
Semantic-Aware Metadata Organization
Paradigm in Next-Generation File Systems

Yu Hua, Member, IEEE, Hong Jiang, Senior Member, IEEE, Yifeng Zhu, Senior Member, IEEE,

Dan Feng, Member, IEEE, and Lei Tian

Abstract—Existing data storage systems based on the hierarchical directory-tree organization do not meet the scalability and

functionality requirements for exponentially growing data sets and increasingly complex metadata queries in large-scale, Exabyte-level

file systems with billions of files. This paper proposes a novel decentralized semantic-aware metadata organization, called SmartStore,

which exploits semantics of files’ metadata to judiciously aggregate correlated files into semantic-aware groups by using information

retrieval tools. The key idea of SmartStore is to limit the search scope of a complex metadata query to a single or a minimal number of

semantically correlated groups and avoid or alleviate brute-force search in the entire system. The decentralized design of SmartStore

can improve system scalability and reduce query latency for complex queries (including range and top-k queries). Moreover, it is also

conducive to constructing semantic-aware caching, and conventional filename-based point query. We have implemented a prototype

of SmartStore and extensive experiments based on real-world traces show that SmartStore significantly improves system scalability

and reduces query latency over database approaches. To the best of our knowledge, this is the first study on the implementation of

complex queries in large-scale file systems.

Index Terms—File systems, metadata management, scalability, performance evaluation.
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1 INTRODUCTION

FAST and flexible metadata retrieving is a critical require-
ment in the next-generation data storage systems serving

high-end computing. As the storage capacity is approaching
Exabytes and the number of files stored is reaching billions,
directory-tree based metadata management widely de-
ployed in conventional file systems [1] can no longer meet
the requirements of scalability and functionality. For the
next-generation large-scale storage systems, new metadata
organization schemes are desired to meet two critical goals:
1) to serve a large number of concurrent accesses with low
latency and 2) to provide flexible I/O interfaces to allow
users to perform advanced metadata queries, such as range
and top-k queries, to further decrease query latency.

Although existing distributed database systems can work
well in some real-world data-intensive applications, they are
inefficient in very large-scale file systems due to four main
reasons. First, as the storage system is scaling up rapidly, a
very large-scale file system, the main concern of this paper,
generally consists of thousands of server nodes, contains
trillions of files, and reaches exabyte-data-volume (EB).
Unfortunately, existing distributed databases fail to achieve

efficient management of petabytes of data and thousands of
concurrent requests [2]. Second, for heterogeneous execution
environments, devices of file systems are heterogeneous,
such as supercomputers, clusters of PCs via Ethernet,
InfiniBand and Fibers, and cloud storage via Internet.
Instead, DBMS often assumes homogeneous and dedicated
high-performance hardware devices. Recently, the database
research community has become aware of this problem and
agreed that existing DBMS for general-purpose applications
would not be a “one size fit all” solution [3]. This issue has also
been observed by file system researchers [4]. Third, for
heterogeneous data types, their metadata in file systems are
also heterogeneous. The metadata may be structured,
semistructured, or even unstructured, since they come from
different operational system platforms and support various
real-world applications. This is often ignored by existing
database solutions. Last but not the least, existing file
systems only provide filename-based interface and allow
users to query a given file, which severely limits the
flexibility and ease of use of file systems.

In the next-generation file systems, metadata accesses will
very likely become a severe performance bottleneck as
metadata-based transactions not only account for over
50 percent of all file system operations [5] but also result in
billions of pieces of metadata in directories. Given the sheer
scale and complexity of the data and metadata in such
systems, we must seriously ponder a few critical research
problems [6] such as “How to efficiently extract useful knowledge
from an ocean of data?,” “How to manage the enormous number of
files that have multidimensional or increasingly higher dimen-
sional attributes?,” and “How to effectively and expeditiously
extract small but relevant subsets from large data sets to construct
accurate and efficient data caches to facilitate high-end and complex
applications?.” We approach the above problems by first
postulating the following:
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First, while a high-end or next-generation storage system
can provide a Petabyte-scale or even Exabyte-scale storage
capacity containing an ocean of data, what the users really
want for their applications is some knowledge about the
data’s behavioral and structural properties. Thus, we need
to deploy and organize these files according to semantic
correlations of file metadata in a way that would easily
expose such properties.

Second, in real-world applications, cache-based struc-
tures have proven to be very useful in dealing with
indexing among massive amounts of data. However,
traditional temporal or spatial (or both) locality-aware
methods alone will not be effective to construct and
maintain caches in large-scale systems to contain the
working data sets of complex data-intensive applications.
It is thus our belief that semantic-aware caching, which
leverages metadata semantic correlation and combines
preprocessing and prefetching that is based on range
queries (that identify files whose attributes values are
within given ranges) and top-k Nearest Neighbor (NN)
queries (that locate k files whose attributes are closest to
given values), will be sufficiently effective in reducing the
working sets and increasing cache hit rates.

Semantic correlation [7] comes from the exploitation of
high-dimensional attributes of metadata. The main benefit
of using semantic correlation is the ability to significantly
narrow the search space and improve system performance.
In this paper, we propose a novel decentralized semantic-
aware metadata organization, called SmartStore [8], to
effectively exploit semantic correlation to enable efficient
complex queries for users and to improve system perfor-
mance in real-world applications. This paper makes the
following key contributions:

Decentralized semantic-aware organization scheme of

file system metadata. SmartStore is designed to support
complex query services and improve system performance
by judiciously exploiting semantic correlation of file
metadata and effectively utilizing semantic analysis tools,
i.e., Latent Semantic Indexing (LSI) [9]. The new design is
different from the conventional hierarchical architecture of
file systems based on a directory-tree data structure in that
it removes the latter’s inherent performance bottleneck and
thus can avoid its disadvantages in terms of file organiza-
tion and query efficiency. Additionally and importantly,
SmartStore is able to provide the existing services of
conventional file systems while supporting new complex
query services with high reliability and scalability. Our
experimental results based on a SmartStore prototype
implementation show that its complex query performance
is more than 1,000 times higher and its space overhead is
20 times smaller than current database methods with a very
small false probability.

Multiquery services. To the best of our knowledge, this
is the first study on the design and implementation of a
storage architecture that supports complex queries, such as
range and top-k queries, within the context of ultra-large-
scale distributed file systems. More specifically, our Smart-
Store can support three query interfaces for point, range,
and top-k queries. Conventional query schemes in small-
scale file systems are often concerned with filename-based

queries that will soon be rendered inefficient and ineffective

in next-generation large-scale distributed file systems. The

complex queries will serve as an important portal or
browser, like the web or web browser for Internet and city

map for a tourist, for query services in an ocean of files. Our

study is a first attempt at providing support for complex

queries directly at the file system level.
The rest of the paper is organized as follows: Section 2

describes the SmartStore system design. Section 3 presents

semantic grouping. The version-based design is discussed

in Section 4. The performance of SmartStore is evaluated
through extensive trace-driven experiments in Section 5.

Section 6 presents related work. The paper is concluded in

Section 7.

2 SMARTSTORE SYSTEM

The basic idea behind SmartStore is that files are grouped

and stored according to their metadata semantics, instead of

directory namespace, as shown in Fig. 1 that compares the

two schemes. This is motivated by the observation that

metadata semantics can guide the aggregation of highly

correlated files into groups that in turn have higher
probability of satisfying complex query requests, judi-

ciously matching the access pattern of locality. Thus, query

and other relevant operations can be completed within one

or a small number of such groups, where one group may

include several storage nodes, other than linearly searching

via brute force on almost all storage nodes in a directory
namespace approach. On the other hand, the semantic

grouping can also improve system scalability and avoid

access bottlenecks and single-point failures since it renders

the metadata organization fully decentralized whereby

most operations, such as insertion/deletion and queries,

can be executed within a given group.

2.1 Overview

A semantic R-tree as shown on the right of Fig. 1 is evolved

from classical R-tree [10] and consists of index units (i.e.,
nonleaf nodes) containing location and mapping informa-

tion and storage units (i.e., leaf nodes) containing file

metadata, both of which are hosted on a collection of

storage servers. One or more R-trees may be used to

represent the same set of metadata to match query patterns
effectively. SmartStore supports complex queries, including

range and top-k queries, in addition to simple point query.

Fig. 2 shows a logical diagram of SmartStore that provides

multiquery services for users while organizes metadata to
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enhance system performance by using decentralized se-
mantic R-tree structures.

SmartStore has three key functional components: 1) the
grouping component that classifies metadata into storage
and index units based on the LSI semantic analysis; 2) the
construction component that iteratively builds semantic R-
trees in a distributed environment; and 3) the service
component that supports insertion, deletion in R-trees, and
multiquery services.

2.2 User View

A query in SmartStore works as follows: initially, a user
sends a query to a randomly chosen storage unit, i.e., a leaf
node of semantic R-tree. The chosen storage unit, called
home unit for this request, then retrieves semantic R-tree to
locate the corresponding R-tree node. Specifically, for a
point query, the home unit checks Bloom filters [11] stored
locally in a way similar to the group-based hierarchical
Bloom-filter array approach [12] and, for a complex query,
the home unit checks the Minimum Bounding Rectangles
(MBR) [10] to determine the membership of queried file
within checked servers. An MBR represents the minimal
rectangle of the enclosed data set by using multidimen-
sional intervals of the attribute space, showing the lower
and the upper bounds of each dimension. After obtaining
query results, the home unit returns them to the user.

2.3 System View

The most critical component in SmartStore is semantic
grouping, which efficiently exploits metadata semantics,
such as file physical and behavioral attributes, to classify
files into groups iteratively. These attributes exhibit
different characteristics. For example, attributes such as
access frequency, file size, volume of “read” and “write”
operations are changed frequently, while some other
attributes, such as filename and creation time, often remain
unchanged. SmartStore identifies the correlations between
different files by examining these and other attributes, and
then places strongly correlated files into groups. All groups
are then organized into a semantic R-tree. These groups
may reside in multiple metadata servers. By grouping
correlated metadata, SmartStore exploits their affinity to
boost the performance of queries.

Fig. 3 shows the basic steps in constructing a semantic
R-tree. Each metadata server is a leaf node in our semantic
R-tree and can also potentially hold multiple nonleaf nodes

of the R-tree. In the rest of the paper, we refer to the
semantic R-tree leaf nodes as storage units and the nonleaf
nodes as index units.

2.4 Configuration to Match Query Patterns

The objective of the semantic R-tree constructed by
examining the semantic correlation of metadata attributes
is to match the patterns of complex queries from users.
Unfortunately, in real-world applications, the queried
attributes will likely exhibit unpredictable characteristics,
meaning that a query request may probe an arbitrary d-
dimensional ð1 � d � DÞ subset of D-dimensional metadata
attributes. For example, we can construct a semantic R-tree
by leveraging three attributes, i.e., file size, creation time, and
last modification time, and then queries may search files
according to their file size, file size and creation time, or other
combinations of these three attributes. Although using a
single semantic R-tree can eventually lead to the queried
files, the system performance can be greatly reduced as a
result of more frequently invoking the brute-force-like
approach after each failed R-tree search. The main reason
is that a single semantic R-tree representing three attributes
may not work efficiently if queries are generated in an
unpredictable way.

In order to efficiently support complex queries with
unpredictable attributes, we develop an automatic configura-
tion technique to adaptively construct one or more semantic
R-trees to improve query accuracy and efficiency. More R-
trees with each being associated with a different combina-
tion of multidimensional attributes provide much better
query performance, but require more storage space. The
automatic configuration technique thus must optimize the
trade-off between storage space and query performance.
Our basic idea is to configure one or more semantic R-trees
to adaptively satisfy complex queries associated with an
arbitrary subset of attributes.

Assume that D is the maximum number of attributes in a
given file system. The automatic configuration first con-
structs a semantic R-tree according to the available D-
dimensional attributes to group file metadata, and counts
the number of index units, NOðIDÞ, generated in this R-tree.
It then constructs another semantic R-tree using a subset
(i.e., d attributes) and records the number of generated index
units, NOðIdÞ. When the difference in the number of index
units between the two semantic R-trees, jNOðIDÞ �NOðIdÞj,
is larger than some predetermined threshold, we conjecture
that these two semantic R-trees are sufficiently different,
and thus are saved to serve future queries.
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3 SEMANTIC-AWARE DESIGN AND ANALYSIS

3.1 Semantic Grouping

Statement 1 (Semantic Grouping of Metadata). Given file
metadata with D attributes, find a subset of d attributes
ð1 � d � DÞ, representing special interests, and use the
correlation measured in this subset to partition similar file
metadata into multiple groups so that:

. A file in a group has a higher correlation with other files
in this group than with any file outside of the group.

. Group sizes are approximately equal.

Semantic grouping is an iterative process. In the first
iteration, we compute the correlation between files and
cluster all files whose correlations are larger than a
predetermined admission constant "1ð0 � "1 � 1Þ into
groups. The admission constant depends on different
distributions of file data. We use a sampling method to
facilitate the group construction. Specifically, we first
randomly choose data from traces to compose a sample
data set. By examining the data set, we then adjust various
admission constants to select a near-optimal value to
guarantee approximate load balance.

All groups generated in the first iteration are used as leaf
nodes to construct a semantic R-tree. The composition of the
selected d-dimensional attributes produces a grouping

predicate, which serves as the grouping criteria. The
semantic grouping process can be recursively executed by
aggregating groups in the ði� 1Þst-level into the ith-level
nodes of the semantic R-tree with the correlation value
"ið0 � "i � 1; 1 � i � HÞ, until the root is reached, where H
is the depth of the constructed R-tree.

More than one predicate may be used to construct
semantic groups. Thus, multiple semantic R-trees can be
obtained and maintained concurrently in a distributed
manner in a large-scale distributed file system where most
files are of interests to arguably only one or a small
number of applications or application environments. In
other words, each of these semantic R-trees may possibly
represent a different application environment or scenario.
Our objective is to identify a set of predicates that optimize
the query performance.

In the semantic R-tree, each node represents all metadata
that can be accessed through its child nodes. Each node can
be summarized by a geometric centroid of all metadata it
represents. The attributes used to form semantic vectors can
be either physical ones, such as creation time and file size,
or behavioral ones, such as process ID and access sequence.

3.2 Probabilistic Latent Semantic Analysis (PLSA)
for Complexity Reduction

The basic idea behind Probabilistic Latent Semantic Analysis
[13] is to execute a mixture decomposition derived from a
latent class model, rather than performing an SVD operation
over co-occurrence tables based on linear algebra like Latent
Semantic Indexing [9]. In order to avoid overfitting, a statistic
model based on the Expectation Maximization (EM) algo-
rithm [14], [15] is used to guarantee the maximum likelihood
estimation. The EM algorithm computes posterior probabil-
ities for latent variables with expected E steps and updates
them within maximum M steps.

The difference in computational complexity between LSI
and PLSA is mainly due to the fact that different objective

functions are used to determine the optimal decomposi-
tion/approximation. LSI makes use of the L2 or Frobenius
norm, which corresponds to an implicit additive Gaussian
noise assumption on counts, to facilitate the squared
deviation on the matrix. On the other hand, PLSA uses
the likelihood function of multinomial sampling to show an
explicit maximization of the predictive power of the latent
space model. This technique allows PLSA to minimize the
cross entropy or Kullback-Leibler divergence between the
empirical distribution and the used model, thus signifi-
cantly decreasing the computational complexity [16]. Note
that PLSA can reduce the computational complexity and
improve runtime performance and obtain approximate
accuracy as LSI. We compare their performance in terms
of semantic-aware system construction in Section 5.

3.3 Complexity Analysis

The computational complexities of the offline and online
system constructions are significantly different in our
design. The offline method builds the semantic groups in
advance, while its online counterpart builds the semantic
groups dynamically and allows real-time updates.

The complexity of offline LSI mainly stems from the
singular value decomposition. Given certain constraints of
computational precision, LSI needs to calculate the optimal
number of iteration steps based on the reduced z-dimensional
square matrix, thus resulting in z iterations. In our experi-
ments, we found that between 20 and 80 iterations are usually
sufficient. Within each iteration, matrix decomposition of the
correlation vectors forn files takesOðn2Þ. Therefore, the initial
system construction requires Oðzn2Þ. In practice, the typical
value of z is between 3 and 10, much smaller than the number
of rows or columns of the original attribute matrix.

The complexity of offline PLSA mainly depends on the
calculation of E-step and M-step. Each E-step requires the
computation of the optimal probability, which consists of �
numbers, and a constant number of arithmetic operations to
be computed on n files, thus resulting in a complexity of
Oð�nÞ. The M-step accumulates the posterior probability for
each rating to facilitate the new estimate, thus requiring a
complexity of Oð�nÞ. Therefore, the PLSA approach has a
computational complexity of Oð�nÞ.

The online computational complexity is more important
in real systems. In the standard LSI approach, each arriving
request, represented as a query vector, requires the
identification of the correlation with n existing files by
using either the angle (e.g., cosine similarity) or distance
(e.g., euclidean) measure, thus leading to a complexity of
OðnÞ. In practice, many applications would identify the
most correlated item by comparing the correlation degrees
of all n items, which also results in a complexity of OðnÞ.
Thus, the computational complexity of online LSI is OðnÞ.
On the other hand, PLSA requires the computation of the
prediction probability in the statistical model, amounting to
2� arithmetic operations. The value of � is independent of
the numbers of n files and m attributes. As a result, the
complexity of online PLSA is Oð�Þ.

4 CONSISTENCY GUARANTEE VIA VERSIONING

In SmartStore, a recently created version attached to its
correlated replica can temporarily maintain the aggregated
changes that however have not updated the corresponding
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original replica. This method eliminates many small,
random, and frequent visits to the index and has been
widely used in most versioning file systems [4], [17]. In the
following, we first present the standard scheme for multi-
version management and then the improved solution to
obtain space efficiency and support fast update.

4.1 Multiversion Management

In order to maintain both semantic correlation and locality,
SmartStore creates versions for every group, represented as
the first-level index unit that has been replicated to other
index units. At the time instant t0, SmartStore sends the
replicas of the original index units to other index units and
from ti�1 to ti, updates are aggregated into the tith version
that is attached to its correlated index unit as shown in Fig. 4.
These updates include insertion, deletion, and modification
of file metadata, which are appropriately labeled in the
versions. In order to adapt to the system changes, SmartStore
allows the groups to have different numbers and sizes of
attached versions.

Versioning may introduce extra performance overhead
due to the need to check on the attached versions in
addition to the original information when executing a
query. However, since the versions only maintain changes
that require small storage overheads and can be fully stored
in memory, the extra latency of searching is usually small.
In practice, we propose to roll the version changes back-
ward, rather than forward as in Spyglass [4]. A query first
checks the original information and then its versions from ti
backward to t0. The direct benefit of checking backward is
to timely obtain most recent changes since version ti usually
contains newer information than version ti�1.

SmartStore removesattached versionswhenreconfiguring
index units. The frequency of reconfiguration depends on the
user requirements and environment constraints. Removing
versions entails two operations. We first apply the changes of
a version into its attached original index unit that will be
updated according to these changes in the attached versions,
such as inserting, deleting, or modifying file metadata. On the
other hand, the version is also multicast to other remote index
units that have stored the replicas of original index unit, and
then these remote index units carry out the similar operations
for local updating. Since the attached versions only need to
maintain changes of file metadata and maintain small size,
SmartStore may multicast them as replicas to other remote
servers to guarantee information consistency while requiring
not too much bandwidth to transmit small-size changes as
shown in Section 5.4.

4.2 Space-Efficient Improvements

SmartStore improves the space efficiency of multiversion
scheme by leveraging space-efficient Bloom filters to
decrease space overhead and provide fast identification of
stale versions. The basic idea is to maintain a single copy of

metadata of each updated file in the version. Fig. 8 shows
the improved versioning structure that consists of original
and incremental versions together with space-efficient
Bloom filters to identify stale data.

Compared with the standard versioning as previously
shown in Fig. 4, the improved versioning structure in Fig. 5
deploys two-level Bloom filters to carry out multiversion
management and support fast query services. Specifically,
the first-level Bloom filter is a counting Bloom filter [18] that
uses the counters, rather than bits in standard Bloom filter
[11], to support deletion operations. Newly updated data are
first hashed into the counters in the counting Bloom filters. If
all hit counters are nonzero, we can say that the data are a
member of multiple versions with high probability, meaning
that there is the stale copy of the newly arriving data.

Although the membership queries on the counting
Bloom filters do not produce false negatives due to local
data updates, hash collisions in Bloom filters can possibly
result in false positives. The penalty of a false hit is a waste
of probing operation on the second-level Bloom filters,
called Version Bloom Filter (VBF). Each VBF corresponding
to a version is a counting Bloom filter and maintains the
memberships of data stored in that version.

After the first-level, Bloom filter indicates that there is the
stale copy in the multiversion structure, the update data then
probe the VBFs to identify which version contains the stale
copy to facilitate further updating. Once the stale version is
identified, we will update it with new data. Therefore, the
final verification on the versions occurs when both levels of
Bloom filters produce false positives. However, such prob-
ability is very small. On the other hand, if the first-level
counting Bloom filter indicates that the updated data have no
stale copies in the versions, we then directly insert them into
the versions according to their temporal sequence. In
addition, when a data item is deleted from a version, we
decrease the corresponding counters by 1 in the two-level
Bloom filters. If the incremental updated versions are
reconfigured into the baseline version, all metadata are
removed in the updated versions and we thus initialize
the two-level Bloom filters by setting all counters to zero.

The versioning system essentially introduces the extra
checking on the versions when carrying out query opera-
tions since the versions may contain the latest data. We use
the Bloom filters to simplify the point queries by first
hashing queried items into the Bloom filters and if both
levels of Bloom filters say hits, we then check the
incremental updated versions and if not, the queried results
only come from the baseline versions. On the other hand,
the Bloom filters, which only support point queries, do not
work for complex queries, such as the range and top-k
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queries that require the comparisons on range bounds. We
thus carry out the standard operations as previously
presented in Section 4.1.

5 PERFORMANCE EVALUATION

This section evaluates SmartStore through its prototype by
using representative large file system-level traces, including
HP [19], MSN [20], and EECS [21]. We compare SmartStore
against two baseline systems that use database techniques.
The evaluation metrics considered are query accuracy,
query latency, and communication overhead. Due to space
limitation, additional performance evaluation results are
omitted but can be found in our conference paper [8],
including recalls of range and top-k queries using MSN and
EECS, average query latency, and message overhead based
on preprocessing approach, grouping efficiency, and
system scalability.

5.1 Prototype Implementation

The SmartStore prototype is implemented in Linux and
our experiments are conducted on a cluster of 60 storage
units. Each storage unit has an Intel Core 2 Duo CPU,
2 GB memory, and high-speed network connections. We
carry out the experiments for 30 runs each to validate the
results according to the evaluation guidelines of file and
storage systems [22]. The used attributes display access
locality and skewed distribution especially for multi-
dimensional attributes.

5.2 Construction Time

SmartStore needs to first build the offline semantic-aware
system by using standard LSI and PLSA to support online
complex queries as illustrated in Section 3. Recall that the LSI
carries out the SVD operations on the original attribute
matrix to identify the correlation among multiple files and
the PLSA makes use of E-M algorithm to facilitate the
maximized likelihood estimation to decrease the computa-
tion complexity. Fig. 6 shows the initial construction time of
SmartStore system when taking into account three intensi-
fied real-world traces. We observe that the PLSA spends
much less time than LSI, with an average reduction of
28.3 percent. The main reason is that PLSA deploys
probabilistic model to extract the semantic correlation, thus
avoiding the high complexity of matrix decomposition in
LSI. These experimental results are consistent with the
complexity analysis presented in Section 3.3.

5.3 Accuracy of Complex Queries

We adopt “Recall” as a measure for complex query quality

from the field of information retrieval [23]. Given a query q,

we denote T ðqÞ the ideal set ofK nearest objects andAðqÞ the

actual neighbors reported by SmartStore. We define recall as

recall ¼ jT ðqÞ\AðqÞjT ðqÞ .
Fig. 7 shows recall values of complex queries, including

range and top-k ðk ¼ 8Þ queries, for the HP trace. We observe
that a top-k query generally achieves higher recall than a
range query. The main reason is that top-k query in essence is
a similarity search, thus targeting a relatively smaller number
of files. We also notice that requests following a Zipf or Gauss
distribution obtain much higher recall values than those
following a uniform distribution. This is because under a Zipf
or Gauss distribution, files are mutually associated with a
higher degree than under uniform distribution.

5.4 Overhead and Efficiency of Versioning

Using versioning to maintain consistency among multiple
replicas of the root and index nodes in the semantic R-tree,
as described in Section 4, introduces some extra spatial and
temporal costs.

Similar to evaluating the versioning file systems [17], we
adjust the version ratio, i.e., file modification-to-version
ratio, to examine the overhead introduced by versioning.
Fig. 8 shows the versioning overhead in terms of required
space and latency when checking the versions. Due to space
limit, this paper only presents the performances under the
MSN and EECS traces.

Fig. 8a shows the average required space in each index
unit by using standard and improved versioning schemes.
The space overhead is closely associated with the version
ratio. If the ratio is 1, it is called a comprehensive versioning,
and every change results in a version, thus requiring the
largest storage space. When the ratio is increased, changes
usually are aggregated to produce a version to reduce space
overhead. We observe that the improved scheme requires
much smaller space, averagely 41.25 percent decrements,
than the standard solution. The main reason is that the
former maintains a single copy of updated data in the
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incremental versions before configuring into the correspond-
ing baseline version with the aid of fast checking of two-level
Bloom filters, while the latter simply accumulates the update
versions in the temporal sequence. In addition, although the
used Bloom filters possibly increase the space overhead in
the improved scheme, the larger benefits of keeping a single
copy make the extra space overhead be trivial.

Fig. 8b shows the extra latency incurred when verifying
query results in the versions. Note that we use the same
number of point, range, and top-k queries. Compared with
the entire query latency, the additional versioning latency is
no more than 10 percent. The reason is that all versions only
need to record small changes stored in memory and we use
rolling backward to reduce unnecessary checking on stale
information. In addition, the improved scheme significantly
decreases the query latency on average by 21.6 percent,
compared with the standard solution, since the point query
only needs to execute fast hash computation.

6 RELATED WORK

One of the most prevalent metadata queries is content-
based query by examining the contents and pathnames of
files, such as attribute-based naming in the Semantic file
system [24] and content-based search tool in Google
Desktop [25]. However, the efficiency of content-based
search heavily depends on files that contain explicitly
understandable contents, while ignoring file context that is
utilized by most users in organizing and searching their
data [26]. Furthermore, typical techniques successful for
the web search, such as HITS algorithm [27] and Google
search engine [28], leverage tagged and contextual links
that do not inherently, let alone explicitly, exist in large-
scale file systems.

Subtree-partitioning-based approaches have been widely
used in recent studies, such as Ceph [1], GIGA+ [29], Farsite
[30], and Spyglass [4]. Ceph [1] maximizes the separation
between data and metadata management by using a
pseudorandom data distribution function to support a
scalable and decentralized placement of replicated data.
Farsite [30] makes the improvement on distributed directory
service by utilizing tree-structured file identifiers that
support dynamically partitioning on metadata at arbitrary
granularity. GIGA+ [29] extends classic hash tables to build
file system directories and uses bitmap encoding to allow
hash partitions to split independently, thus obtaining high
update concurrency and parallelism. Spyglass [4] exploits
the locality of file namespace and skewed distribution of
metadata to map the namespace hierarchy into a multi-
dimensional K-D tree and uses multilevel versioning and
partitioning to maintain consistency. However, in its current
form, Spyglass focuses on the indexing on a single server and
cannot support distributed indexing on multiple servers.

7 CONCLUSION

The paper presents a new paradigm for organizing file
metadata for next-generation file systems, called SmartStore,
by exploiting file semantic information to provide efficient
and scalable complex queries while enhancing system
scalability and functionality. The novelty of SmartStore lies

in it matches actual data distribution and physical layout with
their logical semantic correlation so that a complex query can
be successfully served within one or a small number of
storage units. Specifically, a semantic grouping method is
proposed to effectively identify files that are correlated in
their physical attributes or behavioral attributes. SmartStore
can very efficiently support complex queries, such as range
and top-k queries, which will likely become increasingly
important in the next-generation file systems. Our prototype
implementation proves that SmartStore is highly scalable,
and can be deployed in a large-scale distributed storage
system with a large number of storage units.
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