
An Energy-Oriented Evaluation of Buffer Cache
Algorithms Using Parallel I/O Workloads

Jianhui Yue, Student Member, IEEE, Yifeng Zhu, Member, IEEE, and Zhao Cai, Student Member, IEEE

Abstract—Power consumption is an important issue for cluster supercomputers as it directly affects running cost and cooling

requirements. This paper investigates the memory energy efficiency of high-end data servers used for supercomputers. Emerging

memory technologies allow memory devices to dynamically adjust their power states and enable free rides by overlapping multiple DMA

transfers from different I/O buses to the same memory device. To achieve maximum energy saving, the memory management on data

servers needs to judiciously utilize these energy-aware devices. As we explore different management schemes under five real-world

parallel I/O workloads, we find that the memory energy behavior is determined by a complex interaction among four important factors:

1) cache hit rates that may directly translate performance gain into energy saving, 2) cache populating schemes that perform buffer

allocation and affect access locality at the chip level, 3) request clustering that aims to temporally align memory transfers from different

buses into the same memory chips, and 4) access patterns in workloads that affect the first three factors.

Index Terms—Memory energy consumption, cache replacement algorithms, parallel I/O, cluster storage.

Ç

1 INTRODUCTION

AS the computing capacity increases rapidly in large-
scale cluster computing platforms, power management

becomes an increasingly important concern. For example,
the power density of Google clusters with low-tech
commodity PCs exceeds 700 W=ft2, while the typical
cooling capability in data servers lies between 70 and
120 W=ft2 [2], [3]. A large power consumption in a cluster
not only increases its running cost, but also raises its
components’ temperature through rapid heat dissipation,
accordingly reducing the reliability and increasing the
maintenance cost. The recent trend toward very-large-scale
clusters, with tens of thousands of nodes [4], will only
exacerbate the power consumption issue.

Scientific applications usually need to input and output
large amounts of data from secondary storage systems [5]. In
order to alleviate the I/O bottleneck, cluster supercomputers
usually use high-end storage servers with large capacity of
main memory. For example, the IBM Blue Gene at LLNL has
32 TB memory [6] and up to 2TB memory can be installed on
a single server [7]. Many previous studies [7], [8], [9] have
shown that main memory is one of major sources of power
consumption. The energy breakdown measured on a real
server shows that the memory energy consumption is
41 percent of the total and is 50 percent more than the
processors [9]. As the memory capacity continues to increase
rapidly in order to bridge the ever-widening gap between
disk and processor speeds, memory energy efficiency
becomes an increasingly important concern.

In storage servers, most memory space is used as buffer
cache. Accordingly, buffer cache management policies
heavily influence the overall memory energy efficiency. In
particular, under the same workload, different cache
placement and replacement algorithms often create sig-
nificantly different data physical layouts across all memory
chips involved. Data physical layouts, however, determine
not only access and utilization patterns of each individual
memory chip but also the opportunities for each chip to
save energy through emergent memory technologies such
as power-mode scheduling and multiplexing DMA access.

In this paper, we focus on the evaluation of the memory
efficiency of high-end data servers used for parallel
applications. We develop a detailed trace-driven memory
simulator and use five real-world parallel I/O workloads to
compare the relative energy efficiency of eight replacement
algorithms, including LRU, Belady, LIRS, ARC, 2Q, MQ,
LRFU, and LRU2. We demonstrate that the interplay among
cache performance, clustering capability, and cache popu-
lating schemes appears to be the most important factors in
improving memory energy efficiency. In particular, we
have the following conclusions:

. A cache replacement algorithm may directly trans-
late the performance gain in terms of cache hit rates
into energy saving. But, it may yet exhibit inferior
capability in clustering memory accesses to a
minimum number of memory chips and thus waste
energy unnecessarily. We show that a good trade off
can be achieved if a replacement algorithm can
accurately retain both short-term and long-term hot
blocks in the same chips.

. The strategies used to allocate buffers before the
cache is full, called cache populating schemes, also
affect memory energy efficiency. For all replacement
algorithms, sequential placement can potentially
consume less energy than random placement. This
is similar to the conclusion in [8], which advocates

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008 1

. The authors are with the Department of Electrical and Computer
Engineering, University of Maine, Barrows Hall 101, Orono, ME,
04469. E-mail: {jyue, zhu, zcai}@eece.maine.edu.

Manuscript received 1 Oct. 2007; revised 4 Apr. 2008; accepted 13 June 2008;
published online 20 June 2008.
Recommended for acceptance by I. Ahmad, K. Cameron, and R. Melhem.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2007-10-0345.
Digital Object Identifier no. 10.1109/TPDS.2008.109.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

sequential placement in virtual memory under
nonscientific workloads. In buffer cache, the energy
gain of sequential placement is particularly signifi-
cant for workloads with mainly sequential or large
looping patterns. However, the energy benefits of
sequential placement are little for workloads pre-
dominated by random accesses or small-looping
accesses.

The rest of this paper is organized as follows: Section 2
briefly describes the background, including power-aware
memory chips, DMA overlapping and buffer cache replace-
ment algorithms. Section 3 presents our evaluation meth-
odology and simulation results. Section 4 discusses prior
related work and Section 5 concludes the paper.

2 BACKGROUND

2.1 Cache Replacement Policies

The buffer cache performance is theoretically bounded by the
optimal Belady replacement algorithm [10] that replaces the
block whose next reference is farthest in the future. In real
systems, LRU algorithm or its variants have been widely
used. In the past two decades, many new algorithms have
been proposed to improve the performance of LRU. These
algorithms are described below.

LRU-K dynamically records theKth backward distance of
every block x, which is defined as the number of references
during the time period from the lastKth reference to x to the
most recent reference to x [11]. A block with the maximum
Kth backward distance is dropped to make space for missed
blocks. LRU-2 is found to best distinguish infrequently
accessed (cold) blocks from frequently accessed (hot) blocks.
The time complexity of LRU-2 is Oðlog2 nÞ, where n is the
number of blocks in the buffer.

2Q is proposed to perform similarly to LRU-K but with
considerably lower time complexity [12]. It achieves quick
removal of cold blocks from the buffer by using a FIFO
queue A1in, an LRU queue Am, and a “ghost” LRU queue
A1out that holds no block contents except block identifiers.
A missed block is initially placed in A1in. When a block is
evicted from A1in, this block’s identifier is added to A1out. If
a block in A1out or A1in is rereferenced, this block is
promoted to Am. The time complexity of 2Q is Oð1Þ.

LRFU endeavors to replace a block that is both least
recently and least frequently used [13]. A weight CðxÞ is
associated with every block x, and a block with the
minimum weight is replaced.

CðxÞ ¼ 1þ 2��CðxÞ if x is referenced at time t;
2��CðxÞ otherwise;

�
ð1Þ

where �, 0 � � � 1, is a tunable parameter and initially
CðxÞ ¼ 0. LRFU reduces to LRU when � ¼ 1 and to LFU
when � ¼ 0. By controlling �, LRFU represents a continuous
spectrum of replacement strategies that subsume LRU and
LFU. The time complexity of this algorithm ranges between
Oð1Þ and OðlognÞ, depending on the value of �.

MQ uses mþ 1 LRU queues (typically, m ¼ 8),
Q0; Q1; . . . ; Qm�1 and Qout, where Qi contains blocks that
have been referenced at least 2i times but no more than
2iþ1 times recently, and Qout contains the identifiers of

blocks evicted from Q0 in order to remember access
frequencies [14]. On a cache hit in Qi, the frequency of the
accessed block is incremented by 1, and this block is
promoted to the most recently used position of the next
level of queue if its frequency is equal to or larger than
2iþ1. MQ associates each block with a timer that is set to
currentTimeþ lifeTime. lifeTime is a tunable parameter
that is dependent upon the buffer size and workload. It
indicates the maximum amount of time a block can be
kept in each queue without any access. If the timer of the
head block in Qi expires, this block is demoted into Qi�1.
The time complexity of MQ is Oð1Þ.

LIRS uses the distance between the last and second-to-
the-last references to estimate the likelihood of the block
being rereferenced [15]. It categorizes a block with a large
distance as a cold block and a block with a small distance as
a hot block. A cold block is chosen to be replaced on a cache
miss. LIRS uses two LRU queues with variable sizes to
measure the distance and also provides a mechanism to
allow a cold block to compete with hot blocks if the access
pattern changes, and this cold block is frequently accessed
recently. The time complexity of LIRS is Oð1Þ. Clock-pro [16]
is an approximation of LIRS.

ARC uses two LRU lists L1 and L2 for a cache with a size
of c [17]. These two lists combinatorially contain c physical
pages and c identifiers of recently evicted pages. While all
blocks in L1 have been referenced only once recently, those
in L2 have been accessed at least twice. The cache space is
allocated to the L1 and L2 lists adaptively according to their
recent miss ratios. More cache space is allocated to a list if
there are more misses in this list. The time complexity of
ARC is Oð1Þ. CAR [18] is a variant of ARC based on clock
algorithms.

2.2 RDRAM Memory Chips

In the RDRAM technology, each memory chip can be
independently set to a proper state: active, nap, standby,
and powerdown. In the active state, a chip can perform
reading or writing and consumes full power. In the other
states, the chip powers off different components to conserve
energy. In these states, the chip cannot service any read/
write requests before it becomes active. The transition from
a lower power state to a higher one requires some time
delay. Note that RDRAM keeps refreshing all memory cells
in lower states, and thus, all data are still accessible after
switching to the active state. Table 1 summarizes the power

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

TABLE 1
Power States and Transition Delay of a RDRAM Chip

consumption rate of each state and the time delay needed to
transition among these states.

There are two classes of techniques to control the power
state of a memory chip: static and dynamic. Static
techniques always set a chip to a fixed low-power state.
The chip is transitioned back to full-power state only when
it needs to service a request. After the request is serviced,
the chip immediately goes back to the original state, unless
there is another request waiting. In contrast, dynamic
techniques change current power state to the next lower
power state only after being idle for a threshold amount of
time. The thresholds are dynamically adjusted according to
the variation of memory access workload. Since previous
studies have shown that dynamic techniques are more
energy efficient by avoiding unnecessary power-up and
power-down transitions [7], [8], this paper thus only focuses
on dynamic ones in energy evaluation.

2.3 DMA Overlapping

Direct Memory Access (DMA) has been widely used to
transfer data blocks between main memory and I/O devices
including disks and network. Fig. 1 gives an example disk-
network data path for two cache misses A and B, following
steps from 0 to 3. When a read request arrives through a
network interface (NIC), the server first performs data
address translation and then checks whether desired data
blocks are stored in the main-memory buffer cache. If they
are cached, the host processor on the storage server initiates
a network DMA operation to transfer the data out directly
from the main memory through NIC. If they are not, the
processor first performs a disk DMA transfer to copy the
data from disks to the main-memory buffer cache, and then,
the processor conducts a network DMA transfer to send the
data out. For write requests, the data paths are similar but
flow in the reverse direction.

On a storage server, recent DMA controllers such as Intel’s
chipset E8870 and E7500 [19] allow multiple DMA transfers
on different buses to access the same memory module
simultaneously in a time multiplexing fashion. Typically,
the peak transfer rate of a memory chip can be a multiple
factor of the bandwidth of the PCI bus. For example, the
transfer rate of most recent RDRAM chips [20] and DDR
SDRAM are up to 3.2 Gbytes/s and 2.1 Gbytes/s, respec-
tively, while a typical PCI-X bus only gives a maximum rate of

1.064 Gbytes/s, and the second-generation SATA disk DMA
throughput is only 300 Mbytes/s.

Multiplexing various slow disk and network I/Os to the
same memory chip can reduce the waste of active memory
cycles and hence save memory energy. Most DMAs move a
large amount of data, usually containing multiple 512-byte
disk sectors or 4-KBytes memory pages. Without multi-
plexing, a memory chip is periodically touched during a
DMA transfer, and such access period is too short to justify
the transition to a low-power mode [7]. As a result, significant
amount of active energy is wasted. However, when DMAs on
different I/O buses are coordinated to access the same
memory chip, such energy waste can be reduced. For
example, when the concurrent requests A and B in Fig. 1
are directed to the same memory chip, the DMA transfersA1,
and B1 can overlap with each other in time and accordingly
one of them takes a “free ride” and consumes zero energy,
without causing any performance penalty. Similarly,A2 and
B2 can also overlap with each other.

3 ENERGY EVALUATION

This section presents the energy evaluation of eight popular
buffer cache management algorithms through trace-driven
experiments in the light of new memory technologies.

In order to provide a fair comparison between these
algorithms, we assume that all buffer cache blocks are
physically allocated to a dedicated set of memory chip
devices to avoid the disturbances from other competing
nonfilesystem memory accesses. In fact, the experiments
based on an implementation in Linux presented in [21]
show that separation of the buffer cache from the system
memory actually improves the overall memory energy
efficiency. Similarly, the research on energy-aware virtual
memory management strongly recommends to allocate an
application’s pages into the same chips to minimize the
number of chips utilized [7]. In addition, this paper limits
our investigation scope only to the energy consumed by all
memory chips used for buffer caching and ignore other
hardware components, although energy scavenging for the
whole system is very important.

3.1 File System I/O Traces

Two sets of I/O traces are used in this study. The first set
includes scientific computing I/O trace [22], and the second
set includes commercial applications I/O traces [23]. All
traces consist of file system I/O calls made by applications
such as file operations of open, seek, read, write, and close.
Table 2 summarizes the statistics of these traces.

YUE ET AL.: AN ENERGY-ORIENTED EVALUATION OF BUFFER CACHE ALGORITHMS USING PARALLEL I/O WORKLOADS 3

Fig. 1. I/O path during cache read misses in a typical storage server.

TABLE 2
Summary of I/O Traces

3.1.1 Scientific Computing I/O Traces

Two sets of parallel I/O traces are used in this study.
The set of traces include three parallel scientific applica-

tions, ior2, m1, and f1 are collected from large super-
computer clusters with more than 800 dual-processor
nodes at the Lawrence Livermore National Laboratory
(LLNL) [22]. These traces are collected in a parallel file
system that runs on multiple data servers. The traces consist
of file system calls made by all client processes of a given
scientific application. In our experiments, we replay these
traces on a large RAID storage server. We faithfully preserve
system call numbers, call parameters, and their call order for
all client processes of a given scientific application. We
believe that this approach can effectively emulate a
hypothetical scenario that these application run on a
centralized storage system. A detailed description to these
scientific applications is given in [22]. The following
summarizes the trace characteristics.

ior2 is a parallel file system benchmark suite developed
at LLNL [24]. Based on typical data access patterns of
scientific parallel applications, this benchmark suite in-
cludes three separate benchmarks: ior2-fileproc, ior2-shared,
and ior2-stride. The traces of these benchmarks are collected
on a 512-node cluster. The ior2-fileproc benchmark assigns a
different output file for each node and has the best write
performance. It achieves 150,000 write requests per second,
resulting in an aggregate throughput of 9 Gbytes per
second. While ior2-fileproc uses a model of one file per node,
ior2-shared and ior2-stride takes the shared-region and
shared-stride data access models, respectively. All the
nodes simultaneously access a shared file sequentially in
ior2-shared and noncontiguously with a varying stride
between successive accesses in ior2-stride.

f1 is a large-scale physics simulation running on 343 nodes.
This application has two I/O-intensive phases: the restart
phase and the result-dump phase. In the first phase, data are
retrieved from a shared file independently by all involved
computing nodes. Thus, read operations dominate in this
phase. In the result-dump phase, a small set of nodes
periodically gather a large amount of simulated results from
the others and concurrently save collected results into a
shared file. This phase is dominated mostly by writes. The
corresponding traces collected are named as f1-restart and f1-
write. The f1 trace has representative I/O accesses pattern
existed in scientific applications: a master node periodically
collects and saves intermediate results generated by other
computation nodes [22].

m1 is an ever-larger physics simulation that runs on
1,620 nodes. This application uses an individual output file
for each node. Similar to the previous application, it also has
a restart phase and a result-dump phase. The correspond-
ing traces are referred to as m1-restart and m1-write.
Compared with f1, m1 has a similar yet different I/O
behavior. Similar to f1, m1 is also divided into two phases,
write and restart. Different from f1, all nodes write roughly
the same amount of data, and there are also significant
amounts of write requests in m1-restart.

BLAST [25] is one of the most widely used tools in
computational biology for a sequence similarity search.
Given a query sequence and a sequence database as inputs,

BLAST searches all entities in the database for those with
high-scoring gapped alignment to the given query, where
the deletion, insertion, and substitution are allowed in
sequence comparison, and the alignment scores are deter-
mined statistically and heuristically based on expert-
specified scoring matrix. In order to parallelize BLAST
program, the sequence database is divided into a number of
segments stored on different nodes. The parallel BLAST
(mpiBLAST) programs consist of master and a number of
workers [26]. Each worker excuses the NCBI blastall to
searches its local segment using the query assigned by the
master. The sequence database BLAST nt has 1.76 million
sequences stored at files with total size of 2.3 Gbytes. The
mpiBLAST trace was collected from eight workers search-
ing against eight nt database fragments and consists of
144 I/O accesses. These I/Os includes both small and large
reads with a few small writes. Eighty-nine percent opera-
tions were reads with data size ranging from 14 bytes to
220 Mbytes, and their average size was 31.29 Mbytes.
Eleven percent operations was writes, and the maximal and
minimal write size was 778 and 50 bytes, respectively, with
a mean of 690 bytes [27].

3.1.2 Commercial Applications I/O Traces

The traces of DB2 collected in an 8-node IBM DB2 Parallel
Edition database system [23]. These DB2 traces have a total
of 3.7 millions of I/O references and 229.28 Gbytes data
traffic. The total database size is 5.2 Gbytes, and it was
stored in 831 files. Since the traces were collected on old
machines in 1997, we choose to scale up the traces by
reducing the runtime with a factor of 1,000 in this study.

3.2 Simulation Framework

Our simulation framework is composed of three major
components: cache simulator, disk array simulator, and
memory simulator. Disksim [28], a well-validated disk
array simulator, is incorporated into our framework to
precisely emulate the timing of disk I/O traffic. These three
components interact with each other through three event
queues shown in Fig. 2. We use Disksim APIs with callback
functions to generate disk DMA requests. The memory
simulator and the cache simulator coordinates with each
other to determine the physical chip address for each block.
Before the cache is full, the memory simulator resolves the
chip address for each missed block based on the cache
populating schemes. The populating schemes are discussed

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 2. Event-driven simulation framework.

later in Section 3.6. After the buffer cache is full, the cache
simulator determines logically the victim block and the chip
address of the new block will simply be that of the victim
block. In addition, for each chip, the memory simulator
maintains the power state transitions based on a time-out
mechanism used in [8], and also, the DMA overlapping
operations are simulated under the help of the DMA
running queue. The total energy consumption, defined as
products between power consumption rates and time, is
increased during the simulation based on the power state
transitions of each chip.

It has been a great challenge for us to validate our
simulation framework. The main reason is that it is very
difficult to accurately measure the memory energy con-
sumption [29]. First of all, the trace collector’s memory
accesses cannot be easily separated out physically, thus
generating significant measurement errors. Second, due to
the complexities of memory accesses, it is almost impossible
to manually validate the energy for a small memory access
stream. As a result, to our best knowledge, there is no
validation for all memory energy simulators expect IBM’s
proprietary memory simulator [30], which is validated
against a proprietary RTL simulator containing 1.5-million
lines of VHDL codes developed at IBM. To overcome these
challenges, Lee et al. [21] use the product of memory access
time duration and the requested data size to approximate
the real energy consumption. However, this approach
cannot be used in our study since it ignores the energy
saved through DMA overlapping.

3.3 Simulation Environment

We have developed a detailed trace-driven simulator that
can accurately emulate network DMA and disk DMA
operations and report the energy consumption of memory
chips. In storage servers, both DMAs are heavily involved.
Through disk DMAs, data missed in the cache or dirty
blocks are exchanged between memory chips and disk
drives. Through network DMAs, the requested data are sent
to clients from the memory through NICs. With new
technology introduced, multiple DMAs on different buses
can simultaneously access the same chip in a multiplexing
way. The simulated data sever is configured with six
network adaptors and 12 disks. Each device has its
own independent DMA channel with a bandwidth of
200 Mbytes/s Disksim [28], a well validated disk array
simulator, is incorporated into our simulator to precisely
emulate the timing of disk I/O traffic.

The simulator adapts the RDRAM memory chips, whose
parameters are given in Table 1. Each chip capacity is
32 Mbytes and can support up to 16 concurrent DMA
operations (3.2 Gbytes/s). The simulator models the chip’s
power state transition, the DMA operation contention and
queuing processes. The time-out thresholds for powerdown,
nap, and standby are based on the breakeven time given in [8].
While the simulation results reported in this paper are based
on RDRAM memory systems, our simulator is also applicable
to DDR SDRAM technologies, where we can treat entire DDR
modules as we do single RDRAM chips.

We simulate the traces by replaying all I/O events at
predetermined times specified in the traces, independent of
the performance of memory hierarchy. This approach is
used mainly because all traces that we have access to do not

record the dependence among request completion and

subsequent I/O arrivals. Such dependence exists at both

inter- and intraprocess levels. However, the dependence at

the interprocess level does not widely exist in many

scientific and database workloads. For parallel scientific

applications, Purakayastha et al. [31] conclude that files,

particularly write-only files, are often not shared between

jobs, and Pasquale and Polyzos [32] shows that application

codes are highly structured and often utilize carefully

formatted data sets without overlap. Similarly, in parallel

database applications, I/O requests issued from indepen-

dent processes running on different machines [23] are also

likely be independent. The dependence at the intraprocess

level cannot be easily extracted from a system and recorded

in the traces [33]. The traces used in this paper do not

provide I/O dependence information, and our simulations

fail to preserve I/O dependence, which is one of the

limitations of this study.

3.4 Energy Comparisons under Sequential
Placement

From the operating systems’ point of view, the energy

consumption of buffer cache is mainly influenced by the

following three factors:

1. How does the buffer cache get populated with
blocks? There are two well-known policies, includ-
ing sequential first-touch policy and random place-
ment. The former allocates buffers in the order they
are accessed, filling an entire RDRAM chip before
moving on to the next one. The latter is to allocate
buffers randomly with respect to chip selection. The
buffer cache management module in most operating
systems uses random placement to populate the
cache, without considering which chips the re-
quested buffers are physically located.

2. How well does the cache algorithm capture
temporal locality? A higher hit rate helps reduce
the total number of memory accesses made by
disks. Such performance gain often translates into
lower power consumption by reducing runtime.

3. What is the cache algorithm’s efficiency in clustering
memory accesses to a minimum number of active
chips? Clustering memory access to a small set of
chips helps save energy from two aspects. Not only
does it decrease the average number of memory
chips that are simultaneously active during the
runtime, but also increase the level of concurrency
between multiple DMA transfers from different I/O
buses to the same memory chip.

In this section, we assume that the buffer cache is initially

populated by using the sequential first-touch policy since this

approach has the best energy efficiencies. We discuss the

impact of populating policies in the following section. Hence,

we only focus on the study of the first two factors in this

section. For the convenience of comparisons, all energy

measurements and the completion time are rated to their

corresponding values of the buffer cache configuration that

has the least cache size and is managed by the Belady

algorithm.

YUE ET AL.: AN ENERGY-ORIENTED EVALUATION OF BUFFER CACHE ALGORITHMS USING PARALLEL I/O WORKLOADS 5

3.4.1 Parallel Database Applications DB2

The experimental results of DB2 are presented in Fig. 3. The
energy measurements in Fig. 3d are normalized to the
energy consumed in a 2-Gbytes cache that is managed by
Belady. Similarly, the runtimes in Fig. 3c are normalized to
the runtime of a 2-Gbytes cache that is managed by Belady.
The percentage of energy saving by DMA overlapping, as
shown in Fig. 3e, is defined as the ratio of energy saved
through DMA overlapping to the total energy consumed
when DMA overlapping is disabled. Fig. 3f presents the
cumulative distribution function (CDF) of requests among
chips. A point ðx; yÞ in the cumulative distribution curve
indicates that x memory chips service y percent of the total
memory DMA transfers.

We observe that in DB2, the cache algorithms can
directly translate performance gain into energy saving.

The DB2 trace, as shown in Fig. 3a, have a combination of
large sequential and looping accesses. Figs. 3b and 3d show
that the memory energy is mainly determined by cache hit
rates. For all cache sizes, the energy consumptions of
different algorithms are almost inversely proportional to
their hit rates. Under the same cache size, a higher hit rate
leads to a shorter runtime and a smaller energy consump-
tion. For example, the Belady has 24.3 percent higher hit
rates than 2Q on the average, resulting in an average of
24.5 percent energy saving. In addition, all overlapping
benefits decrease nearly proportionally as the memory size
increases (see Fig. 3e). Intuitively, as there exist more
memory chips in systems, memory transfers have less
chances to overlap due to reduced utilization on each chip.
Furthermore, the percentages of energy saving by DMA
overlapping exhibits no significant differences among

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 3. Comparison of replacement algorithms in workload DB2. (a) DB2 trace (sampling period: 1,000). (b) Hit rate. (c) Runtime. (d) Energy

consumption. (e) Percentage of energy saving by DMA overlap. (f) CDF of requests among banks (Cache size: 6 Gbytes).

different replacement algorithms, which indicates that the
effect of overlapping in all algorithms are almost identical.
This explains why only cache performance determines the
memory energy efficiency in this workload.

3.4.2 Parallel I/O Benchmark ior2

The parallel I/O benchmark ior2 [24] aims to emulate the
I/O behaviors of data-intensive scientific applications. The
ior2-shared benchmark used in this study has both
sequential accesses and random accesses (see Fig. 4a).
The random access pattern is created by 512 interleaved
parallel I/O streams. The following observations are made
under workload ior2.

First, LIRS is more energy efficient than Belady. For
example, when the cache size is 1 Gbyte, the active energy

of LISR, MQ, and 2Q is only 43 percent, 55 percent, and
55 percent of Belady’s active energy, respectively. This can
explain why Belady consumes more energy even though it
has a shorter runtime. When the cache size is larger than
8 Gbytes, the total energy consumption of all algorithms,
except LIRS and arc, starts to decrease due to reduced
runtimes. When the cache size reaches 16 Gbytes, slightly
exceeding the working set of ior2, all algorithms converge to
the same values since no cache replacement occurs.

Second, the energy efficiency of 2Q and MQ is due to
their better capability of I/O clustering. Both algorithms are
more likely to retain long-term hot data blocks in the same
cache chips. Fig. 4f plots the cumulative distribution curve
when the cache size is 4 Gbytes. It shows that a single chip
absorbs 51 percent and 43 percent data accesses in 2Q and

YUE ET AL.: AN ENERGY-ORIENTED EVALUATION OF BUFFER CACHE ALGORITHMS USING PARALLEL I/O WORKLOADS 7

Fig. 4. Comparison of replacement algorithms in workload ior2. (a) ior2 trace (sampling period: 1,000). (b) Hit rate. (c) Runtime. (d) Energy

consumption. (e) Percentage of energy saving by DMA overlap. (f) CDF of requests among banks (Cache size: 4 Gbytes).

MQ, respectively. That is mainly because 2Q and MQ

usually do not evict out hot blocks, and accordingly, these

hot blocks are never moved among different chips. Both

algorithms use several separate queues to store blocks with

different temporal locality. They filter out blocks with high

access frequency and promote them to separate queue(s).

During a cache miss, the blocks in these queues typically

have a higher priority of staying in the cache.

3.4.3 Large-Scale Physics Simulations f1 and m1

One important observation in f1 is that these replacement
algorithms have different energy efficiency even if they
have nearly the same hit rates. For example, at the cache
size of 128 M, the energy difference among all algorithms,
except for Belady, is up to 16.2 percent, while their

corresponding hit rates and runtimes differ by only up to
1 percent and 5 percent, respectively. Specifically, the
energy consumption of 2Q and MQ are smaller than LRFU
by 16.2 percent and 13.5 percent, respectively. These results
show that these algorithms inherently have different effects
on temporally aligning memory transfers.

In particular, we find that 2Q and MQ provide better
opportunities for temporally aligning memory transfers into
the same set of chips. For example, when the cache size is
128 Mbytes, one single chip in 2Q and MQ services
62.6 percent of DMA memory transfers, while a chip in the
other algorithms only attracts up to 20 percent (see Fig 5f).
Such heavily skewed utilization creates larger chances for
2Q and MQ to save energy. As a result, the percentage of
energy saving by access overlapping of 2Q and MQ achieves
13 percent and 10 percent, respectively (see Fig. 5e).

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 5. Comparison of replacement algorithms in workload f1. (a) f1 trace (sampling period: 1,000). (b) Hit rate. (c) Runtime. (d) Energy consumption.

(e) Percentage of energy saving by DMA overlap. (f) CDF of requests among banks (cache size: 128 Mbytes).

The m1 trace exhibits predominantly periodical accesses,
as shown in Fig. 6a. In this application, the energy efficiency
is mainly determined by the cache performance in terms of
cache hit rates. In fact, the total energy consumptions, under
different cache sizes as shown in Fig. 6d, is almost inversely
proportional to the cache hit rates presented in Fig. 6b. A
gain in cache hit rates leads to a decrease of the runtime, as
well as the number of memory DMA transfers. Accord-
ingly, this performance gain is directly translated into lower
power consumption.

It is interesting to observe that LIRS saves slightly more
energy than Belady that has optimal hit rates. This
observation is an exception to the conclusion made above.
Fig. 6f indicates LIRS clusters 66 percent of memory
accesses within four memory chips, while Belady distributes

all accesses almost evenly across all memory chips. Such a
scattered distribution in Belady causes an unnecessary
amount of memory chips to stay in the active state
simultaneously and reduces the opportunity of energy
saving through access overlapping.

3.4.4 Parallel Bioinformatics Application mpiBLAST

Under the mpiBLAST workload, LIRS has lower hit rates but
surprisingly is the most energy efficient under most cache
size configurations. A further analysis shows that LIRS
successfully clusters memory accesses to the same chips
and achieves more energy saving through DMA overlapping.
The mpiBLAST trace, as shown in Fig. 7a, is dominated by
eight large sequential and looping accesses, and this pattern
repeats two times. Fig. 7b classifies these cache algorithms

YUE ET AL.: AN ENERGY-ORIENTED EVALUATION OF BUFFER CACHE ALGORITHMS USING PARALLEL I/O WORKLOADS 9

Fig. 6. Comparison of replacement algorithms in workload m1. (a) m1 trace (sampling period: 1,000). (b) Hit rate. (c) Runtime. (d) Energy

consumption. (e) Percentage of energy saving by DMA overlap. (f) CDF of requests among banks (cache size: 30 Gbytes).

into the following three groups: the first group has Belady, the
second group has LIRS, and the remaining algorithms belong
to the third group. Fig. 7d shows that the memory energy is
mainly determined by cache hit rates. For all cache sizes, the
energy consumptions of different algorithms are almost
inversely proportional to their hit rates. Under the same cache
size, a higher hit rate leads to a smaller energy consumption.
For example, the Belady has 12.29 percent higher hit rates than
LRU on the average, resulting in an average of 7.95 percent
energy saving. In addition, all overlapping benefits decrease
nearly proportionally as the memory size increases (see
Fig. 7e). Intuitively, as there exist more memory chips in
systems, memory transfers have less chance to overlap due to
reduced utilization on each chip. Accordingly, they converge
after cache size reaches 2.25 Gbytes. It is also noticed that the
percentage of energy saving by DMA overlapping remains as

75.5 percent when the cache size exceeds 2.25 Gbytes. This is
because the mpiBLAST I/Os are very bursty and include 16
large read operations with an average request size of
approximately 200 Mbytes. Such large I/O operations create
more chances for I/O overlapping, especially when disk
DMA are not involved. Furthermore, the percentage of
energy saving by DMA overlapping exhibits no significant
differences among different replacement algorithms, which
indicates that the effect of overlapping in all algorithms are
almost identical. This explains why only cache performance
determines the memory energy efficiency in this workload.

3.5 Comparison of Clustering Capabilities

In the previous discussion, we have found that the ability of
a given algorithm in clustering hot blocks into the same
chips may affect significantly the total memory energy

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 7. Comparison of replacement algorithms in workload mpiBLAST. (a) mpiBLAST trace (sampling period: 1,000). (b) Hit rate. (c) Runtime.

(d) Energy consumption. (e) Percentage of energy saving by DMA overlap. (f) CDF of requests among banks (cache size: 0.75 Gbytes).

consumption. Specifically, there is a strong correlation
between CDF curves and total energy. We use 2Q and
LRU in f1 with a cache size of four memory chips as an
example to illustrate this correlation. The reason why this
specific example is used is simply that the power
consumption rates of each chip, given in Fig. 8, is easy to
read in this case. As shown in Figs. 8 and 5f, the busiest chip
that serves approximately 60 percent requests in 2Q
consumes 38.7 percent much more energy than the busiest
chip that serves roughly 25 percent requests in LRU.
Additionally, the other three chips serve approximately
the same amount of accesses and interestingly their energy
consumptions are almost the same too. The main reason for
such correlations is that CDF curves not only indicate
workload spatial distributions across all memory chips but
also imply temporal access locality at the chip level. This
motivates us to study CDFs and compare the clustering
capabilities of these algorithms.

To measure the clustering ability of a given cache
replacement algorithm, we adopt a concept called skew-
ness, defined as the percentage of requests served by the
memory that serve the most amount of requests among all
chip utilized. In fact, the skewness is simply the percentage
of requests served by the first chip in a given CDF curve.

Before discussion, let us first look at the differences
between 2Q and LIRS. In order to keep hot blocks longer in
the cache and evict cold blocks quickly, both algorithms use
ghost caches. In 2Q, the ghost cache is A1out, while the ghost
cache is nonresident HIR entries in LIRS. However, the ghost
cache size in 2Q is typically half of the physical block entries,
but LIRS’s ghost cache varies with workloads and can be
much larger than 2Q. The larger size of ghost cache can
potentially help reduce inaccuracy in capturing hot blocks
and accordingly result in positive effects on the performance.
The second important difference between 2Q and LIRS is the
size of cache holding cold blocks. 2Q uses 25 percent while
LIRS uses only 1 percent. The third difference is that 2Q’sA1in
can filter short-term hot blocks.

The skewness of 2Q and LIRS are 62.6 percent and
25 percent, respectively, in workload f1, and 67.5 percent
and 25 percent, respectively, in workload DB2. Under both
workloads, LIRS has a similar CDF to the others except 2Q.
DB2 is dominated by large sequential accesses followed by

multiple loops (see Fig. 3a). These loops contain time-
varying hot blocks, and they are mostly short term. LIRS
does not distinguish short-term hot blocks from long-term
ones and retains them all in the cache. When old short-term
hot blocks are evicted out and then new short-term hot
blocks are moved in, the memory layout is more likely to be
disturbed, which causes hot blocks to occupy more chips.
This explains why 2Q has a larger skewness than LIRS in
DB2. For the same reason, the large sequential and many
short-term hot blocks access patterns in f1 (see Fig. 5a) make
LIRS have a weaker capability in retaining long-term hot
blocks than 2Q.

Under workload ior2, the LIRS’s ability of clustering hot
blocks is again inferior to 2Q. The ior2 workload is
dominated by a large sequential access and many random
accesses whose hot blocks change with time. Under such
workload, especially at the random access phase, 2Q’s A1in
can prevent short-term hot blocks from being placed in the
longer term hot block queue Am. Hence, 2Q can capture
longer term hot blocks in the cache and achieve better
clustering capability.

However, under workload m1, the LIRS CDF is superior
to 2Q (see Fig. 6f). The m1 shows both large and small
looping accesses with different looping periods. Since
typically LIRS can provide more space to hold hot data
than 2Q, LIRS can better identify hot blocks and, thus,
avoids unnecessary paging-out and paging-in to hot blocks.
Additionally, LIRS has a larger ghost cache that also helps
accurately identify hot blocks. These two advantages over
2Q result in better clustering effects.

Under workload mpiBLAST, the hit rate of LIRS is
6.4 percent lower than BELADY on the average, while the
LIRS energy is 5 percent smaller than BELADY on the
average. This demonstrates that the factors rather than hit
rate can significantly affect memory energy consumption.
Fig. 7f shows that the first five chips can serve 46 percent
accesses in LIRS, while the first five chips can serve only
31.5 percent accesses in BELADY. Hence, the LIRS CDF
curve is above the BELADY. This concludes that LIRS has
stronger capability to cluster hot data to a smaller set chips
than BELADY under this workload. In addition, the CDF
curves of MQ and 2Q are also above BELADY shown in
Fig. 7f. However, their superior clustering ability is offset by
their lower hit rates, resulting in more energy consumptions
than BELADY.

From the above discussions, we conclude that LIRS can
better capture hot blocks both in short term and long term,
and thus, it typically has superior cache hit ratios than MQ
and 2Q. On the other hand, MQ and 2Q only retain well
long-term hot blocks. Thus, in MQ and 2Q, these long-term
hot blocks may avoid some unnecessary memory paging,
and these hot blocks stay in the same chips. As a result, MQ
and 2Q can better align memory accesses to the same chips
even though they may be inferior in hit rates.

3.6 Sequential Placement versus Random
Placement

This section examines the benefits of two buffer cache
populating strategies: sequential placement and random
placement. While the former allocates buffers in the order
they are accessed, filling an entire chip before moving to the

YUE ET AL.: AN ENERGY-ORIENTED EVALUATION OF BUFFER CACHE ALGORITHMS USING PARALLEL I/O WORKLOADS 11

Fig. 8. Power consumption rate of memory chips under workload f1

(cache size ¼ 128 Mbytes).

next, the latter randomly selects a chip to allocate buffers. We
normalize the energy consumption of sequential placement
normalized to random placement under the same cache size
and replacement algorithm. The energy of random placement
is averaged over three repeated experiments.

We conclude that sequential placement is more energy
efficient than random placement in all parallel I/O traces
studied. As shown in Fig. 9, the average normalized energy
across different cache sizes for Belady, ARC, LRU, LIRS, LRFU,
MQ, LRU2, and 2Q is 29.0 percent, 31.5 percent, 31.4 percent,
29.6 percent, 30.7 percent, 25.2 percent, 31 percent, and
23.3 percent, respectively. The average saving across all
algorithms is 28.96 percent. Our observation is consistent
with the conclusion made in the literature on conventional
non-file-I/O workloads. For example, Lebeck et al. [8] report
that sequential placement achieves 12 percent to 30 percent
energy saving. Currently, operating systems widely used in
HPC, such as BSD variants, Solaris, and Linux, allocate
memory frames, especially buffer and page caches, with little
considerations of chip selection. Consequently, contiguous
memory regions often become fragmented. Our experimental
results build a compelling reason for HPC designers to
incorporate energy-aware data placement into the buffer
cache management unit.

Another interesting observation is that sequential place-
ment benefits energy-efficiency more significantly in work-
loads dominated with sequential access or large looping
patterns. In m1 that is dominated with small local looping
accesses, the average energy saving of all algorithms is only
7 percent. However, in f1 with long sequential accesses and
mpiBLAST with large accesses, the average saving achieves
27.4 percent and 65.7 percent, respectively. mpiBLAST has
large I/O requests, with an average of 220 Mbytes. Such
workload with large requests greatly favors for sequential
placement due to fact that large I/Os generate a large
sequential cache area victimized for new I/Os in the
sequential placement. Since the parallel I/O patterns can
often be characterized as large, striping, and concurrent
accesses [27], we conjecture that sequential placement
under in HPC systems would present a larger energy
benefit than it would in conventional systems.

4 RELATED WORK

Until recently, power consumption was an issue primarily
in embedded or portable computer systems. However,

energy efficiency is becoming an increasingly important
concern in the high-performance computing (HPC) com-
munity. References [34], [35], [36], [37], and [38] aim to
reduce the CPU energy consumption in a cluster environ-
ment by using dynamic voltage scaling to slow down the
CPU speed. Lawson and Smirni [39] propose an energy-
saving scheme that dynamically adjusts the number of
processors in a parallel system that operates in “sleep”
mode. There are also studies in optimizing disk energy
efficiency for scientific applications [40].

On individual servers, many research studies have been
conducted to save memory energy. It is proposed in [41],
[42], [43], and [44] to adaptively control the memory power
states, instead of relying on simple threshold mechanisms.
It is proposed in [6], [7], [8], and [45] to save energy in
memory management by judiciously allocating or migrat-
ing memory pages to cluster an application’s pages into a
minimal number of chips. Li et al. [46] and Cai and Lu [47]
aims to optimize the overall energy efficiency of both
memory chips and disk drives. While almost all the
research work mentioned above is designed for virtual
memory, very little research work has been done for buffer
cache. Pandey et al. [7] propose two schemes to save energy
in data servers: temporally aligning DAM transfers to the
same memory chips through buffering and migrating data
among chips to minimize the number of active chips. Zhu
and Zhou [48] propose a new buffer cache replacement
algorithm to reduce the disk energy consumption.

5 CONCLUSION

We have developed a detailed trace-driven simulator that
emulates the behavior of different cache management
schemes. This simulator allows us to quantify the energy
impact of eight different cache replacement algorithms
including ARC, Belady, LRU, LIRS, LRFU, MQ, LRU2, and
2Q. Under the same workload, the interplay among the
following three important factors appears to be the most
important: the cache performance in terms of hit rates, the
cache’s ability to temporally align memory accesses to the
same chips, and the cache populating schemes to allocate
buffers. In particular, when the total size of hot blocks is
smaller than the size of the cache partition holding hot blocks,
2Q can save more energy than LIRS. Otherwise, LIRS is more
energy efficient than 2Q. In large-looping access workloads, a
gain in cache rates can be directly translated into better energy
efficiency. However, this observation cannot to be applied
generically to workloads with more complex access patterns.
Additionally, sequential placement can potentially save more
energy than random placement in all replacement algo-
rithms, especially under the large size I/O operations.
However, such energy benefit diminishes for workloads
with mainly random accesses and small-looping accesses. By
quantifying and, thus, prioritizing the many factors that may
impact the overall energy consumption, we see this study as a
first step toward modifying existing replacement algorithms
or designing a new one that can optimize the energy saving by
striking the optimal trade-off among the important factors.
This study also allows us to better understand the perfor-
mance and energy efficiency of these cache replacement
algorithms under parallel I/O workloads.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 9. Average energy consumption ratios of sequential placement to

random placement under the same configuration.

Limitations and future work. We have had great
challenges in validating our simulators due to the lack of
customized hardware for memory energy measurements. In
our study, our study is limited to buffer cache memory only
and ignore all other components. The I/O traces also
impose two limitations: all memory-mapped I/O accesses
were not collected in the traces, and the dependence
between I/O accesses was not recorded in the trace, and
thus, our simulator could not faithfully emulate such
dependence. Our future work focus on addressing these
limitations, studying the impacts of page migrations, and
developing analytical energy models and new power-aware
buffer cache replacement algorithms.

ACKNOWLEDGMENTS

This work is partially supported by a UMaine Startup

Grant, US National Science Foundation (NSF) Grants (CCF

0621493, 0754951, CNS 0723093, and DRL 0737583), a NASA

Maine Space Grant, and an equipment grant from SUN.

This paper is extended from a conference publication [1].

REFERENCES

[1] J. Yue, Y. Zhu, and C. Zhao, “Evaluating Memory Energy
Efficiency in Parallel I/O Workloads,” Proc. IEEE Int’l Conf.
Cluster Computing (Cluster ’07), pp. 21-30, Best Paper Award,
Sept. 2007.

[2] L.A. Barroso, J. Dean, and U. Holzle, “Web Search for a Planet:
The Google Cluster Architecture,” IEEE Micro, vol. 23, no. 2,
pp. 22-28, 2003.

[3] B. Moore, “Take the Data Center Power and Cooling Challenge,”
Energy User News, Aug. 2002.

[4] H. Meuer, E. Strohmaier, J. Dongarra, and H.D. Simon, Top 500
Supercomputers, http://www.top500.org, 2005.

[5] Y. Zhu and H. Jiang, “CEFT: A Cost-Effective, Fault-Tolerant
Parallel Virtual File System,” J. Parallel and Distributed Computing,
vol. 66, no. 2, pp. 291-306, 2006.

[6] M.E. Tolentino, J. Turner, and K.W. Cameron, “An Implementa-
tion of Page Allocation Shaping for Energy Efficiency,” Proc. Third
Workshop High-Performance, Power-Aware Computing (HP-PAC ’07),
Apr. 2007.

[7] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “DMA-Aware
Memory Energy Management for Data Servers,” Proc. 10th Int’l
Symp. High-Performance Computer Architecture (HPCA), 2006.

[8] A.R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power Aware Page
Allocation,” Proc. Ninth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’00),
pp. 105-116, 2000.

[9] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T.W. Keller, “Energy Management for Commercial Servers,”
Computer, vol. 36, no. 12, pp. 39-48, 2003.

[10] L.A. Belady, “A Study of Replacement Algorithms for a Virtual-
Storage Computer,” IBM Systems J., vol. 5, no. 2, pp. 78-101, 1966.

[11] E.J. O’Neil, P.E. O’Neil, and G. Weikum, “The Lru-K Page
Replacement Algorithm for Database Disk Buffering,” Proc. ACM
SIGMOD ’93, pp. 297-306, 1993.

[12] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” Proc.
20th Int’l Conf. Very Large Data Bases (VLDB ’94), pp. 439-450,
1994.

[13] D. Lee, J. Choi, J.-H. Kim, S.H. Noh, S.L. Min, Y. Cho, and C.S. Kim,
“On the Existence of a Spectrum of Policies That Subsumes the
Least Recently Used (LRU) and Least Frequently Used (LFU)
Policies,” Proc. ACM Sigmetrics ’99, pp. 134-143, 1999.

[14] Y. Zhou, J. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” Proc. General Track:
Usenix Ann. Technical Conf., pp. 91-104, 2001.

[15] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference
Recency Set Replacement Policy to Improve Buffer Cache
Performance,” Proc. ACM Sigmetrics ’02, pp. 31-42, June 2002.

[16] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An Effective
Improvement of the CLOCK Replacement,” Proc. Usenix Ann.
Technical Conf., Apr. 2005.

[17] N. Megiddo and D.S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” Proc. Second Usenix Conf. File and
Storage Technologies (FAST ’03), pp. 115-130, Mar. 2003.

[18] S. Bansal and D.S. Modha, CAR: Clock with Adaptive Replacement,
pp. 187-200, Mar. 2004.

[19] Intel, Server and Workstation Chipsets, http://www.intel.com/
products/server/chipsets/, 2008.

[20] R. Inc., Rambus Memory Chips, http://www.rambus.com, 2008.
[21] M. Lee, E. Seo, J. Lee, and J. Kim, “PABC: Power-Aware Buffer

Cache Management for Low Power Consumption,” IEEE Trans.
Computers, vol. 56, no. 4, 2007.

[22] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E. Long,
and T.T. McLarty, “File System Workload Analysis for Large
Scale Scientific Computing Applications,” Proc. 20th IEEE/11th
NASA Goddard Conf. Mass Storage Systems and Technologies
(MSST ’04), http://ssrc.cse.ucsc.edu/Papers/wang-mss04.pdf,
Apr. 2004.

[23] M. Uysal, A. Acharya, and J. Saltz, “Requirements of I/O Systems
for Parallel Machines: An Application-Driven Study,” technical
report, 1997.

[24] R. Hedges, B. Loewe, T. McLarty, and C. Morrone, “Parallel File
System Testing for the Lunatic Fringe: The Care and Feeding of
Restless I/O Power Users,” Proc. 22nd IEEE / 13th NASA Goddard
Conf. Mass Storage Systems and Technologies (MSST ’05), pp. 3-17,
2005.

[25] National Center for Biotechnology Information (NCBI), N. L. of
Medicine and N. I. of Health, ftp://ftp.ncbi.nih.gov/, 2005.

[26] A.E. Darling, L. Carey, and W. chun Feng, “The Design,
Implementation, and Evaluation of mpiBLAST,” Proc. Cluster
World Conf. and Expo, June 2003.

[27] Y. Zhu, H. Jiang, X. Qin, and D. Swanson, “A Case Study of
Parallel I/O for Biological Sequence Analysis on Linux Clusters,”
Proc. IEEE Int’l Conf. Cluster Computing (Cluster ’03), pp. 308-315,
Dec. 2003.

[28] J.S. Bucy, G.R. Ganger et al., The Disksim Simulation Environment
Version 3.0 Reference Manual, http://www.pdl.cmu.edu/DiskSim,
2008.

[29] F. Rawson, “Mempower: A Simple Memory Power Analysis
Tool Set,” technical report, http://www.research.ibm.com/arl/
publications/papers, 2004.

[30] I. Hur, “Enhancing Memory Controllers to Improve Dram Power
and Performance,” PhD dissertation, Univ. of Texas at Austin,
http://www.cs.utexas.edu/~lin/papers/ibrahim.pdf, 2006.

[31] A. Purakayastha, C.S. Ellis, D. Kotz, N. Nieuwejaar, and M. Best,
“Characterizing Parallel File-Access Patterns on a Large-Scale
Multiprocessor,” Proc. Ninth Int’l Parallel Processing Symp.
(IPPS ’95), pp. 165-172, 1995.

[32] B.K. Pasquale and G.C. Polyzos, “Dynamic I/O Characterization
of I/O Intensive Scientific Applications,” Proc. Conf. Supercomput-
ing (Supercomputing ’94), pp. 660-669, 1994.

[33] W.W. Hsu and A.J. Smith, “The Performance Impact of I/O
Optimizations and Disk Improvements,” IBM J. Research and
Development, vol. 48, no. 2, pp. 255-289, 2004.

[34] C. hsing Hsu and W. chun Feng, “A Power-Aware Run-Time
System for High-Performance Computing,” Proc. ACM/IEEE Conf.
Supercomputing (SC ’05), p. 1, 2005.

[35] E. Pinheiro, R. Bianchini, E.V. Carrera, and T. Heath, “Load
Balancing and Unbalancing for Power and Performance in
Cluster-Based Systems,” Proc. Workshop Compilers and Operating
Systems for Low Power (COLP ’01), http://research.ac.upc.es/
pact01/colp/paper04.pdf, Sept. 2001.

[36] V.W. Freeh and D.K. Lowenthal, “Using Multiple Energy Gears in
Mpi Programs on a Power-Scalable Cluster,” Proc. 10th ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPoPP ’05), pp. 164-173, 2005.

[37] N. Kappiah, V.W. Freeh, and D.K. Lowenthal, “Just in Time
Dynamic Voltage Scaling: Exploiting Inter-Node Slack to Save
Energy in Mpi Programs,” Proc. ACM/IEEE Conf. Supercomputing
(SC ’05), p. 33, 2005.

[38] R. Ge, X. Feng, and K.W. Cameron, “Performance-Constrained
Distributed DVS Scheduling for Scientific Applications on Power-
Aware Clusters,” Proc. ACM/IEEE Conf. Supercomputing (SC ’05),
p. 34, 2005.

YUE ET AL.: AN ENERGY-ORIENTED EVALUATION OF BUFFER CACHE ALGORITHMS USING PARALLEL I/O WORKLOADS 13

[39] B. Lawson and E. Smirni, “Power-Aware Resource Allocation in
High-End Systems via Online Simulation,” Proc. 19th Ann. Int’l
Conf. Supercomputing (ICS ’05), pp. 229-238, 2005.

[40] K. Coloma, A. Choudhary, A. Ching, W.K. Liao, S.W. Son,
M. Kandemir, and L. Ward, “Power and Performance in I/O for
Scientific Applications,” Proc. 19th IEEE Int’l Parallel and Dis-
tributed Processing Symp. Workshop 10 (IPDPS ’05), p. 224.2, 2005.

[41] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan,
and M.J. Irwin, “Scheduler-Based Dram Energy Management,”
Proc. 39th Conf. Design Automation (DAC ’02), pp. 697-702, 2002.

[42] H. Huang, P. Pillai, and K.G. Shin, “Design and Implementation of
Power-Aware Virtual Memory,” Proc. Usenix Ann. Technical Conf.,
pp. 57-70, citeseer.ist.psu.edu/article/huang03design.html, 2003.

[43] M.E. Tolentino, J. Turner, and K.W. Cameron, “Memory-Miser:
A Performance-Constrained Runtime System for Power-Scalable
Clusters,” Proc. Fourth Int’l Conf. Computing Frontiers (CF ’07),
pp. 237-246, 2007.

[44] B. Diniz, D. Guedes, W. Meira Jr., and R. Bianchini, “Limiting the
Power Consumption of Main Memory,” Proc. Int’l Symp. Computer
Architecture (ISCA ’07), pp. 290-301, June 2007.

[45] V.D.L. Luz, M. Kandemir, and I. Kolcu, “Automatic Data
Migration for Reducing Energy Consumption in Multi-Bank
Memory Systems,” Proc. 39th Conf. Design Automation (DAC ’02),
pp. 213-218, 2002.

[46] X. Li, Z. Li, Y. Zhou, and S. Adve, “Performance Directed Energy
Management for Main Memory and Disks,” Trans. Storage, vol. 1,
no. 3, pp. 346-380, 2005.

[47] L. Cai and Y.-H. Lu, “Joint Power Management of Memory and
Disk,” Proc. Conf. Design, Automation and Test in Europe (DATE ’05),
pp. 86-91, 2005.

[48] Q. Zhu and Y. Zhou, “Power Aware Storage Cache Management,”
IEEE Trans. Computers, vol. 54, no. 5, pp. 587-602, May 2005.

Jianhui Yue received the MS degree in compu-
ter science from the Huazhong University of
Science and Technology, Wuhan, China, in
2003. He is currently working toward the PhD
degree in the Department of Electrical and
Computer Engineering, University of Maine. His
research interests include energy-aware memory
systems, storage system, computer architecture,
and operating system. He is a student member of
the IEEE and the Usenix Association.

Yifeng Zhu received the BSc degree in electrical
engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 1998
and the MS and PhD degrees in computer
science from the University of Nebraska, Lincoln,
in 2002 and 2005, respectively. He is currently an
assistant professor in the Department of Elec-
trical and Computer Engineering, University of
Maine. His research interests include parallel I/O
storage systems, supercomputing, energy-

aware memory systems, and wireless sensor networks. He served as
the program chair of IEEE NAS ’09 and SNAPI ’07, the guest editor of a
special issue of the International Journal of High Performance Computing
and Networking, and the program committee of various international
conferences, including ICDCS, ICPP, and NAS. He received Best Paper
Award at IEEE CLUSTER ’07 and several research and education grants
from the US National Science Foundation HECURA, ITEST, REU, and
MRI. He is a member of the ACM, the IEEE, the IEEE Computer Society,
and the Francis Crowe Society.

Zhao Cai received the BSc degree in energy
resource and power engineering and the MS
degree in computer science from the Huazhong
University of Science and Technology, Wuhan,
China, in 2000 and 2003, respectively. He is
currently working toward the PhD degree in the
Department of Electrical and Computer Engi-
neering, University of Maine. His research
interests include storage system, supercomput-
ing, energy-aware memory systems, database,

and mobile computing. He is a student member of the IEEE and the
Usenix Association.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

