
Evaluating Memory Energy Efficiency in Parallel
I/O Workloads

Jianhui Yue,Yifeng Zhu∗ , Zhao Cai

Department of Electrical and Computer Engineering,University of Maine
Orono, USA

jyue@eece.maine.edu
zhu@eece.maine.edu∗

zcai@eece.maine.edu

Abstract— Power consumption is an important issue for cluster
supercomputers as it directly affects their running cost and
cooling requirements. This paper investigates the memory energy
efficiency of high-end data servers used for supercomputers.
Emerging memory technologies allow memory devices to dynam-
ically adjust their power states. To achieve maximum energy
saving, the memory management on data servers needs to
judiciously utilize these energy-aware devices. As we explore
different management schemes under four real-world parallel
I/O workloads, we find that the memory energy consumption
is determined by a complex interaction among four important
factors: (1) cache hit rates that may directly translate perfor-
mance gain into energy saving, (2) cache populating schemes
that perform buffer allocation and affect access locality at the
chip level, (3) request clustering that aims to temporally align
memory transfers from different buses into the same memory
chips, and (4) access patterns in workloads that affect the first
three factors.

I. I NTRODUCTION

As the computing capacity increases rapidly in large-scale
cluster computing platforms, power management becomes an
increasingly important concern. For example, the power den-
sity of Google clusters with low-tech commodity PCs exceeds
700W/ft2, while the cooling capability in typical data servers
lies between 70 and 120W/ft2 [1], [2]. A large power
consumption in a cluster not only increases its running cost,
but also raises its components’ temperature through rapid heat
dissipation, accordingly reducing the reliability and increasing
the maintenance cost. The recent trend towards very-large-
scale clusters, with tens of thousands of nodes [3], will only
exacerbate the power consumption issue.

Scientific applications usually need to input and output
large amounts of data from secondary storage systems [4]. In
order to alleviate the I/O bottleneck, cluster supercomputers
usually use high-end storage servers with large capacity of
main memory. For example, the IBM Bluegene at LLNL has
32 TB memory [5] and up to 2TB memory can be installed
on a single server [6]. Many previous studies [7], [8], [6] have
shown that main memory is one of major sources of power
consumption. The energy breakdown measured on a real server
shows that the memory consumes 41% of the total energy and
is 50% more than the processors [8]. As the memory capacity
continues to increase rapidly in order to bridge the ever-
widening gap between disk and processor speeds, memory

energy efficiency becomes an increasingly important concern.
In storage servers, most memory space is used as buffer

cache. Accordingly buffer cache management policies heavily
influence the overall memory energy efficiency. In partic-
ular, under the same workloads, different cache placement
and replacement algorithms often create significantly different
data layouts across all involved memory chips. Data layouts,
however, determine not only the utilization of each individual
memory ship, but also the opportunities for each chip to save
energy through emergent memory technologies such as power-
mode scheduling and multiplexing access.

In this paper, we evaluate the memory efficiency of high-end
data servers used for supercomputing. We develop a detailed
trace-driven memory simulator and use three real-world paral-
lel I/O workloads to compare the relative energy efficiency of
eight replacement algorithms, includingLRU, Belady, LIRS,
ARC, 2Q, MQ, LRFU and LRU2. We demonstrate that the
interplay among cache performance, clustering capability, and
cache populating schemes appears to be the most important
factor in improving memory energy efficiency. In particular,
we have the following conclusions.

• A cache replacement algorithm may directly translate
the performance gain in terms of cache hit rates into
energy saving. But it may yet exhibit inferior capability
in clustering memory accesses to a minimum number
of memory chips, and thus waste energy unnecessarily.
We show that a good tradeoff can be achieved if a
replacement algorithm can accurately retain both short-
term and long-term hot blocks in the same set of chips.

• The strategies used to allocate buffers before the
cache is full, called cache populating schemes, also
affect memory energy efficiency. For all replacement
algorithms, sequential placement can potentially consume
less energy than random placement. This is similar to
the conclusion of paper [7] that advocates sequential
placement in virtual memory under non-scientific
workloads. In buffer cache, the energy gain of sequential
placement is particularly significant for workloads with
mainly sequential or large looping patterns. However,
the energy benefits of sequential placement are little
for workloads predominated by random accesses or
small-looping accesses.

The rest of the paper is organized as follows. Section II
briefly describes the background, including power-aware mem-
ory chips, DMA transfers and cache replacement algorithms.
Section III presents our evaluation methodology and simula-
tion results. Section IV discusses prior related work. Section V
concludes the paper.

II. BACKGROUND

A. Cache Replacement Policies

The buffer cache performance is theoretically bounded by
the optimalBeladyreplacement algorithm [9] that replaces the
block whose next reference is farthest in the future. In real
systems,LRU algorithm or its variances have been widely
used. In the past two decades, many new algorithms have
been proposed to improve the performance of LRU. These
algorithms are described below.

LRU-K dynamically records theKth backward distance of
every blockx, which is defined as the number of references
during the time period from the lastKth reference tox to
the most recent reference tox [10]. A block with the max-
imum Kth backward distance is dropped to make space for
missed blocks. LRU-2 is found to best distinguish infrequently
accessed (cold) blocks from frequently accessed (hot) blocks.
The time complexity of LRU-2 isO(log2 n), wheren is the
number of blocks in the buffer.

2Q is proposed to perform similarly to LRU-K but with
considerably lower time complexity [11]. It achieves quick
removal of cold blocks from the buffer by using a FIFO queue
A1in, an LRU queueAm, and a “ghost” LRU queueA1out

that holds no block contents except block identifiers. A missed
block is initially placed inA1in. When a block is evicted from
A1in, this block’s identifier is added toA1out. If a block in
A1out or A1in is re-referenced, this block is promoted toAm.
The time complexity of 2Q isO(1).

LRFU endeavors to replace a block that is both least recently
and least frequently used [12]. A weightC(x) is associated
with every blockx and a block with the minimum weight is
replaced.

C(x) =

{

1 + 2−λC(x) if x is referenced at timet;
2−λC(x) otherwise.

where λ, 0 ≤ λ ≤ 1, is a tunable parameter and initially
C(x) = 0. LRFU reduces to LRU whenλ = 1, and to LFU
whenλ = 0. By controllingλ, LRFU represents a continuous
spectrum of replacement strategies that subsume LRU and
LFU. The time complexity of this algorithm ranges between
O(1) andO(log n), depending on the value ofλ.

MQ uses m + 1 LRU queues (typically m = 8),
Q0, Q1, . . . , Qm−1 and Qout, whereQi contains blocks that
have been referenced at least2i times but no more than2i+1

times recently, andQout contains the identifiers of blocks
evicted fromQ0 in order to remember access frequencies [13].
On a cache hit inQi, the frequency of the accessed block is
incremented by 1 and this block is promoted to the most re-
cently used position of the next level of queue if its frequency

is equal to or larger than2i+1. MQ associates each block with
a timer that is set tocurrentT ime+ lifeT ime. lifeT ime is
a tunable parameter that is dependent upon the buffer size and
workload. It indicates the maximum amount of time a block
can be kept in each queue without any access. If the timer of
the head block inQi expires, this block is demoted intoQi−1.
The time complexity of MQ isO(1).

LIRS uses the distance between the last and second-to-
the-last references to estimate the likelihood of the block
being re-referenced [14]. It categorizes a block with a large
distance as a cold block and a block with a small distance
as a hot block. A cold block is chosen to be replaced on a
cache miss. LIRS uses two LRU queues with variable sizes to
measure the distance and also provides a mechanism to allow
a cold block to compete with hot blocks if the access pattern
changes and this cold block is frequently accessed recently.
The time complexity of LIRS isO(1). Clock-pro [15] is an
approximation of LIRS.

ARCuses two LRU listsL1 andL2 for a cache with a size
of c [16]. These two lists combinatorially containc physical
pages andc identifiers of recently evicted pages. While all
blocks in L1 have been referenced only once recently, those
in L2 have been accessed at least twice. The cache space is
allocated to theL1 andL2 lists adaptively according to their
recent miss ratios. More cache space is allocated to a list if
there are more misses in this list. The time complexity of
ARC is O(1). CAR [17] is a variant of ARC based on clock
algorithms.

B. RDRAM Memory Chips

In the RDRAM technology, each memory chip can be
independently set to a proper state: active, nap, standby and
powerdown. In the active state, a chip can perform reading or
writing and consumes full power. In the other states, the chip
powers off different components to conserve energy. In these
states, the chip can not service any read/write requests before
it becomes active. The transition from a lower power state to
a higher one requires some time delay. Table I summarizes
the power consumption rate of each state and the time delay
needed to transition among these states.

There are two classes of techniques to control the power
state of a memory chip: static and dynamic. Static techniques
always set a chip to a fixed low-power state. The chip is
transitioned back to full-power state only when it needs to
service a request. After the request is serviced, the chip
immediately goes back to the original state, unless there
is another request waiting. In contrast, dynamic techniques
change current power state to the next lower power state only
after being idle for a threshold amount of time. The thresholds
are dynamically adjusted according to the variation of memory
I/O workload. In this paper, we focus on dynamic techniques
in our energy evaluation.

C. Network and Disk DMA Operations

Direct Memory Access (DMA) has been widely used to
transfer data blocks between main memory and I/O devices

TABLE I

POWER STATES AND TRANSITION DELAY OF ARDRAM CHIP

Power State/Transition Power (mW) Delay

Active 300 -
Standby 180 -
Nap 30 -
Powerdown 3 -
Active → Standby 240 1 memory cycle
Active → Nap 160 8 memory cycles
Active → Powerdown 15 8 memory cycles
Standby→ Active 240 +6 ns
Nap→ Active 160 +60 ns
Powerdown→ Active 15 +6000 ns
Standby→ Nap 160 +4 ns
Nap→ Powerdown 15 ∼0 ns

including disks and network. Fig. 1 gives an example of disk-
network datapath for two cache missesA and B, following
steps from 0 to 3. When a read request arrives through a
network interface (NIC), the server first performs data address
translation and then checks whether desired data blocks are
stored in the main-memory buffer cache. If they are cached,
the host processor on the storage server initiates a network
DMA operation to transfer the data out directly from the
main memory through NIC. If they are not, the processor
first performs a disk DMA transfer to copy the data from
disks to the main-memory buffer cache, and then the processor
conducts a network DMA transfer to send the data out. For
write requests, the datapaths are similar but flow in the reverse
direction.

���� ������		
��
�
�
�� �����

���� ����� �
��
�� ������		
���
��
����� �
��
����
��
�������
�� �
��
�� ���������� ������ �� �� �� �� ��������
Fig. 1. I/O path for two cache read misses inA andB typical storage server
,following steps from 0 to 3.

On a storage server, recent DMA controllers, such as
Intel’s chipset E8870 and E7500 [18], allow multiple DMA
transfers on different buses to access the same memory module
simultaneously in a time multiplexing fashion. Typically,the
peak transfer rate of a memory chip can be a multiple factor
of the bandwidth of the PCI bus. For example, the transfer
rate of most recent RDRAM chips [19] and DDR SDRAM
are up to 3.2GB/s and 2.1GB/s respectively, while a typical
PCI-X bus only gives a maximum rate of 1.064GB/s and the
second-generation SATA disk DMA throughput is only 300
MB/s.

Multiplexing various slow disk and network I/Os to the
same memory chip can reduce the waste of active memory
cycles and hence save memory energy. Most DMAs move a

large amount of data, usually containing multiple 512-byte
disk sectors or 4-KByte memory pages. Without multiplexing,
a memory chip is periodically touched during a DMA transfer
and such access period is too short to justify the transition
to a low-power mode [7], [20], [6]. As a result, significant
amount of active energy is wasted. However, when DMAs on
different I/O buses are coordinated to access the same memory
chip, such energy waste can be reduced. For example, when
the concurrent requestsA andB in Fig. 1 are directed to the
same memory chip, the DMA transfersA1 andB1 can overlap
with each other in time and accordingly one of them takes a
“free ride” and consumes zero energy, without causing any
performance penalty. Similarly,A2 and B2 can also overlap
with each other.

III. E NERGY EVALUATION

This section presents the energy evaluation of eight buffer
cache management algorithms through trace-driven experi-
ments.

A. Traces

The set of parallel I/O traces used in this study are collected
from large supercomputer clusters with more than 800 dual-
processor nodes at the Lawrence Livermore National Labo-
ratory (LLNL) [21]. This set of traces include three parallel
scientific applications,ior2, m1andf1. While these traces were
collected in a parallel file system that runs on multiple data
servers, we replay these traces on a single high-end servers
with high-end RAIDs, multiple network interfaces, and large
main memory. We do believe this still can provide meaningful
insights since currently many clusters are still using network
attached storage systems [3]. The total size of the raw traces
is more than 800 megabytes. A detailed description to these
scientific applications are given in paper [21]. The following
summarizes the trace characteristics.

ior2 is a parallel file system benchmark suite developed
at LLNL [22]. Based on typical data access patterns of
scientific parallel applications, this benchmark suite includes
three separate benchmarks:ior2-fileproc, ior2-sharedandior2-
stride. The traces of these benchmarks are collected on a 512-
node cluster. Theior2-fileproc benchmark assigns a different
output file for each node and has the best write performance.
It achieves 150,000 write requests per second, resulting inan
aggregate throughput of 9 GB per second. Whileior2-fileproc
uses a model of one file per node,ior2-sharedand ior2-stride
takes the shared-region and shared-stride data access models,
respectively. All the nodes simultaneously access a sharedfile
sequentially inior2-sharedand discontiguously with a varing
stride between successive accesses inior2-stride.

f1 is a large-scale physics simulation running on 343 nodes.
This application has two I/O-intensive phases: the restartphase
and the result-dump phase. In the first phase, data are retrieved
from a shared file independently by all involved computing
nodes. Thus read operations dominates in this phase. In the
result-dump phase, a small set of nodes periodically gather
a large amount of simulated results from the others and

concurrently save collected results into a shared file. This
phase is dominated mostly by writes. The corresponding traces
collected are named asf1-restart and f1-write. The f1 trace
has representative I/O accesses pattern existed in scientific
applications: a master node periodically collects and saves in-
termediate results generated by other computation nodes [21].

m1 is an ever-larger physics simulation that runs on 1620
nodes. This application uses an individual output file for each
node. Similar to the previous application, it also has a restart
phase and a result-dump phase. The corresponding traces are
referred to asm1-restartandm1-write. Compared withf1, m1
has similar yet different I/O behaviors. Similar tof1, m1 is
also divided into two phases, write and restart. Different from
f1, all nodes write roughly the same amount of data and there
are also significant amount of write requests inm1-restart.

B. Simulation Environment

We have developed a detailed trace-driven simulator that can
accurately emulate network DMA and disk DMA operations
and report the energy consumption of memory chips. In stor-
age servers, both DMAs are heavily involved. Through disk
DMAs, data missed in the cache or dirty blocks are exchanged
between memory chips and disk drives. Through network
DMAs, the requested data are sent to clients from the memory
through network interfaces. With new technology introduced,
multiple DMAs on different buses can simultaneously access
the same chip in a multiplexing way. The simulated data
sever is configured with 6 network adaptors and 12 disks.
Each device has its own independent DMA channel with a
bandwidth of 200MB/sec. Disksim [23], a well validated disk
array simulator, is incorporated into our simulator to precisely
emulate the timing of I/O traffic.

The simulator adapts the RDRAM memory chips, whose
parameters are given in Table I. Each chip capacity is
32MB and can support up to 16 concurrent DMA operations
(3.2GB/second). The simulator models the chip’s power state
transition, the DMA operation contention and queueing pro-
cesses. While the simulation results reported in this paperare
based on RDRAM memory systems, our simulator is also
applicable to DDR SDRAM technologies where we can treat
entire DDR modules as we do single RDRAM chips.

We simulate the traces by replaying all I/O events at
predetermined times specified in the traces, independent of
the performance of memory hierarchy. This approach is used
mainly because all traces that we have access to do not record
the dependence among request completion and subsequent I/O
arrivals.

C. Energy Comparisons under Sequential Placement

From the operating systems’ point of view, the energy
consumption of buffer cache is mainly influenced by the
following three factors:

1) How does the buffer cache get populated with blocks?
There are two well-known policies, including sequential
first-touch policy and random placement. The former
allocates buffers in the order they are accessed, filling

an entire RDRAM chip before moving on to the next
one. The latter is to allocate buffers randomly with
respect to chip selection. The buffer cache management
module in most operating systems uses random
placement to populate the cache, without considering
which chips the requested buffers are physically located.

2) How well does the cache algorithm capture temporal
locality? A higher hit rate helps reduce the total number
of memory accesses made by disks. Such performance
gain often translates into lower power consumption by
reducing the total running time.

3) What is the cache algorithm’s efficiency in clustering
memory accesses to a minimum number of active
chips? Clustering memory access to a small set of chips
helps save energy from two aspects. Not only does
it decrease the average number of memory chips that
are simultaneously active during the running time, but
also increase the level of concurrency between multiple
DMA transfers from different I/O buses to the same
memory chip.

In this section, we assume that the buffer cache is initially
populated by using the sequential first-touch policy since
this approach has the best energy efficiencies. We discuss
the impact of populating policies in the following section.
Hence, we only focus on the study of the first two factors in
this section. For the convenience of comparisons, all energy
measurements and the completion time are rated to their
corresponding values of the buffer cache configuration thathas
the least cache size and is managed by theBeladyalgorithm.

1) Parallel I/O benchmark ior2:The parallel I/O bench-
mark ior2 [22] aims to emulate the I/O behaviors of data-
intensive scientific applications. Theior2-sharedbenchmark
used in this study has both sequential accesses and random
accesses (see Fig. 2). The random access pattern is created by
512 interleaved parallel I/O streams. The following observa-
tions are made under workloadior2.

First, LIRS, 2Q and MQ are more energy efficient than
Belady. For example, when the cache size is 1GB, the active
energy ofLISR, MQ and 2Q is only 43%, 55%, and 55%
of Belady’s active energy respectively. This can explain why
Belady consumes more energy even though it has a shorter
running time. When the cache size is larger than 8 GB, the
total energy consumption of all algorithms, exceptLIRS and
ARC, starts to decrease due to reduced running times. When
the cache size reaches 16GB, slightly exceeding the working
set of ior2, all algorithms converge to the same values since
no cache replacement occurs.

Second, the energy efficiency of2Q andMQ is due to their
better capability of I/O clustering. Both algorithms are more
likely to retain long-term hot data blocks in the same cache
chips. Fig. 2(f) plots the cumulative distribution curve when
the cache size is 4GB. It shows that a single chip absorbs
51% and 43% data accesses in2Q and MQ, respectively.
That is mainly because2Q and MQ usually do not evict out
hot blocks and accordingly these hot blocks are never moved
among different chips. Both algorithms use several separate

0 0.5 1 1.5 2 2.5

x 10
10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

(a) Trace (sampling period: 1000)

1G 2G 4G 6G 8G 10G
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size

H
it

R
at

e

BELADY
ARC
LRU
LIRS
LRFU
MQ
LRU2
2Q

(b) Hit Rate

1G 2G 4G 6G 8G 10G
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Cache Size

R
at

ed
 C

om
pl

et
io

n
Ti

m
e

BELADY
ARC
LRU
LIRS
LRFU
MQ
LRU2
2Q

(c) Running Time

1G 2G 4G 6G 8G 10G
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Cache Size

R
at

ed
 E

ne
rg

y

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(d) Energy Consumption

1G 2G 4G 6G 8G 10G
0

1

2

3

4

5

6

7

8

Cache Size

P
er

ce
nt

ag
e

of
 E

ne
rg

y
S

av
in

g
by

 D
A

M
 O

ve
rla

p

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(e) Percentage of Energy Saving by DMA overlap

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chip Number

S
ev

er
ed

 R

eq
ue

st
s

C

D
F

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(f) Cumulative distribution function of requests among banks (Cache
size: 4GB)

Fig. 2. Comparison of replacement algorithms in workloadior2 .

queues to store blocks with different temporal locality. They
filter out blocks with high access frequency and promote them
to separate queue(s). During a cache miss, the blocks in these
queues typically have a higher priority of staying in the cache.

2) Large-scale Physics Simulations f1 and m1:One impor-
tant observation inf1 is that these replacement algorithms have
different energy efficiency even if they have nearly the same
hit rates. For example, at the cache size of 128M, the energy
difference among all algorithms, except forBelady, is up to

16.2% while their corresponding hit rates and running times
differ by only up to 1% and 5%, respectively. Specifically, the
energy consumption of2Q andMQ are smaller thanLRFU by
16.2% and 13.5% respectively. These results show that these
algorithms inherently have different effects on temporally
aligning memory transfers.

In particular, we find that2Q andMQ provide better oppor-
tunities for temporally aligning memory transfers into thesame
set of chips. For example, when the cache size is 128MB, one

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
12

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

(a) Trace (sampling period: 1000)

32M 64M 96M 128M 160M 192M 224M 256M 288M 320M
0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size

H
it

R
at

e

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(b) Hit Rate

32M 64M 96M 128M 160M 192M 224M 256M 288M 320M
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Cache Size

R
at

ed
 C

om
pl

et
io

n
Ti

m
e

BELADY
ARC
LRU
LIRS
LRFU
MQ
LRU2
2Q

(c) Running Time

32M 64M 96M 128M 160M 192M 224M 256M 288M 320M
1

1.5

2

2.5

3

3.5

Cache Size

R
at

ed
 E

ne
rg

y

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(d) Energy Consumption

32M 64M 96M 128M 160M 192M 224M 256M 288M 320M
82

84

86

88

90

92

94

96

Cache Size

P
er

ce
nt

ag
e

of
 E

ne
rg

y
S

av
in

g
by

 D
A

M
 O

ve
rla

p

BELADY
ARC
LRU
LIRS
LRFU
MQ
LRU2
2Q

(e) Percentage of Energy Saving by DMA overlap

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chip Number

S
ev

er
ed

 R

eq
ue

st
s

C

D
F

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(f) Cumulative distribution function of requests among banks (cache size:
128MB)

Fig. 3. Comparison of replacement algorithms in workloadf1.

single chip in2Q and MQ services 62.6% of DMA memory
transfers while a chip in the other algorithms only attractsup
to 20% (see Fig. 3(f)). Such heavily skewed utilization creates
larger chances for2Q andMQ to save energy. As a result, the
percentage of energy saving by access overlapping of2Q and
MQ achieves 13% and 10%, respectively (see Fig. 3(e)).

Them1 trace exhibits predominantly periodical accesses, as
shown in Fig. 4(a). In this application, the energy efficiency
is mainly determined by the cache performance in terms of

cache hit rates. In fact, the total energy consumptions, under
different cache sizes as shown in Fig. 4(d), is almost inversely
proportional to the cache hit rates presented in Fig. 4(b). A
gain in cache hit rates leads to a decrease of the running time
as well as the number of memory DMA transfers. Accordingly,
this performance gain is directly translated into lower power
consumption.

It is interesting to observe thatLIRS saves slightly more
energy thanBeladythat has optimal hit rates. This observation

0 0.5 1 1.5 2 2.5 3

x 10
11

0

0.5

1

1.5

2

2.5
x 10

6

(a) Trace (sampling period: 1000)

30G 40G 50G 60G 70G 80G
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Cache Size

H
it

R
at

e

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(b) Hit Rate

30G 40G 50G 60G 70G 80G
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Cache Size

R
at

ed
 C

om
pl

et
io

n
Ti

m
e

BELADY
ARC
LRU
LIRS
LRFU
MQ
LRU2
2Q

(c) Running Time

30G 40G 50G 60G 70G 80G
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Cache Size

R
at

ed
 E

ne
rg

y

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(d) Energy Consumption

30G 40G 50G 60G 70G 80G
20

25

30

35

40

45

50

55

60

65

Cache Size

P
er

ce
nt

ag
e

of
 E

ne
rg

y
S

av
in

g
by

 D
A

M
 O

ve
rla

p

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(e) Percentage of Energy Saving by DMA overlap

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chip Number

S
ev

er
ed

 R

eq
ue

st
s

C

D
F

BELADY

ARC

LRU

LIRS

LRFU

MQ

LRU2

2Q

(f) Cumulative distribution function of requests among banks (cache size:
30GB)

Fig. 4. Comparison of replacement algorithms in workloadm1.

is an exception to the conclusion made above. Fig. 4(f)
indicatesLIRS clusters 66% of memory accesses within 4
memory chips whileBelady distributes all accesses almost
evenly across all memory chips. Such a scattered distribution
in Belady causes an unnecessary amount of memory chips
to stay in the active state simultaneously and reduces the
opportunity of energy saving through access overlapping.

3) Comparison of clustering capabilities:In the previous
discussion, we find that the algorithm’s ability to cluster

hot blocks into the same chips may affect significantly the
memory energy consumption. To measure algorithm’s clus-
tering ability, we adopt a concept of the largest chip serving
accesses proportion, referred as LCSAP, which is derived from
the cumulative distribution function(CDF). A higher LCSAP
potentially provides better opportunity to cluster hot blocks.
The CDFs presented previously show thatMQ, 2Q andLIRS
can better cluster hot blocks. Since the CDFs ofMQ and2Q
are nearly the same in most cases, in the following we only

examine2Q andLIRS in detail.
Before discussion, let’s first look at the differences between

2Q and LIRS. In order to keep hot blocks longer in the
cache and evict cold blocks quickly, both algorithms use ghost
caches. In2Q, the ghost cache isA1out while the ghost cache
is non-resident HIR entries inLIRS. However, the ghost cache
size in 2Q is typically half of the physical block entries, but
LIRS’s ghost cache varies with workloads and can be much
larger than2Q. The larger size of ghost cache can potentially
help reduce inaccuracy in capturing hot blocks and accordingly
result in positive effects on the performance. The second
important difference between2Q andLIRSis the size of cache
holding cold blocks.2Q uses 25% whileLIRSuses only 1%.
The third difference is that2Q’s A1in can filter short-term hot
blocks.

The LCSAP of2Q and LIRS are 62.6% and 25% respec-
tively in workload f1. Under three workloads,LIRS has a
similar CDF to the others except2Q. LIRSdoes not distinguish
short-term hot blocks from long-term ones and retains them
all in the cache. When old short-term hot blocks are evicted
out and then new short-term hot blocks are moved in, the
memory layout is more likely to be disturbed, which causes hot
blocks to occupy more chips. For the same reason, the large
sequential and many short-term hot blocks access patterns in
f1 (see Fig. 3(a)), makeLIRS have a weaker capability in
retaining hot blocks than2Q.

Under workloadior2, LIRS’s ability of clustering hot blocks
is again inferior to2Q. The ior2 workload is dominated by a
large sequential access and many random accesses whose hot
blocks changes with time. Under such workload, especially at
the random access phase,2Q’s A1in can prevent short-term
hot blocks from being placed in the longer term hot block
queueAm. Hence,2Q can capture longer term hot blocks in
the cache and achieve better clustering capability.

However, under workloadm1, theLIRSCDF is superior to
2Q (see Fig. 4(f)). Them1shows both large and small looping
accesses with different looping periods. Since typicallyLIRS
can provide more space to hold hot data than2Q, LIRS
can better identify hot blocks and thus avoids unnecessary
paging-out and paging-in to hot blocks. Additionally,LIRS
has a larger ghost cache that also helps accurately identify
hot blocks. These two advantages over2Q result in better
clustering effects.

From the above discussions, we conclude thatLIRS can
better capture hot blocks both in short-term and long-term,
thus it typically has superior cache hit ratios thanMQ and2Q.
On the other hand,MQ and2Q only retain well long-term hot
blocks. Thus inMQ and2Q, these long-term hot blocks may
avoids some unnecessary memory paging and thus their stay
in the same chips. As a result,MQ and 2Q can better align
memory accesses to the same chips even though they may be
inferior in hit rates.

D. Sequential Placement vs Random Placement

This section examines the benefits of two buffer cache
populating strategies: sequential placement and random place-

BELADY ARC LRU LIRS LRFU MQ LRU2 2Q
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Replacement aglorithms

A
ra

ve
ra

ge
 E

ne
rg

y
R

at
io

s

ior2
f1
m1
average

Fig. 5. Average energy consumption ratios of sequential placement to random
placement under the same configuration.

ment. While the former allocates buffers in the order they are
accessed, filling an entire chip before moving to the next, the
latter randomly selects a chip to allocate buffers. We normalize
the energy consumption of sequential placement normalizedto
random placement under the same cache size and replacement
algorithm. The energy of random placement is averaged over
three repeated experiments.

We conclude that sequential placement is more energy effi-
cient than random placement in all parallel I/O traces studied.
As shown in Fig. 5, the average normalized energy across
different cache sizes forBelady, ARC, LRU, LIRS, LRFU,
MQ, LRU2, and2Q is 18.2%, 24.0%, 22.3%, 18.7%, 22.1%,
16.6%, 22.4% and 16.3%, respectively. The average saving
across all algorithms is 20.1%. Our observation is consistent
with the conclusion made in the literature on conventional
non-file-I/O workloads. For example, paper [7] reports that
sequential placement achieves 12% to 30% energy saving.
Currently, operating systems widely used in HPC, such as
BSD variants, Solaris and Linux, allocate memory frames,
especially buffer and page caches, with little considerations
of chip selection. Consequently, contiguous memory regions
often become fragmented. Our experimental results build a
compelling reason for HPC designers to incorporate energy-
aware data placement into the buffer cache management unit.

Another interesting observation is that sequential placement
benefits energy-efficiency more significantly in workloads
dominated with sequential access or large looping patterns.
In m1 that is dominated with small local looping accesses,
the average energy saving of all algorithms is only 7%.
However, in f1 with long sequential accesses, the average
saving achieves 27.4%. Since the parallel I/O patterns can
often be characterized as large, striping, and concurrent ac-
cesses [24], we conjecture that sequential placement underin
HPC systems would present a larger energy benefit than it
would in conventional systems.

IV. RELATED WORK

Until recently, power consumption was an issue primarily
in embedded or portable computer systems. However, en-
ergy efficiency is becoming an increasingly important con-

cern in the high performance computing (HPC) community.
Ref. [25], [26], [27], [28], [29] aims to reduce the CPU energy
consumption in a cluster environment by using dynamic volt-
age scaling to slow down the CPU speed. Ref. [30] proposes an
energy saving scheme that dynamically adjusts the number of
processors in a parallel system that operates in “sleep” mode.
There are also studies in optimizing disk energy efficiency for
scientific applications [31].

On individual servers, many research studies have been
conducted to save memory energy. Ref. [32], [33], [34], [35]
propose to adaptively control the memory power states, in-
stead of relying on simple threshold mechanisms. Ref. [36],
[7], [5], [6] propose to save energy in virtual memory manage-
ment by judiciously allocating and migrating memory pages
in order to cluster an application’s pages into a minimal
number of chips. Ref. [20], [37] aim to optimize the overall
energy efficiency of both memory chips and disk drives. While
almost all the research work mentioned above is designed for
virtual memory, very little research work has been done for
buffer cache. Ref. [6] proposes two schemes to save energy
in data servers: temporally aligning DAM transfers to the
same memory chips through buffering and migrating data
among chips to minimize the number of active chips. Ref. [38]
proposes a new buffer cache replacement algorithm to reduce
the disk energy consumption.

V. CONCLUSION

We have developed a detailed trace-driven simulator that
emulates the behavior of different cache management schemes.
This simulator allows us to quantify the energy impact of
eight different cache replacement algorithms includingARC,
Belady, LRU, LRIS, LRFU, MQ, LRU2 and 2Q. Under the
same workload, the interplay among the following three im-
portant factors appears to be the most important: the cache
performance in terms of hit rates, the cache’s capablity to
temporally align memory accesses to the same set of chips,
and the cache populating schemes to allocate buffers. In
particular, we demonstrate that in random access workloads
MQ and 2Q can better retain longer-term hot data blocks
in the same memory chips and thus have better energy
efficiency. In large-looping access workloads, a gain in cache
rates can be directly translated into better energy efficiency.
However, this observation cannot to be applied genericallyto
workloads with more complex access patterns. Additionally
sequential placement can potentially save more energy than
random placement in all replacement algorithms. However,
such energy benefit diminishes for workloads with mainly
random accesses and small-looping accesses. By quantifying
and thus prioritizing the many factors that may impact the
overall energy consumption, we see this study as a first
step toward modifying existing replacement algorithms or
designing a new one that can optimize the energy saving by
striking the optimal tradeoff among these important factors.
This study also allows us to better understand the performance
and energy-efficiency of these cache replacement algorithms
under parallel I/O workloads. In our future work, we will

design new replacement algorithms to achieve better energy
saving.

ACKNOWLEDGEMENTS

This work is supported by a UMaine Startup Grant,
NSF EPS-0091900, NSF CCF-0621526/0621493, NSF CNS
0723093, NSF CNS 0619430, NASA Maine Space Grant
and a Chinese NSF 973 Project Grant (No. 2004cb318201),
and equipment donations from SUN. We are grateful to our
anonymous reviewers.

REFERENCES

[1] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
Google cluster architecture,”IEEE Micro, vol. 23, no. 2, pp. 22–28,
2003.

[2] B. Moore, “Take the data center power and cooling challenge,” Energy
User News, Aug. 2002.

[3] H. Meuer, E. Strohmaier, J. Dongarra, and H. D. Simon, “Top 500
supercomputers,” Website, 2005, http://www.top500.org.

[4] Y. Zhu and H. Jiang, “CEFT: a cost-effective, fault-tolerant parallel
virtual file system,”J. Parallel Distrib. Comput., vol. 66, no. 2, pp.
291–306, 2006.

[5] M. E. Tolentino, J. Turner, and K. W. Cameron, “An implementation
of page allocation shaping for energy efficiency,” inProceedings of 3rd
Workshop on High-Performance, Power-Aware Computing, April 2007.

[6] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “DMA-aware memory
energy management for data servers,” inThe Proceedings of the 10th
International Symposium on High-Performance Computer Architecture
(HPCA’06), 2006.

[7] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page alloca-
tion,” in ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and operating
systems. New York, NY, USA: ACM Press, 2000, pp. 105–116.

[8] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers,”Computer,
vol. 36, no. 12, pp. 39–48, 2003.

[9] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,”IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[10] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k pagereplacement
algorithm for database disk buffering,” inProceedings of the 1993 ACM
SIGMOD international conference on Management of data. New York,
NY, USA: ACM Press, 1993, pp. 297–306.

[11] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” inProceedings of the 20th
International Conference on Very Large Data Bases (VLDB). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994,pp. 439–
450.

[12] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, andC. S.
Kim, “On the existence of a spectrum of policies that subsumes the
least recently used (LRU) and least frequently used (LFU) policies,” in
Proceedings of the 1999 ACM SIGMETRICS International conference
on Measurement and Modeling of Computer Systems, 1999, pp. 134–
143.

[13] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm
for second level buffer caches,” inProceedings of the General Track:
2002 USENIX Annual Technical Conference. Berkeley, CA, USA:
USENIX Association, 2001, pp. 91–104.

[14] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” in Pro-
ceedings of the ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, June 2002, pp. 31–42.

[15] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: an effective improve-
ment of the CLOCK replacement,” inProceedings of 2005 USENIX
Annual Technical Conference, Apr. 2005.

[16] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead
replacement cache,” inProceedings of the 2nd USENIX Conference on
File and Storage Technologies (FAST), Mar. 2003, pp. 115–130.

[17] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement,”
pp. 187–200, Mar. 2004.

[18] Intel, “Server and workstation chipsets,”
http://www.intel.com/products/server/chipsets/.

[19] R. Inc., “Rambus memory chips,” http://www.rambus.com.
[20] X. Li, Z. Li, Y. Zhou, and S. Adve, “Performance directedenergy

management for main memory and disks,”Trans. Storage, vol. 1, no. 3,
pp. 346–380, 2005.

[21] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and
T. T. McLarty, “File system workload analysis for large scale scientific
computing applications,” inProceedings of the Twentieth IEEE/Eleventh
NASA Goddard Conference on Mass Storage Systems and Technologies.
College Park, MD: IEEE Computer Society Press, April 2004. [Online].
Available: http://ssrc.cse.ucsc.edu/Papers/wang-mss04.pdf

[22] R. Hedges, B. Loewe, T. McLarty, and C. Morrone, “Parallel file
system testing for the lunatic fringe: The care and feeding of restless
i/o power users,” inMSST ’05: Proceedings of the 22nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems and Technologies
(MSST’05). Washington, DC, USA: IEEE Computer Society, 2005, pp.
3–17.

[23] J. S. Bucy, G. R. Ganger, and et al., “The disksim simulation environ-
ment version 3.0 reference manual,” www.pdl.cmu.edu/DiskSim.

[24] Y. Zhu, H. Jiang, X. Qin, and D. Swanson, “A case study of parallel
I/O for biological sequence analysis on Linux clusters,” inProceedings
of IEEE International Conference on Cluster Computing (CLUSTER),
Hong Kong, Dec. 2003, pp. 308–315.

[25] C. hsing Hsu and W. chun Feng, “A power-aware run-time system
for high-performance computing,” inSC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2005, p. 1.

[26] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load
balancing and unbalancing for power and performance in cluster-based
systems,” inProceedings of the Workshop on Compilers and Operating
Systems for Low Power COLP’01, September 2001. [Online]. Available:
http://research.ac.upc.es/pact01/colp/paper04.pdf

[27] V. W. Freeh and D. K. Lowenthal, “Using multiple energy gears in mpi
programs on a power-scalable cluster,” inPPoPP ’05: Proceedings of the
tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming. New York, NY, USA: ACM Press, 2005, pp. 164–173.

[28] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in time dynamic
voltage scaling: Exploiting inter-node slack to save energy in mpi
programs,” inSC ’05: Proceedings of the 2005 ACM/IEEE conference
on Supercomputing. Washington, DC, USA: IEEE Computer Society,
2005, p. 33.

[29] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained dis-
tributed dvs scheduling for scientific applications on power-aware clus-
ters,” in SC ’05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing. Washington, DC, USA: IEEE Computer Society,
2005, p. 34.

[30] B. Lawson and E. Smirni, “Power-aware resource allocation in high-
end systems via online simulation,” inICS ’05: Proceedings of the 19th
annual international conference on Supercomputing. New York, NY,
USA: ACM Press, 2005, pp. 229–238.

[31] K. Coloma, A. Choudhary, A. Ching, W. K. Liao, S. W. Son, M. Kan-
demir, and L. Ward, “Power and performance in i/o for scientific
applications,” inIPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05)- Workshop
10. Washington, DC, USA: IEEE Computer Society, 2005, p. 224.2.

[32] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin, “Scheduler-based dram energy management,” inDAC ’02:
Proceedings of the 39th conference on Design automation. New York,
NY, USA: ACM Press, 2002, pp. 697–702.

[33] H. Huang, P. Pillai, and K. G. Shin, “Design and
implementation of power-aware virtual memory,” inUSENIX
Annual Technical Conference, 2003, pp. 57–70. [Online]. Available:
citeseer.ist.psu.edu/article/huang03design.html

[34] M. E. Tolentino, J. Turner, and K. W. Cameron, “Memory-miser: a
performance-constrained runtime system for power-scalable clusters,” in
CF ’07: Proceedings of the 4th international conference on Computing
frontiers. New York, NY, USA: ACM Press, 2007, pp. 237–246.

[35] B. Diniz, D. Guedes, W. M. Jr., and R. Bianchini, “Limiting the power
consumption of main memory,” inProceedings of the International
Symposium on Computer Architecture ISCA. ACM Press, June 2007,
pp. 290–301.

[36] V. D. L. Luz, M. Kandemir, and I. Kolcu, “Automatic data migration for
reducing energy consumption in multi-bank memory systems,” in DAC
’02: Proceedings of the 39th conference on Design automation. New
York, NY, USA: ACM Press, 2002, pp. 213–218.

[37] L. Cai and Y.-H. Lu, “Joint power management of memory and disk,”
in DATE ’05: Proceedings of the conference on Design, Automation and
Test in Europe. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 86–91.

[38] Q. Zhu and Y. Zhou, “Power aware storage cache management,” IEEE
Transactions on Computers, vol. 54, no. 5, pp. 587–602, May 2005.

