
Exploiting Subarrays Inside a Bank to Improve Phase Change Memory

Performance

Jianhui Yue, Yifeng Zhu

Electrical and Computer Engineering, University of Maine

jianhui.yue, yifeng.zhu@maine.edu

Abstract—Enabling subarrays reduces memory latency by
allowing concurrent accesses to different subarrays within the
same bank in the DRAM system. However, this technology has
great challenges in the PCM system since an on-going write
cannot overlap with other accesses due to large electric current
draw for writes. This paper proposes two new mechanisms
(PASAK and WAVAK) that leverage subarray-level parallelism
to enable a bank to serve a write and multiple reads in parallel
without violating power constraints. PASAK exploits the electric
current difference between writing a bit 0 and a bit 1, and
provides a new power allocation strategy that better utilizes
the power budget to mitigate the performance degradation due
to bank conflicts. WAVAK adds a simple coding method that
inverts all bits to be written if there are more zeros than ones,
with a goal to reduce electric current for writes and create larger
power surplus to serve more reads if there is no subarray conflict.
Experimental results under 4-cores SPEC CPU 2006 workloads
show that our proposed mechanisms can reduce memory latency
by 68.7% and running time by 34.8% on average, comparing
with the standard PCM system. In addition, our mechanisms
outperform Flip-N-Write 14.6% in latency and 8.5% in running
time on average.

I. INTRODUCTION

Better process scalability and less leakage power make

Phase-Change Memory (PCM) a promising alternative or

supplement to DRAM. In PCM, writes and reads are very

different: writes are much slower than reads and take more

electric current. When a PCM storage cell is written, large

electric current is drawn to heat up the cell’s GST material

to change its phase and resistance. Compared with reads that

simply measure the resistance of cells, writes require a larger

electric current pulse for a much longer duration. However, the

instantaneous supply of electric current to each PCM bank is

restricted in order to control signal noise ratio on bit lines. As

a result, the write bandwidth of a PCM bank is limited.

A high-density memory bank usually consists of multi-

ple subarrays with private hardware components that can

independently decode memory address and access memory

cells. However, during a bank conflict when multiple requests

access the same bank, these requests are served one after

another. Very recently, Ref. [1] demonstrated that in DRAM

allowing concurrent accesses to different subarrays within the

same DRAM bank can significantly improve the memory

performance in a very cost-effective way.

A PCM cell array also includes multiple subarrays. How-

ever, optimization via subarrays in PCM is more challenging

than DRAM. First of all, writes in PCM are much slower and

takes more electric current than writes in DRAM. Second, the

instantaneous current supply to a PCM bank is limited due

to the constraints of signal noise ratio on bit lines. Therefore

the maximal number of bits that can be written in parallel is

limited to 32 or 64 typically [2]. Compound by large write

electric current and limited power supply in a bank, a PCM

bank has no power surplus to serve other memory accesses

when a write is being performed in this bank. When multiple

requests with no subarray conflict go to the same bank,

PCM often cannot simultaneously serve them, thus sacrificing

subarray-level parallelism.

In order to leverage subarray-level parallelism, we propose

two new power management techniques for the PCM system,

called PASAK and WAVAK, which fully overlap a write

operation with read operations that access different subar-

rays within the same bank, and accordingly reduce negative

performance impact of slow writes on time-critical reads in

PCM. We note that during a write, conventional memory

controller conservatively estimates the required electric current

by assuming that each bit to be written takes the same

amount of electric current as writing a bit of zero. In fact,

writing a zero bit takes much more electric current than

writing a one bit. This leaves some instantaneous power budget

unused, causing key hardware components underutilized. In

PASAK, exploiting current difference between writing bit 0

and bit 1, the memory controller obtains an accurate-and-tight

requirement of consumed electric current depending on the

number of zeros and ones in the data block. Therefore a bank

has power budget surplus to serve other requests that have

no subarray conflicts. In addition, before the write completes,

PASAK dynamically grants reads according to available power

balance as long as there is no subarray conflict in a bank.

Our second technique (WAVAK) is based on the observation

that a write data block often contains more bits of zeros than

ones. WAVAK adds a simple bit-inverse scheme to reduce the

number of zero bits that are more power-consuming to write.

WAVAK simply inverts all bits of a data block to be written

if there are more zero bits in this block. In this way, it has a

larger power balance to serve more read requests in parallel

when a bank is executing a slow write, achieving a larger

degree of subarray-level parallelism than PASAK.

We evaluate our proposed techniques by simulating a multi-

core system under the SPEC CPU 2006 benchmark suite.

Experimental results under 13 multi-programmed workloads

show that PASAK and WAVAK reduce the read latency by

59% and 68.7% on average over a standard PCM baseline,

respectively. These read latency reductions translate to a

978-3-9815370-0-0/DATE13/ c©2013 EDAA



running time decrease of 31% and 34.8% respectively. In

addition, WAVAK is superior to Flip-N-Write [14], a recently

proposed PCM write optimization strategy, with 14.6% latency

reduction and 8.5% running time reduction.

The rest of paper is organized as follows. Section II in-

troduces the background of PCM and subarrays in a bank.

Section III and Section IV present our PASAK and WAVAK

schemes respectively. Section V discusses the experimental

results. Related work is summarized in Section VI and con-

clusions are given in Section VII.

II. BACKGROUND

A. Phase Change Memory

A PCM cell has one transistor and one resistor (1T1R),

while a DRAM cell has one transistor and one capacitor

(1T1C). PCM exploits remarkably different properties of

phase-change material of a memory cell to store data. For

example, phase change material Ge2Sb2Te5(GST) has two

phases: an amorphous phase with a high resistance of MΩs

and a crystalline phase with a low resistance of KΩs.

���� ������	

����

���� ������	 
����

��� ������	 
����

��
��
��
��
��

��
��
��
��

�
�
�
�
�
�
�

�� !"#$%�& � !"#$%
�'()

*+,-.+/0

1234-.+/0

56789
:;669<8

=>?

Fig. 1. Writing to a PCM Cell

Comparing with a bit of one, writing a bit of zero requires a

much larger electric current but takes a much shorter amount

of time, as show in Fig. 1. When bit 0 is written, a large current

has to be applied to the target cell for a short duration in order

to heat the GST abruptly and move it to the amorphous phase.

On the other hand, when bit 1 is written, a relatively smaller

current is applied to the cell for a longer duration to slowly

heat up the GST and leave it in the crystalline phase. For

example, ratio of the electric current to write bit 0 to current

to write bit 1 is 2 in Ref. [3], 3 in Ref. [4], and 2 in Ref. [5]. By

contrast, reading data does not need to melt the phase change

material, and thus required electric current is much smaller

than writing.

Meanwhile, conventional PCM controller also conserva-

tively assumes a bit to be written takes the same amount of

electric current as writing a bit 0. As a result, it is frequent

that a less number of bits are written in parallel, resulting in

underutilization of hardware resource.

B. PCM Power Delivery Constrains

Write performance is also limited by the electronic circuit’s

constraints in a PCM chip. As discussed previously, writing

a 0 requires a large current to heat GST. The Dickson charge

pump is widely used in PCM chips to provide electric current

to the write driver with low power efficiency [6]. The noise

on the power line prevents the charge pump from providing

a high level of instantaneous current needed for write [6]. In

addition, the noise constraints of charge pump also limit the

number of cells that can be concurrently written to 2, 4, and

8 typically in a chip [6].

As discussed earlier, conventional write scheme often over-

estimate the electric current requirement by assuming all bits

to be written are zero. This conservative scheme amplifies the

negative impact of power delivery constraints.

C. Subarray and Subarray-level Parallelism in DRAM

@ABC DEFFGH

...

...

...

@AI JKL@

@AI DEFFGH

CMNOHP
QHGFGRST
POUVWX

AMNOHP
YZXS[
\EHYR

POUVWX

AI

AI

]E\VHHVZ
^ONMPGSOPGH

_`K `Gaa
DaOSb c

]
d
J

]E\VHHVZ
e

fOSVa
]gh
e

]E\VHHVZ
c

fOSVa
]gh
c

iaO\Va
^ON

DEFFGH

jjj

jjj jjjjjj

klm noplnoq

r
s
tu
vw
xyvxz
{

iaO\Va dOHPaWXG

_`K `Gaa
DaOSb |

]
d
J

r
st
uvw
xyvxz{

}
~
�

�aO\Va \WRaWXG

���� �

���� ���
�

i�J�`

]gh� dHWRG JHW�GH

B�I

|B

|B

f�J�`

i�J�`

]gh� dHWRG JHW�GH

B�I

|B

|B

f�J�`

fOSVa dOHPaWXGfOSVa dOHPaWXG

Fig. 2. Subarray in a Bank

A cell array in a DRAM bank includes a very large number

of rows and columns. For example, a bank can have 32k

rows, with 8k cells in each row. During a memory access,

the row address and column address choose a specified word

line and bit lines in a cell array. Long bit lines are required in

a high-density bank. However, the large parasitic capacitance

associated with long bit lines not only causes unreliable

data sensing but also increases the latency for activation and

precharge command. In order to circumvent these drawbacks,

all cells in a bank are organized into a two-dimensional array

of cell blocks as shown in Figure 2. Each block has its local

bit lines, local word lines, local sense amplifiers(S/A), and

write drivers. In addition, each block has a local row column

decoder(LYDEC), a sub-wordline driver (SWD), and a local

row decoder. Multiple blocks constitute a subarray and a bank

consists of several subarrays. The global row buffer relies the

signals from local S/A to I/O drivers through global bit lines,

which can improve these signal quality.

Since each subarray has its own local data path and sense

amplifiers to access data cells, a recent research [1] enhances

DRAM banks by adding more data path control gates and

latches for local and global address information, and intro-

duces extra commands to specify the working subarray in

order to exploit the subarray-level parallelism inside a bank.

With the above enhancement, a bank can overlap activation of

one subarray with precharging, write-recovery and activation

on other subarrays inside the same bank.

Similar to DRAM, a high storage density PCM array also

has multiple subarrays for two important reasons [2], [6].



First, without subarrays, bit lines and word lines become too

long and then associated parasitic resistances are then too

large. This not only reduces the cell sensing speed due to

large RC delay, but also decreases the heating efficiency to

PCM cell during write. Second, sharing SWD, S/A, W/D and

other resource with adjacent subarray makes chip layout more

efficient and simpler.

III. POWER ALLOCATION SCHEME FOR PCM SUBARRAYS

We propose a new power allocation scheme for a PCM bank

to better leverage subarray-level parallelism without violation

of power budget. This power allocation scheme is based on

the following three insights about PCM. First, writing bit 1

consumes less current than writing bit 0 in PCM. It is reported

that the current required to write bit 1 is half of the current

to write bit 0 [7]. Second, reading PCM cells requires much

less current than writing. In some devices, the current to read

PCM is only 1/15 of the current to write bit 0 [7]. Third,

conventional memory controller uses a static strategy that

tends to overestimate the current requirement when writing

a data block. It conservatively assumes each bit in the write

request consumes the same current as writing bit 0, even

though not all bits are 0 typically.

In our power allocation scheme, the memory controller

enforces a dynamic and accurate power allocation for each

memory access. Before writing a data block, the memory

controller counts the number of zero bits and one bits in the

target data block and computes the current requirement based

on pre-measured current requirement for writing a 0 and a 1,

which are given parameters by PCM manufactures. Since not

all bits in a write request are 0, this current estimation usually

is much smaller than the conventional scheme, which assumes

that each bit to be written is 0. We call this power allocation

scheme for subarray-enabled banks PASAK. Suppose the

current for writing a bit 0 is Ireset, the current for writing a bit

1 is Iset, and the write block has a total of N bits, including

N0 bits of zero, the total current required to write the data

in the conventional scheme and PASAK can be calculated as

follows.

Iconventional = N · Ireset (1)

IPASAK = N0 · Ireset + (N −N0) · Iset (2)

When a write operation is performed, our allocation scheme

uses electric current surplus of a PCM bank to serve

performance-critical reads as long as there is no subarray

conflict. This allocation scheme is safe since it does not violate

the power budget for each PCM bank.

The implementation of PASAK is simple. The memory

controller maintains a current balance (CB) for each bank.

Initially, each bank’s CB is set as the maximal current provi-

sion for a bank. Before issuing a memory access to a bank,

the memory controller checks whether its CB is sufficiently

large and decides whether to grant the access or postpone

it. After an access is issued, the memory controller subtracts

the access’s current requirement from the corresponding CB.

When an access completes, the memory controller adds this

access’s current requirement back to the CB.

PASAK’s bit counter circuits is simpler than the similar

one used in the Flip-N-Write, which computes the difference

(hamming distance) between the old data and the new data

on writing data. In addition, compared with Flip-N-Write,

PASAK has no data inversion part. Therefore, PASAK has

smaller latency and less power consumption than Flip-N-

Write.

Figure 3 gives a simple example to compare PASAK and

MASA, which was proposed recently [1]. Assume a write

request and a read request arrive at the time instant t0 and

t1, respectively. At t1, MASA blocks the read request since

the memory controller has already allocated the whole power

budget of the target bank to the previous write. This leads to

zero CB since the memory controller does not examine of the

content of the target write data and simply assumes all bits

to be written are 0s. However, our PASAK examines each bit

in the write data and generates an accurate estimation of the

required electrical current for the write request. This makes

this bank’s CB large enough to serve the read request issued

at t1 without any delay.

��� � ���

�

���������
������

���������
������

���������
������

���������
������ �� ¡¢

£¤¥¡
¦§¨§

©§¨§ª

«¬«®¯°�� ±�²

��� �³

��� � ��� °�� ±�²

���� �³

´µ¶·

´µ¸·

¹º»¼½¾¿ ÀÁ Â» Ã»Ä¾Å ÆÇÅÈºÇÉ

Ê� Ê� ÊË

Fig. 3. Timeline of two requests accessing different subarrays of the same
bank

PASAK is similar to the power token scheme [8] but has

the following differences. First, while the power token scheme

only manages the power consumption for writes in PCM,

our scheme manages not only writes but also reads. Second,

the power token scheme estimates the requirement of electric

current for each bit without differentiating bit 0 and 1. Our

scheme considers their difference, and accurately computes

the electric current required for a given data block to be

written. Third, while the power token scheme only considers

the aggregate power budget at the system level, our scheme

considers the power limitation specified in real PCM chips [2],

[6] and enforces the power budget at the individual bank level,

instead of the system level. This finer granularity helps us

ensure the operation safety of each PCM bank.

IV. WRITE DATA INVERSION FOR PCM SUBARRAYS

In the previous section, we present PASAK that leverages

the current difference between writing a bit 1 and a bit 0

to perform accurate-and-tight current budgeting, which allows

us to use surplus current budget to serve reads when a

write is served. In this section, we propose a new write data

coding scheme, called WAVAK, to reduce the current demand

when writing a data block. WAVAK allows more reads to be



served in parallel with a write, thus increasing subarray-level

parallelism.

We note that the number of 0s and 1s in a data block

are frequently unequal. Especially, it is observed that there

are often more 0s than 1s. Previous research work [9] has

observed this skewed distribution and used it to optimize

PCM performance. As mentioned earlier, writing bit 0 takes

more current than writing bit 1. Based on these two key

observations, we propose a coding scheme to reduce the

current consumption of a write.

The key idea of WAVAK is to invert all bits of the target

data if there are more 0s than 1s in a write request. A flag bit is

added and stored in PCM to indicate whether its corresponding

data block has been inverted or not. When reading a data

block from PCM, the memory controller inverts this block

if its flag bit is set. The block size is set as the size of a

cache line, which typically is 64 bytes, i.e., 512 bits. Thus the

space overhead due to flag bits is very small. In addition, since

write operations are not in the critical path and accordingly the

performance overhead generated by data inversion is almost

negligible. Compared with Flip-N-Write, a recently proposed

technique for PCM, WAVAK has much less performance and

energy overhead since WAVAK does not need to read original

data from PCM during a write. For each write request, Flip-N-

Write always reads original data out from PCM, and compare

the new and old data to decide flip or not.

The WAVAK’s writing current requirement is listed as

follows.

IWAVAK =

{

N0 · Ireset + (N −N0) · Iset if N0 < N/2
(N −N0) · Ireset +N0 · Iset otherwise

WAVAK differs from Flip-N-Write in the following aspects.

First, Flip-N-Write inverts data in order to reduce the number

of bits to write whereas WAVAK inverts data in order to reduce

the number of power-hungry zero bits to be written. Second,

while Flip-N-Write inverts data when the number of different

bits between the old data and new data is over a half of the total

data size, WAVAK inverts data when the number of zero bits

is larger than a half of data size. Third, the storage overhead

for inversion flag bits in WAVAK is much smaller than Flip-

N-Write. Flip-N-Write has one flag bit for each 8-byte block,

but we have a flag bit of for a cache line (64 bytes in this

study).

V. EXPERIMENT RESULTS

We evaluate our design by using the execution-driven pro-

cessor simulator M5 [10] and the cycle-level memory simula-

tor DRAMsim [11]. Table I shows the parameters of simulated

processor and product grade PCM [2]. The simulated processor

has four out-order cores with 32 MB L3 cache. The PCM read

and write latency is set as 57ns and 430ns, respectively [2].

We set the electric currents to read a bit and write bit 1 to be

40 µA and 300 µA respectively according to Ref. [7]. A bank

has eight subarrays according to Ref. [2].

Our experiments consider realistic PCM chip power con-

strains and set the PCM write unit to be 8 bytes. In con-

ventional writing scheme, writing a cache line of 64 bytes to

Parameter Value

System 4-core CMP, 4 GHz
Execution Core Alpha-like out-order processor
L1 Cache 32KB I-cache, 32KB D-cache
L2 Cache Latency 20ns, 2MB, 4-way, 64B

cache line
L3 Cache Latency 50ns, 32MB, 8-way, 64B

cache line
Memory Controller RIFF request scheduling algorithm
Width of data bus 64 bits
Memory Organization 2 ranks, 16 bank/bank, 8 subar-

rays/bank
Time to access PCM read: 53ns, write: 430ns

Electric Current Requirement 600 µA for writing bit 0 (Ireset),
300 µA for writing bit 1 (Iset ),
40 µA for reading a bit

Bank Power Budget 8× 8× 600 µA = 38.4 mA

PCM write unit size 8 bytes

TABLE I
SIMULATION PARAMETERS

PCM takes 8 × 430ns = 3440ns while reading a cache line

needs less than 100ns due to the chip-level prefetch. Since

writing a zero bit takes 600 µA current [2] and a write unit

has 8 bytes, the power budget for a bank is 8× 8× 600 µA =

38.4 mA. To tolerate slow PCM write, we add a large off-chip

L3 DRAM cache. In addition, since the memory write back

is not in the performance critical path, we choose to use the

Read Instruction and Fetch First (RIFF) scheduling algorithm,

which has been recommended by other researchers [12].

We construct 13 multi-programmed workloads with inten-

sive memory accesses by combining multiple applications

selected from the SPEC CPU 2006 benchmark suit. All

applications in each workload run in parallel. Each application

is fast-forwarded 5 billion instructions first and then 1.25

billion instructions are simulated for each application. Table II

summarizes key characteristics of these workloads, including

memory Read Per Kilo Instructions (RPKI), memory Write

Per Kilo Instructions(WPKI).While our L3 cache has 32MB

and is smaller than the one used in other studies [12], [13],

the intensity of memory accesses measured in our workloads

is very close to theirs and thus we believe a larger L3 cache

is unnecessary.

We compare our design with the baseline scheme that uses

the same parameters as listed in Table I but does not have any

PCM optimization. We also compare ours against two recently

proposed PCM write optimization techniques including Write

Cancellation (WC) [12] and Flip-N-Write (FNW) [14].

We also conduct experiments for the subarray-enabled bank

without bank power limitation and the subarray-enabled bank

with conventional power allocation scheme. Compared with

these two schemes, we can demonstrate how effectively our

proposed power allocation schemes work and how much our

schemes can be improved by using the yardstick of an ideal

PCM system without power limitation.

A. PASAK

Figure 4 presents the read latency reduction of PASAK over

the baseline that does not have any write optimization, and



Workload Description RPKI WPKI

MIX1 astar, bzip2, milc, leslie3d 1.75 1.37

MIX2 astar, cactusADM, libquantum, so-
plex

6.46 4.42

MIX3 cactusADM, bzip2, gobmk, mcf 0.98 0.66

MIX4 cactusADM, cactusADM, gobmk,
gobmk

5.57 3.46

MIX5 gobmk, gobmk, cactusADM, hm-
mer

1.01 0.54

MIX6 gobmk, leslie3d, mcf, libquantum 1.23 1.21

MIX7 gobmk, zeusmp, mcf, lbm 4.08 2.19

MIX8 leslie3d, bzip2, mcf, lbm 1.94 1.2

MIX9 leslie3d, gobmk, lbm, astar 7.99 6.09

MIX10 leslie3d, leslie3d, milc, milc 4.05 2.54

MIX11 leslie3d, soplex, bzip2, astar 1.92 1.43

MIX12 soplex, libquantum, astar,
GemsFDTD

1.14 0.83

MIX13 soplex, soplex, sjeng, sjeng 0.97 0.76

TABLE II
CHARACTERISTICS OF 13 WORKLOADS FOR A FOUR-CORE SYSTEM

compares it with the other optimization schemes. We have the

following observations.

First, the subarray-enabled bank without power limitation

(subarray-No-limit) achieves the best performance, with an av-

erage of 82.7% read latency reduction over the baseline. On the

other hand, the subarray-enabled bank with power limitation

(subarray-PW-limit) fails to achieve any latency reduction over

the baseline. This is not surprising. Simply applying the sub-

array into PCM does not provide any performance gain since

a power-consuming PCM write operation cannot overlap with

read operations due to the overestimation of electric current

required for a write in the conventional system.

Second, for most of 13 workloads studied, PASAK can

successfully reduce the read latency more than Write Can-

cellation (WC) and Flip-N-Write(FNW). On average, the read

latency of PASAK is 59% smaller than the baseline, while

Write Cancellation and Flip-N-Write(FNW) are only 9.53%

and 54.1% smaller, respectively.

Third, PASAK has a smaller latency for workloads that are

more write-intensive. For example, the latency reduction for

workload MIX4, MIX6, MIX7 and MIX9 is 91%, 78.6%,

74.8% and 73.4%, respectively. This is because in write-

intensive workloads writes are more likely to block reads that

are more critical to performance. In addition, intensive writes

create more optimization opportunities that allow reads to be

served concurrently with a write at the subarray level. We also

observe that there is a 23.7% gap in latency between the ideal

subarray-enabled bank without power limitation and PASAK,

implying that PASAK can be further improved potentially.

Figure 5 shows the reduction of the total running time of

PASAK and other schemes when compared with the baseline.

The results confirm that PASAK’s reduced read latency is

directly translated into performance gain. On average, PASAK

provides 31% performance improvement over the baseline and

its average running time is 4.7% and 24.18% shorter than Flip-

N-Write and Write Cancellation, respectively.

B. WAVAK

Figure 4 compares the read latency reduction over the

baseline for six schemes, including Flip-N-Write (FNW),

Write Cancellation (WC), ideal subarray-enabled bank

(subArray-No-limit), subarray-enabled bank with power bud-

get (subArray-PW-limit), PASAK and WAVAK. We observe

that WAVAK achieves more read latency reduction than

PASAK. On average, the latency reduction for WASAK is

68.7%, while PASAK is 59%. Compared with PASAK, the

read latency of WASAK is 9.7% smaller. WAVAK reduces the

number of power-consuming zero bits in a write data block

via inversion and hence consumes less electric current than

PASAK when writing a cache line. Therefore, WAVAK has a

larger current balance to allow more read requests to be served

in parallel than PASAK. In other words, WAVAK achieves a

larger subarray-level parallelism than PASAK under the same

bank power budget, resulting in a smaller latency.

The running time reduction over the baseline is shown in

Figure 5. Since WAVAK utilizes a new coding scheme to

make more electric current available to read requests within a

bank, it can significantly reduce the queuing time of reading a

cache line. Under 13 workloads studied in this paper, WAVAK

achieves 34.8% running time reduction over the baseline on

average, and outperforms PASAK, Flip-N-Write and Write

Cancellation by 3.8%, 8.5% and 27.98%, respectively.

VI. RELATED WORK

Several research projects have aimed to hide the long write

latency of PCM. Ref. [7] adds a buffer to each PCM bank

and exploits the data locality to mitigate the slow write. They

further propose a partial write strategy for a cache line to

reduce the amount of data written to PCM. Flip-N-Write [14]

and RBW/DI [15] use a simple read-modify-write technique

to write either flipped or unflipped data to reduce write time.

Write cancellation and write pausing [12] are proposed to indi-

rectly improve the PCM read performance. Write cancellation

aborts an on-going write for a newly-arriving read request

targeted to the same bank if the write operation is not close

to completion.Recently, write truncation and form switch [13]

are proposed to improve write performance for the multiple-

level-cell PCM. Based on the observation that not all bits for

a block of data need the same number of write iterations, the

write truncation early terminates the write iteration when most

bits have been successfully written and then recover the data

with extra error correction code during reading.

The PCM needs high levels of electrical current to write to

a PCM cell and thermally change its state. Delivering such

high levels of power is a challenge for both PCM chips and

the system. Ref. [8] proposes power tokens to manage the

PCM writes and specifies tight power allocation to increase the

number of parallel write bits under a given power budget. In

this paper we follow the bank’s power budget from real PCM

chip prototypes and enforce power budget at the bank level.

We manage power for both read requests and write requests

in order to exploit the subarray-level parallelism inside a

subarray-enabled PCM bank.



−20

0

20

40

60

80

100
La

ten
cy

 R
ed

uc
tio

n(
%

)

 

 

MI
X1

MI
X2

MI
X3

MI
X4

MI
X5

MI
X6

MI
X7

MI
X8

MI
X9

MI
X1

0

MI
X1

1

MI
X1

2

MI
X1

3

me
an

FNW

WC

subArray−No−limit

subArray−PW−limit

PASAK

WAVAK

Fig. 4. Read Latency Reduction of WAVAK

−10

0

10

20

30

40

50

60

70

80

Ru
nn

ing
 T

im
e R

ed
uc

tio
n(

%
)

 

 

MI
X1

MI
X2

MI
X3

MI
X4

MI
X5

MI
X6

MI
X7

MI
X8

MI
X9

MI
X1

0

MI
X1

1

MI
X1

2

MI
X1

3

me
an

FNW

WC

subArray−No−limit

subArray−PW−limit

PASAK

WAVAK

Fig. 5. Running Time Reduction of WAVAK

Many innovations of memory micro-architecture improve

the memory performance. Among them, Ref. [1] is most

closely related to our research. Although enabling the

subarray-level parallelism works well for DRAM, the PCM’s

large writing power and its limited power delivery in bank pre-

vents an executing slow PCM write request from overlapping

with read requests in different subarrays in the same bank,

resulting in under-utilization of subarrays.

VII. CONCLUSION

A subarray-enabled bank has been used in DRAM to

mitigate the performance degradation due to bank conflicts.

While PCM is emerging as a promising memory, this paper

finds that the subarray-enabling technology cannot be directly

applied to PCM due to large electric current draw for writes

in PCM.

This paper presents and evaluates two power optimizations,

called PASAK and WAVAK, that take advantage of the electric

current difference of writing a zero bit and a one bit in

PCM to judiciously enable subarray-level concurrent accesses.

In PASAK, the memory controller accurately estimates the

electric current required depending on the total number of

zero bits and one bits in the data block to be written, and

then dynamically schedule memory accesses with no subarray

confliction according to the available power budget at each

bank.

WAVAK further improves PASAK by reducing the power

requirement of writing a data block. Based on the observation

that writing bit 0 takes more electric current than write bit 1,

all bits of a data block to be written are inverted if there are

more zeros than ones in this block. An extra flag bit is added

to record the inversion. In this way, WAVAK provides a larger

power surplus than PASAK and accordingly allows more reads

to be served concurrently with a slow write, resulting in better

utilization of subarray-level parallelism.

Experiment results of 13 multi-programmed SPEC CPU

2006 workloads on a four-core out-order system with PCM

memory show that PASAK and WAVAK successfully reduce

the read latency of the standard PCM baseline by 59% and

68.7% on average, and reduce the running time by 31% and

34.8% on average, respectively. WAVAK outperforms Flip-N-

Write and Write Cancellation by 14.6% and 59.17% in latency,

and 8.5% and 27.98% in running time on average.

REFERENCES

[1] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting
subarray-level parallelism (salp) in dram,” in Proceedings of the 39nd

annual international symposium on Computer Architecture, ser. ISCA
’12, 2012.

[2] K.-J. Lee, B.-H. Cho, W.-Y. Cho, and etc, “A 90 nm 1.8 v 512 mb diode-
switch pram with 266 mb/s read throughput,” Solid-State Circuits, IEEE

Journal of, vol. 43, no. 1, pp. 150 –162, Jan. 2008.
[3] F. Bedeschi, C. Resta, and etc, “An 8mb demonstrator for high-

density 1.8v phase-change memories,” in VLSI Circuits, 2004. Digest

of Technical Papers. 2004 Symposium on, june 2004, pp. 442 – 445.
[4] H. rok Oh, B. hyung Cho, and etc, “Enhanced write performance of

a 64-mb phase-change random access memory,” Solid-State Circuits,

IEEE Journal of, vol. 41, no. 1, pp. 122 – 126, jan. 2006.
[5] S. Kang, W. Cho, and etc, “A 0.1/spl mu/m 1.8v 256mb 66mhz

synchronous burst pram,” in Solid-State Circuits Conference, 2006.

ISSCC 2006. Digest of Technical Papers. IEEE International, feb. 2006,
pp. 487 –496.

[6] S. Kang, W. Y. Cho, B.-H. Cho, and etc, “A 0.1-um 1.8-v 256-mb phase-
change random access memory (pram) with 66-mhz synchronous burst-
read operation,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 1,
pp. 210 –218, Jan. 2007.

[7] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th

annual international symposium on Computer architecture, ser. ISCA
’09, 2009, pp. 2–13.

[8] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Preventing
pcm banks from seizing too much power,” in Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-44 ’11. New York, NY, USA: ACM, 2011, pp. 186–195.

[9] M. Arjomand, A. Jadidi, A. Shafiee, and H. Sarbazi-Azad, “A morphable
phase change memory architecture considering frequent zero values,” in
29th IEEE International Conference on Computer Design, ser. ICCD’11.
Amherst, MA, USA: IEEE Computer Society, 2011.

[10] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,
and S. K. Reinhardt, “The m5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, 2006.

[11] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and
B. Jacob, “Dramsim: a memory system simulator,” SIGARCH Comput.

Archit. News, vol. 33, no. 4, pp. 100–107, 2005.
[12] M. T. Jacob, C. R. Das, and P. Bose, Eds., 16th International Conference

on High-Performance Computer Architecture (HPCA-16 2010), 9-14

January 2010, Bangalore, India. IEEE Computer Society, 2010.
[13] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving

write operations in mlc phase change memory,” in HPCA, 2012, pp.
201–210.

[14] S. Cho and H. Lee, “Flip-n-write: a simple deterministic technique to
improve pram write performance, energy and endurance,” in Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture, ser. MICRO 42, 2009, pp. 347–357.
[15] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-

and endurance-aware design of phase change memory caches,” in
Proceedings of the Conference on Design, Automation and Test in

Europe, ser. DATE ’10, 2010, pp. 136–141.


