tends to classify the looping references as other due
to the fact that the average recency in AMP is highly
sensitive to stale history information as the center of
working set shifts. As a result, the performance of

AMP is close to that of ARC, which is used in AMP
to manage the cache partition for the other pattern.
PCC, LIRS, and RACE achieve almost the same hit
ratios and their hit ratios are 10.0 percent higher than

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 9. Comparison of hit ratios. (a) gnuplot. (b) BLAST. (c) cscope. (d) gcc. (e) glimpse. (f) tpch. (g) tpcr. (h) multi1. (i) multi2. (j) multi3. (k) Average

hit ratios (normalized to the average hit ratio of OPT). (l) Average hit ratios for all traces (normalized to the average hit ratio of OPT).

that of UBM. Among the pattern-detection-based
algorithms, two main factors contribute to the
inferior performance of UBM to RACE and PCC.
First, with a total of 16,613 files accessed in cscope,
there are around 13.6 percent of files whose sizes are
smaller than the threshold used by UBM. These
small files form implicit looping patterns in a
nonconsecutive manner and thus are ignored in
UBM. On the contrary, RACE and PCC can detect
the implicit looping patterns in which a group of
small files are repeatedly accessed. Second, there are
around 5 percent of references that are issued to
access files for the first time and UBM cannot make a
correct prediction for these references since UBM is
intrinsically incapable of making an accurate pre-
diction when a file has not been accessed previously.

5.2.2 Performance under Workloads with Mixed

Patterns

. gcc. Fig. 9d shows the hit ratios under the workload
of gcc that builds the newest version of the Linux
kernel at the time of our experiments. Gniady et al.
[7] use the trace collected only during the preproces-
sing of an old Linux kernel (2.4.20). The trace does
not reflect the whole I/O characteristics of building
the kernel and it has only around 80,000 read
operations. We choose to use the trace that is
collected during the enitre building process of the
newest Linux kernel 2.6.10 and it contains more than
9� 106 read operations. We believe that this gives us
a more comprehensive evaluation. In this trace,
around 68 percent of the references are targeted at
small files that are shorter than the threshold. When
the cache size is smaller than 0.7 Mbyte, UBM and
RACE perform the best. However, the hit rates of
LIRS are the highest when the cache size is between
0.7 Mbyte and 1.5 Mbytes, although those of RACE
come extremely close. Since the working set of gcc is
not large, LIRS can better differentiate the locality
strength of referenced blocks and is 2.4 percent and
0.7 percent better than PCC and RACE, respectively.
AMP cannot adapt to the shift of working set centers
and falsely classifies almost all references as others,
which explains why AMP and ARC share similarly
poor performance.

. glimpse. Fig. 9e shows the hits ratio comparisons
under the glimpse workload. The performances of
RACE, UBM, AMP, PCC, and LIRS are very close to
one another and perform much better than LRU.
Specifically, RACE improves the hit ratios of LRU by
as much as 17.5 percent, with an average of
8.1 percent. Surprisingly, ARC clearly shows the
Belady behavior, where the hit ratio decreases while
the cache size increases. This anomaly can be
observed in the previous workloads as well. As
introduced in Section 2, ARC divides the cache of
size c into two LRU lists, L1 and L2, and they retain a
total of c physical blocks and c identifiers of recently
evicted blocks. Although blocks in L1 have been
used only once, blocks in L2 have been used twice or

more. A hit in L1 promotes the referenced block to
L2 so that it can stay in the cache for a longer time.
ARC bases its replacement strategy on the following
assumption: If the requested block identifier is in L1

on a cache miss, then it is likely that the number of
physical blocks in L1 is too small. Similarly, if the
identifier of a missed block is in L2, then the number
of physical blocks in L2 is conjectured to be too
small. Thus, ARC adaptively allocates more cache
space to a list that has more misses. It achieves this
goal by dynamically changing the number of
physical blocks allocated to L1 with a variable step
size. Under the same I/O workload, the step size is
continuously updated by its exponential average
and is influenced by the size of the cache. Thus, the
step size cannot truly distinguish the “cold” blocks
from the “hot” ones and leads to the severe Belady
anomaly.

. tpch and tpcr. Although the tpch and tpcr bench-
marks repeatedly access a total of six large database
files, only 3 percent of the references occur to
immediately consecutive blocks [35] and over
80 percent of stride distances between consecutive
references are larger than 10 blocks. Figs. 9f and 9g
compare the hit ratio performance. PCC performs
slightly worse than LRU when the cache size is
larger than 64 Mbytes. Although the majority of
references are absorbed by the six databases, there
are over 15,000,00 program signatures and the
misprediction of access periods degrades the per-
formance in PCC. Compared with PCC, RACE not
only correctly identifies more periodical accesses but
also provides more accurate access periods.

. multi1, multi2, and multi3. The hit ratio compar-
isons under the workloads of multi1, multi2, and
multi3 are presented in Figs. 9h, 9i, and 9j,
respectively. In summary, in multi1, RACE and
PCC achieve the best hit ratios. In multi2, the hit
ratios of RACE and UBM are the highest. RACE
outperforms all other algorithms in multi3.

5.3 Average Hit Ratio Comparisons

Fig. 9k shows the average hit ratios normalized to the
average hit ratio of the OPT replacement algorithm for the
eight workloads studied in this paper. Fig. 10 compares the
classification results between RACE, UBM, PCC, and AMP,
which helps explain the reasons behind the superiority of
RACE in terms of hit ratios. For gnuplot, BLAST, and multi2,
the PCC algorithm is pathological in that PCC cannot
distinguish the pattern sharing among different PCs and
falsely classifies many looping patterns as sequential
patterns, as shown in Fig. 10. For cscope, gcc, glimpse, multi1,
and multi3, the UBM algorithm is pathological since it
ignores the patterns clearly exhibited in small files and it is
incapable of correctly detecting the access patterns for files
that have not been referenced before. In almost all work-
loads, AMP erroneously identifies a larger fraction of
accesses as the other pattern by as much as 74.9 percent,
19.7 percent, and 74.9 percent, on average, more than
RACE, UBM, and PCC respectively, which dramatically
lowers its hit ratios. RACE, on the contrary, exploits the

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 13

detection mechanism in both the continuous block address
space within files and the discrete block address space in
program contexts, resulting in an average of 52.4 percent,
24.5 percent, and 70.8 percent more looping patterns being
correctly detected than UBM, PCC, and AMP, respectively.

The experimental results on the 10 workloads show that
RACE is the most robust among all of the algorithms. Fig. 9l
presents the average values of hit ratios (normalized to the
optimal hit ratios) presented in Fig. 9k. Compared with
UBM, PCC, AMP, LIRS, ARC, and LRU, the normalized hit
ratio of RACE is higher by an average of 5.4 percent,
15.9 percent, 14.3 percent, 10.0 percent, 20.5 percent, and
25.4 percent, respectively. Table 3 shows the arithmetic
average of absolute hit ratios of these algorithms, with
different sizes in each workload. RACE can successfully
overcome the drawbacks of LRU and improve its absolute
hit ratios by as much as 56.9 percent, with an average of
15.5 percent.

Compared with other state-of-the-art pattern-detection-
based schemes, RACE outperforms UBM, PCC, and AMP
by as much as 22.5 percent, 42.7 percent, and 39.9 percent,
with an average of 3.3 percent, 6.6 percent, and 6.9 percent,
respectively. In the cscope trace, RACE is 1.0 percent inferior
to PCC, on average, due to the fact that, although RACE

correctly classifies files accessed at the end of the first

iteration as looping, these files are only accessed twice, as

shown in Fig. 8b, and RACE wastes partial memory by

caching them. Compared with the state-of-the-art recency/

frequency-based schemes, RACE consistently beats ARC in

all workloads and outperforms LIRS in most workloads,

except cscope and gcc. In the cscope and gcc traces, RACE is,

on average, 1.1 percent and 0.7 percent inferior to LIRS in

the absolute hit ratio. Since RACE improves the hit ratios of

LIRS by an average of 6.0 percent over the eight workloads,

we conclude that such a slight performance degradation in

cscope and gcc is not severe. The gcc workload is extremely

LRU friendly, in which an 89.4 Mbyte data is accessed and

an LRU cache with a size of 1.5 Mbytes can achieve a hit

ratio of 86 percent. It is our future work to avoid such slight

performance degradation by improving our detection

algorithm or by incorporating LIRS into RACE to manage

the cache partitions. In summary, RACE relatively im-

proves the hit ratios of UBM, PCC, AMP, LIRS, ARC, and

LRU by 6.8 percent, 14.6 percent, 15.2 percent, 8.7 percent,

21.7 percent, and 29.3 percent on average. This superiority

indicates that our RACE scheme is more robust and

adaptive than any of the other six caching schemes and

also proves our assumption that future access patterns are

highly correlated with both program contexts and re-

quested data.

5.4 Sensitivity Study on the Sampling Frequency

Our RACE algorithm needs to update both the file hash table

and the PC hash table. The cache sizes are 1 Mbyte for Linux,

500 Mbytes for mult1, mult2, and mult3, and 50 Mbytes for the

others. Fig. 11 shows the sensitivity of the updating

frequency. With a sampling frequency of less than 16 blocks,

the hit ratios are barely adversely affected for most bench-

marks, except for gcc and cscope. In gnuplot, the performance

of RACE reduces to LRU when the sampling frequency is

large. From this analysis, we believe that the updating

overhead and the memory requirement of the file hash tables

and the PC tables can be traded off through appropriate

sampling. A sampling period of 16 blocks provides a good

trade-off for the studied benchmarks.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

Fig. 10. Comparisons of classification results.

TABLE 3
Hit Ratios under the 10 Traces, Averaged over Different Cache Sizes

6 CONCLUSIONS

Cache replacement algorithms are crucial in bridging the
increasing performance gap between processors and disk
drives. Motivated by the limitations of existing state-of-the-
art cache replacement algorithms, we propose a novel and
simple block replacement algorithm called RACE. We make
three main contributions: 1) We collected the I/O traces for
eight real applications and investigated I/O access patterns
in two correlated spaces (the program context space from
which I/O operations are issued and the file space to which
I/O requests are addressed), 2) our comprehensive applica-
tion trace study revealed some pathological behaviors in
existing state-of-the-art cache replacement algorithms,
including a file-level detection method (UBM) and two
program-context-level detection methods (PCC and AMP),
and 3) an extensive simulation study conducted under these
real-application workloads demonstrated that RACE,
through its exploitation of the detection mechanism in both
the continuous block address space within files and the
discrete block address space in program contexts, is able to
accurately detect reference patterns from both the file level
and the program context level and thus significantly
outperforms other state-of-the-art recency/frequency-based
algorithms and pattern-detection-based algorithms. Due to
the very high buffer cache miss penalties, which are
typically six orders of magnitude higher than buffer cache
hit times, we believe that the significant gains in hit ratios
obtained by RACE over other algorithms will likely have
significant performance implications in application re-
sponse times.

Our study has two limitations. First, we have not
implemented our design and evaluated it in real systems.
Compared with recency/frequency-based algorithms such
as LRU, LIRS, and ARC, the program-context-based
algorithms, including RACE, PCC, and AMP, need to pay
the extra overhead of obtaining PC signatures. Gniady et al.
[43] report that it is inefficient to obtain program signatures
through stack traversals in their quick-hack implementa-
tion. Use of a library modification approach which can read
the PC directly from the calling program’s stack and, hence,
requires the least amount of overhead is suggested. Second,
in order to achieve a direct comparison of pattern detection
accuracy, RACE, as well as PCC, uses the marginal gain

functions proposed in the UBM scheme to dynamically
allocate the buffer cache. We believe that a more effective
allocation scheme will be helpful to further improve the hit
ratios. In the future, we will implement RACE into Linux
systems and investigate other efficient allocation schemes.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Song Jiang and Dr. Xiaodong

Zhang for providing the LIRS cache simulator, Feng Zhou

et al. for their AMP simulator, and Chris Gniady et al. for

their trace collection tool and tpch and tpcr traces. The

authors would like to thank the anonymous reviewers for

their efforts in improving this paper. This work is

supported by a University of Maine (UMaine) Startup

Grant, US National Science Foundation (NSF) Grant CCF-

0621493, NSF Grant CCF-0621526, NSF CNS #0723093, NSF

DRL #0737583, and Chinese NSF 973 Project Grant

2004cb318201.

REFERENCES

[1] M.J. Bach, The Design of the UNIX Operating System. Prentice Hall,
1986.

[2] A.S. Tanenbaum and A.S. Woodhull, Operating Systems Design and
Implementation. Prentice Hall, 1987.

[3] R.W. Carr and J.L. Hennessy, “WSCLOCK—A Simple and
Effective Algorithm for Virtual Memory Management,” Proc.
Eighth ACM Symp. Operating Systems Principles (SOSP ’81), pp. 87-
95, 1981.

[4] A.J. Smith, “Analysis of the Optimal, Look-Ahead Demand
Paging Algorithms,” SIAM J. Computing, vol. 5, no. 4, pp. 743-
757, Dec. 1976.

[5] J.M. Kim, J. Choi, J. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S. Kim,
“A Low-Overhead, High-Performance Unified Buffer Manage-
ment Scheme that Exploits Sequential and Looping References,”
Proc. Fourth Symp. Operating System Design and Implementation
(OSDI ’00), pp. 119-134, Oct. 2000.

[6] J. Choi, S.H. Noh, S.L. Min, and Y. Cho, “An Implementation
Study of a Detection-Based Adaptive Block Replacement Scheme,”
Proc. 1999 Usenix Ann. Technical Conf., pp. 239-252, June 1999.

[7] C. Gniady, A.R. Butt, and Y.C. Hu, “Program-Counter-Based
Pattern Classification in Buffer Caching,” Proc. Sixth Symp.
Operating System Design and Implementation (OSDI ’04), pp. 395-
408, Dec. 2004.

[8] F. Zhou, R. von Behren, and E. Brewer, “AMP: Program Context
Specific Buffer Caching,” Proc. Usenix Technical Conf., Apr. 2005.

[9] J. Choi, S.H. Noh, S.L. Min, E.-Y. Ha, and Y. Cho, “Design,
Implementation, and Performance Evaluation of a Detection-
Based Adaptive Block Replacement Scheme,” IEEE Trans. Com-
puters, vol. 51, no. 7, pp. 793-800, July 2002.

[10] L.A. Belady, “A Study of Replacement Algorithms for a Virtual-
Storage Computer,” IBM Systems J., vol. 5, no. 2, pp. 78-101, 1966.

[11] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Systems J., vol. 9, no. 2,
pp. 78-117, 1970.

[12] E.J. O’Neil, P.E. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 297-306, 1993.

[13] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” Proc.
20th Int’l Conf. Very Large Data Bases (VLDB ’94), pp. 439-450, 1994.

[14] D. Lee, J. Choi, J.-H. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S.
Kim, “On the Existence of a Spectrum of Policies that Subsumes
the Least Recently Used (LRU) and Least Frequently Used (LFU)
Policies,” Proc. 1999 ACM SIGMETRICS Int’l Conf. Measurement
and Modeling of Computer Systems, pp. 134-143, 1999.

[15] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and
Effective Adaptive Page Replacement,” Proc. ACM SIGMETRICS
Int’l Conf. Measurement and Modeling of Computer Systems, pp. 122-
133, 1999.

ZHU AND JIANG: RACE: A ROBUST ADAPTIVE CACHING STRATEGY FOR BUFFER CACHE 15

Fig. 11. Impacts of sampling frequency on hit ratios.

[16] Y. Zhou, J. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” Proc. General Track:
2002 Usenix Ann. Technical Conf., pp. 91-104, 2001.

[17] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache
Performance,” Proc. ACM SIGMATRICS Int’l Conf. Measurement
and Modeling of Computer Systems, pp. 31-42, June 2002.

[18] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” Proc. Second Usenix Conf. File and
Storage Technologies (FAST ’03), pp. 115-130, Mar. 2003.

[19] D. Lee, J. Choi, J.-H. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S.
Kim, “LRFU: A Spectrum of Policies that Subsumes the Least
Recently Used and Least Frequently Used Policies,” IEEE Trans.
Computers, vol. 50, no. 12, pp. 1352-1361, Dec. 2001.

[20] J. Song and Z. Xiaodong, “Making LRU Friendly to Weak Locality
Workloads: A Novel Replacement Algorithm to Improve Buffer
Cache Performance,” IEEE Trans. Computers, vol. 54, no. 8, pp. 939-
952, Aug. 2005.

[21] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement,” Proc. 2005 Usenix Ann.
Technical Conf., Apr. 2005.

[22] N. Megiddo and D.S. Modha, “One Up on LRU,” ;login:—The
Magazine of the Usenix Assoc., vol. 4, no. 18, pp. 7-11, 2003.

[23] N. Megiddo and D.S. Modha, “One Up on LRU,” The Magazine of
the Usenix Assoc., vol. 4, no. 18, pp. 7-11, 2003.

[24] P. Cao, E.W. Felten, A.R. Karlin, and K. Li, “Implementation and
Performance of Integrated Application-Controlled File Caching,
Prefetching, and Disk Scheduling,” ACM Trans. Computer Systems,
vol. 14, no. 4, pp. 311-343, 1996.

[25] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and J.
Zelenka, “Informed Prefetching and Caching,” Proc. 15th ACM
Symp. Operating Systems Principles (SOSP ’95), pp. 79-95, 1995.

[26] A.D. Brown, T.C. Mowry, and O. Krieger, “Compiler-Based I/O
Prefetching for Out-of-Core Applications,” ACM Trans. Computer
Systems, vol. 19, no. 2, pp. 111-170, 2001.

[27] T.M. Madhyastha and D.A. Reed, “Learning to Classify Parallel
Input/Output Access Patterns,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 13, no. 8, pp. 802-813, Aug. 2002.

[28] G. Glass and P. Cao, “Adaptive Page Replacement Based on
Memory Reference Behavior,” Proc. ACM SIGMETRICS Int’l Conf.
Measurement and Modeling of Computer Systems, pp. 115-126, 1997.

[29] K. So and R.N. Rechtschaffen, “Cache Operations by MRU
Change,” IEEE Trans. Computers, vol. 37, no. 6, pp. 700-709, June
1988.

[30] R. Floyd, “Short-Term File Reference Patterns in a UNIX
Environment,” Technical Report TR-177, Computer Science Dept.,
Univ. of Rochester, Mar. 1986.

[31] C. Staelin, “High-Performance File System Design,” PhD disserta-
tion, Dept. of Computer Science, Princeton Univ., Oct. 1991.

[32] V. Cate and T. Gross, “Combining the Concepts of Compression
and Caching for a Two-Level File System,” Proc. Fourth Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’91), pp. 200-211, Apr. 1991.

[33] H. Tang and T. Yang, “An Efficient Data Location Protocol for
Self-Organizing Storage Clusters,” Proc. ACM/IEEE Conf. Super-
computing (SC ’03), Nov. 2003.

[34] P. Cao, E.W. Felten, and K. Li, “Application-Controlled File
Caching Policies,” Proc. Usenix Summer Technical Conf., pp. 171-
182, June 1994.

[35] A.R. Butt, C. Gniady, and Y.C. Hu, “The Performance Impact of
Kernel Prefetching on Buffer Cache Replacement Algorithms,”
Proc. ACM SIGMETRICS Int’l Conf. Measurements and Modeling of
Computer Systems, pp. 157-168, June 2005.

[36] J.L. Steffen, “Interactive Examination of a C Program with
Cscope,” Proc. Winter Usenix Technical Conf., Jan. 1985.

[37] U. Manber and S. Wu, “GLIMPSE: A Tool to Search through
Entire File Systems,” Proc. Winter Usenix Technical Conf., pp. 23-32,
1994.

[38] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman,
“Basic Local Alignment Search Tool,” J. Molecular Biology, vol. 215,
no. 3, pp. 403-410, http://dx.doi.org/10.1006/jmbi.1990.9999,
Oct. 1990.

[39] K.T. Pedretti, T.L. Casavant, R.C. Braun, T.E. Scheetz, C.L. Birkett,
and C.A. Roberts, “Three Complementary Approaches to Paralle-
lization of Local Blast Service on Workstation Clusters,” Proc. Fifth
Int’l Conf. Parallel Computing Technologies (PACT ’99), invited
paper, pp. 271-282, 1999.

[40] TPC, Transaction Processing Council, http://www.tpc.org, 2007.
[41] D. Thiebaut, H.S. Stone, and J.L. Wolf, “Improving Disk Cache

Hit-Ratios through Cache Partitioning,” IEEE Trans. Computers,
vol. 41, no. 6, pp. 665-676, June 1992.

[42] J.R. Spirn, Program Behavior: Models and Measurements. Elsevier
Science, 1977.

[43] C. Gniady, A.R. Butt, Y.C. Hu, and Y.-H. Lu, “Program Counter-
Based Prediction Techniques for Dynamic Power Management,”
IEEE Trans. Computers, vol. 55, no. 6, pp. 641-658, June 2006.

Yifeng Zhu received the BSc degree in elec-
trical engineering from Huazhong University of
Science and Technology, Wuhan, China, in
1998 and the MS and PhD degrees in computer
science from the University of Nebraska, Lin-
coln, in 2002 and 2005, respectively. He is an
assistant professor in the Electrical and Com-
puter Engineering Department at the University
of Maine. His main research interests are
parallel I/O storage systems, cluster computing,

grid computing, and computer architecture and systems. He is a
member of the ACM, the IEEE, the IEEE Computer Society, and the
Francis Crowe Society.

Hong Jiang received the BSc degree in
computer engineering from Huazhong University
of Science and Technology, Wuhan, China, in
1982, the MASc degree in computer engineering
from the University of Toronto, Canada, in 1987,
and the PhD degree in computer science from
Texas A&M University, College Station, in 1991.
Since August 1991, he has been with the
University of Nebraska, Lincoln, where he is
currently a professor and the vice chair of the

Department of Computer Science and Engineering. His current research
interests are computer architecture, computer storage systems and
parallel I/O, parallel/distributed computing, cluster and grid computing,
performance evaluation, real-time systems, middleware, and distributed
systems for distance education. He has more than 130 publications in
major journals and international conference proceedings in these areas.
His research has been supported by the US National Science
Foundation (NSF), US Department of Defense (DoD), and the State of
Nebraska. He is a member of the ACM, the IEEE, the IEEE Computer
Society, and ACM SIGARCH.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 1, JANUARY 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

