
A Novel Weighted-Graph-Based Grouping
Algorithm for Metadata Prefetching

Peng Gu, Jun Wang, Member, IEEE, Yifeng Zhu, Member, IEEE,

Hong Jiang, Member, IEEE Computer Society, and Pengju Shang

Abstract—Although data prefetching algorithms have been extensively studied for years, there is no counterpart research done for

metadata access performance. Existing data prefetching algorithms, either lack of emphasis on group prefetching, or bearing a high

level of computational complexity, do not work well with metadata prefetching cases. Therefore, an efficient, accurate, and distributed

metadata-oriented prefetching scheme is critical to leverage the overall performance in large distributed storage systems. In this paper,

we present a novel weighted-graph-based prefetching technique, built on both direct and indirect successor relationship, to reap

performance benefit from prefetching specifically for clustered metadata servers, an arrangement envisioned necessary for petabyte-

scale distributed storage systems. Extensive trace-driven simulations show that by adopting our new metadata prefetching algorithm,

the miss rate for metadata accesses on the client site can be effectively reduced, while the average response time of metadata

operations can be dramatically cut by up to 67 percent, compared with legacy LRU caching algorithm and existing state-of-the-art

prefetching algorithms.

Index Terms—Prefetch, algorithm, metadata, storage.

Ç

1 INTRODUCTION

A novel decoupled storage architecture diverting actual
file data flows away from metadata traffic has emerged

to be an effective approach to alleviate the I/O bottleneck in
modern storage systems [1], [2], [3], [4]. Unlike conventional
storage systems, these new storage architectures use
separate servers for data and metadata services, respectively,
as shown in Fig. 1.

Accordingly, large volume of actual file data does not
need to be transferred through metadata servers (MDSs),
which significantly increases the data throughput. Previous
studies on this new storage architecture mainly focus on
optimizing the scalability and efficiency of file data accesses
by using a RAID style striping [5], [6], caching [7],
scheduling [8], and networking [9]. Only recent years have
seen growing activities in studying the scalability of the
metadata management [2], [10], [11], [12]. However, the
performance of metadata services plays a critical role in

achieving high I/O scalability and throughput, especially in
light of the rapidly increasing scale in modern storage
systems for various data intensive supercomputing applica-
tions, such as predicting and modeling the effects of
earthquakes and web search without language barriers. In
these applications, the volume of data reaches and even
exceeds petabytes (1015 bytes) while metadata amounts to
terabytes (1012 bytes) or more [13]. In fact, more than
50 percent of all I/O operations are to metadata [14],
suggesting further that multiple metadata servers are
required for a petabyte-scale storage system to avoid
potential performance bottleneck on a centralized metadata
server. This paper takes advantages of some unique
characteristics of metadata and proposes a new prefetching
scheme particularly for metadata accesses that is able to
scale up the performance of metadata services in large-scale
storage systems.

By exploiting the access locality widely exhibited in most
I/O workloads, caching and prefetching have become an
effective approach to boost I/O performance by absorbing a
large number of I/O operations before they touch disk
surfaces. However, existing caching and prefetching algo-
rithms may not work well for metadata since most caching
and prefetching schemes are designed for and tested on
actual file data and simply ignore metadata characteristics.
As a result of this negligence, traditional caching and
prefetching algorithms are not specifically optimized for
metadata. And thus they may consequently not fit well with
metadata access cases because file data and metadata
operations usually have different characteristics and exhibit
different access behaviors. For example, a file might be read
multiple times while its metadata is only accessed once. An
“ls -l” command touches the metadata of multiple files but
might not access their data. In addition, the size of metadata
is typically uniform and much smaller than the size of file
data in most file systems (regarding this point, we will

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010 1

. P. Gu is with the Core Operating System Division, Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052. E-mail: pegu@microsoft.com.

. J. Wang is with the School of Electrical Engineering and Computer Science,
University of Central Florida, 4000 Central Florida Blvd., Orlando, FL
32816-2450. E-mail: jwang@eecs.ucf.edu.

. Y. Zhu is with the Department of Electrical and Computer Engineering,
University of Maine, 5708 Barrows Hall, Room 271, Orono, ME 04469-
5708. E-mail: zhu@eece.maine.edu.

. H. Jiang is with the Abacus Distributed Storage Lab (ADSL), Department
of Computer Science and Engineering, University of Nebraska-Lincoln,
103 Schorr Center, 1101 T Street, Lincoln, NE 68588-0150.
E-mail: jiang@cse.unl.edu.

. P. Shang is with the Computer Engineering School, University of Central
Florida, 4000 Central Florida Blvd., Orlando, FL 32816.
E-mail: shang@cs.ucf.edu.

Manuscript received 3 July 2008; revised 5 Feb. 2009; accepted 22 May 2009;
published online 23 July 2009.
Recommended for acceptance by A. Zomaya.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-07-0331.
Digital Object Identifier no. 10.1109/TC.2009.115.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

show further elucidation in Section 3). With a relatively
small data size, the misprefetching penalty for metadata on
both the disk side and the memory cache side is likely much
less than that for file data, allowing the opportunity for
exploring and adopting more aggressive prefetching algo-
rithms. In contrast, most of the previous prefetching
algorithms share the same characteristic in that they are
conservative on prefetching. They typically prefetch at most
one file upon each cache miss. Moreover, even when a
cache miss happens, certain rigid policies are enforced
before issuing a prefetching operation in order to maintain a
high level of prefetching accuracy. The bottom line is, that
they did not realize that considering the huge number and
the relatively small size of metadata items, aggressive
prefetching can be profitable.

On the other hand, aggressive prefetching or group-
based prefetching can easily balance out their advantages by
introducing 1) extra burden to the disk, 2) cache pollution,
and 3) high CPU runtime overhead. Hence, part of the
challenges in developing an aggressive prefetching algo-
rithm is to address the three problems at the same time.

In this paper, we make the following contributions:

. We develop a novel weighted-group-based pre-
fetching algorithm named Nexus particularly for
metadata accesses, featured in aggressive prefetch-
ing while maintaining adequate prefetching accu-
racy and polynomial runtime overhead. Although
there exist group prefetching algorithms for data,
the different size distributions and access character-
istics between data and metadata are significant
enough to justify a dedicated design for metadata
access performance.

. We deploy both direct and indirect successors to
better capture access localities and to scrutinize the
real successor relationship among interleaved ac-
cesses sequence. Hence, Nexus is able to perform
aggressive group-based prefetching without compro-
mising accuracy. As a comparison, existing group-
based prefetching algorithms only consider the
immediate successor relationships when building
their access graphs. In other words, existing group-
based prefetching algorithms seem to be “short-
sighted” when compared with Nexus and thus
potentially bear less accuracy.

. Finally, in Nexus, we defined a relationship strength
to build the access relationship graph for group
prefetching. The way we obtain this relationship
strength makes Nexus a polynomial time complexity
algorithm. Other group-based prefetching algo-
rithms, if adopted and made suitable to achieve the
same level of “far sight” as Nexus does, could easily
be mired in an exponential computational complex-
ity. Therefore, Nexus distinguishes itself from others
by its much lower runtime overhead.

The outline of the rest of the paper is as follows: related
work is discussed in Section 2. Section 3 shows the
fundamental difference between data and metadata size
distribution. Section 4 describes our Nexus algorithm in
detail. Evaluation methodologies and results are discussed
in Section 5. We conclude this paper in Section 6.

2 RELATED WORK

Prefetching and caching has long been studied and im-
plemented in modern file systems. In the area of disk-level
and file-level prefetching, most previous work was done in
three major areas: predictive prefetching [15], [16], applica-
tion controlled prefetching [17], [18], [19], and compiler
directed I/O [20], [21]. The latter two have limited applic-
ability due to their constraints. For example, application
controlled prefetching requires source code revision, and
compiler directed I/O relies on a sufficient time interval
between prefetching instructions inserted by the compiler
and the following actual I/O instructions. Since predictive
prefetching, using the past access pattern to predict future
accesses, is completely transparent to clients, it is more
suitable for general practice, including metadata prefetching.

Unfortunately, although the split data-metadata storage
system has become ever popular for providing large-scale
storage solutions, there is a general negligence on the study
of prefetching algorithms specifically for metadata servers:
current predictive prefetching algorithms are for data but
not metadata.

In order to better illustrate the difference between our
Nexus algorithm and other predictive prefetching algo-
rithms, next we briefly introduce some background in this
field.

On prefetching objects in object-oriented database,
Curewitz et al. developed a probabilistic approach [22].
On prefetching whole files, Griffioen and Appleton intro-
duced a probability-graph-based approach to study file
access patterns [23]. In addition, Li and Duchamp studied
an access tree-based prediction approach [16]. However, in
all above-mentioned studies, only the immediate successors
relationships are taken into consideration, while indirect
successors relationships are ignored. The advantages of
approaches considering both immediate and subsequent
successor relationships are discussed in detail in Section 4.

Based on the previous research, Long and coworkers
developed a serial of successor-based predictive prefetching
algorithms in their efforts to advance the prefetching
accuracy while maintaining a reasonable performance gain
[24], [25], [26]. The features of these predictors are
summarized below as they are state of the art and are most
relevant to our design.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

Fig. 1. System architecture.

1. First Successor [25]: The file that followed file A the
first time A was accessed is always predicted to
follow A.

2. Last Successor [25]: The file that followed file A the
last time A was accessed is predicted to follow A.

3. Noah (Stable Successor) [25]: Similar to Last Successor,
except that a current prediction is maintained; and
the current prediction is changed to last successor if
last successor was the same for S consecutive
accesses where S is a predefined parameter.

4. Recent Popularity (Best j-out-of-k) [27]: Based on last
k observations on file A’s successors, if j out of those
k observations turn out to target the same file B, then
B will be predicted to follow A.

5. Probability-Based Successor Group Prediction [27]: Based
on file successor observations, a file relationship
graph is built to represent the probability of a given
file following another. Based on the relationship
graph, the prefetch strategy builds the prefetching
group with a predefined size S by the following steps:

a. Add the missed item to the group.
b. Add the items with the highest conditional

probability under the condition the items in
the current prefetching group were accessed
together.

c. Repeat step 2 until the group size limitation S
is met.

Among the aforementioned five predictors, the three former
ones fall into the category of single-successor predictors. If
the two latter predictors are revised to take additional
indirect successors into consideration for relationship graph
construction, they would inevitably introduce exponential
time overhead. The detail is explained in Section 4.4.2.

3 FILE DATA AND METADATA SIZE DISTRIBUTION

3.1 Obtaining File Data Size Distribution

To find out the difference between file data and metadata
size distribution, we studied the files stored on the Franklin
supercomputer [28]. Franklin is a massively parallel
processing (MPP) system with 9,660 compute nodes,
serving more than 1,000 users at the National Energy
Research Scientific Computing Center. The collection of file

size distribution is somewhat straightforward compared
with the metadata size case. We simply run a “ls -lR /” on
the head node and then use a script to filter out the file size
information from the output. Note that since we do not
have the privilege to access all the files and directories
stored on the system, by running these scripts we only get
the size information of those files and directories that are
accessible. In this study, we collected the size information
for 8,209,710 regular files and 612,248 directories. The
cumulative distribution function (CDF) of collected file size
distribution results is shown in Fig. 2.

3.2 Obtaining Metadata Size Distribution

Obtaining the metadata size information is not simple. To
the best of our knowledge, there is no direct way/utility in
existence to find out the metadata size information for files
and directories. However, there does exist a way of figuring
out the corresponding metadata size if we know the file size
(assuming file system type and the block size are given). For
example, in an Ext2 file system, the metadata of a regular
file consists of two components: a mandatory inode block
and conditional indirect addressing blocks. According to the
latest Linux kernel source code as of this writing (version
2.6.25.9 released on June 24, 2008 [29]), each Ext2 inode
structure is 128 bytes in length. This inode structure
contains 12 direct block pointers plus 1 indirect block
pointer, 1 double indirect block pointer and 1 triple indirect
block pointer [30]. Once the block size is given, we are able
to calculate the on-disk space occupied by indirect addres-
sing blocks for files of any given size. The resulting
metadata size is then the sum of the inode block size and
the space for indirect addressing blocks. The detailed size
mapping information between file data and metadata is
summarized in Table 1.

Note that Franklin’s user home directory uses the Lustre
file system, which subsequently uses Ext3 file system as its
back-end file system [31]. Furthermore, Ext3 file system’s
data structures on disk are essentially identical to those of
an Ext2 file system, except that it employs a journal to log
metadata and data changes. This means the method we just
described can be applied to calculate the metadata size
based on the file data size collected. For example, given a
block size of 4 KBytes (which is the basic block size for back-
end Ext3 file systems chosen by Lustre file system

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 3

TABLE 1
Size Conversion between File Data and Metadata

Fig. 2. Size distribution comparison of file data and metadata.

developers) and a file size of 3 MB, the corresponding
metadata size will be 4,224 bytes (highlighted in Table 1).
Note that although this calculation applies only to Ext2 or
Ext3 local file system, similar calculations can be applied to
and similar conclusions can be drawn for other parallel or
distributed file systems such as GPFS [32], PVFS, Panasas
[33], and Ceph. All of these file systems use some form of
pointers to refer to certain chunk(s) of data, regardless of
whether these data are stored as regular blocks, local files,
or objects.

According to the file size distribution, we obtain the
corresponding metadata size distribution for the files, and
the results are shown together with the file size distribution
in Fig. 2 for ease of comparison.

3.3 Directory Size Distribution

Metadata include both file inodes and directories: we have
so far discussed the metadata size for file inodes, It may also
be interesting to find out the directory size distribution.
Directories are organized the same way as regular files in a
Linux-based system. By directory size we simply mean the
space in bytes occupied by those filenames under the
directory. To obtain directory size for certain directory, we
iterate all the files and subdirectories under that directory
and sum the length of all the filenames and subdirectory
names.1 The corresponding results are shown in Fig. 3.
According to these results, around 95 percent of the
directory sizes are less than 600 bytes.

3.4 Comparison

From the study of distinction between data and metadata
size distribution on Franklin supercomputer, we observe
that the file size distribution and metadata size distribution
are quite different. For both data and metadata that are
less than 64 bytes, the percentage is very small, i.e., less
than 2 percent. However, around 71 percent of files are
larger than 8 KBytes; while more than 97 percent of
metadata are smaller than 8 KBytes under all three
different block sizes. Moreover, Fig. 4 shows the exact
size distribution of the metadata under different block
sizes in a more direct and conspicuous way.

Specifically, Fig. 4a shows that for 1 KBytes block size,
89 percent of metadata are less than or equal to 1,152 bytes.

Fig. 4b shows that for 2 KB block size, 94 percent of
metadata are 2,176 bytes or less. Fig. 4c shows that for
4 KB block size, the percentage of metadata sizes larger
than 4,224 bytes is almost negligible.

Based on our file data and metadata size distribution
research, we observe that compared with typical file size,
metadata are relatively small. We envision that the same
conclusion holds for petabyte-scale storage system if there
is no significant change on the way the file systems manage
their data and metadata. Consequently, in order to achieve
optimal performance, a new prefetching algorithm that
considers the size differences between data and metadata is
clearly desirable. And a good example to be considered is
an aggressive prefetching scheme.

4 NEXUS: A WEIGHTED-GRAPH-BASED

PREFETCHING ALGORITHM

As a more effective way for metadata prefetching, our Nexus
algorithm distinguishes itself in three aspects. First, Nexus
can more accurately capture the metadata access temporal
locality exhibited in metadata access streams by observing
the affinity among both immediate and subsequent succes-
sors. Second, Nexus exploits the fact that metadata usually is
small in size and deploy an aggressive prefetching strategy.
Third, Nexus maintains a polynomial runtime overhead.

4.1 Relationship Graph Overview

Our algorithm uses a metadata relationship graph to assist
prefetching decision making. The relationship graph is used
to dynamically represent the locality strength between
predecessors and successors in metadata access streams.
Directed graphs are chosen to represent the relationship
since the relationship between a predecessor and a
successor is essentially unidirectional. Each metadatum
corresponding to a file or directory is represented as a vertex
in our relationship graph. The locality strength between a
pair of metadata items is represented as a weighed edge. To
illustrate this design, Fig. 5 shows an artificially simplified
example of relationship graph consisting of metadata for
six files/directories. An observation obtained on this toy
example is that the predecessor-successor relationship
between =usr and =usr=bin is much stronger than that
between =usr and =usr=src.

4.2 Relationship Graph Construction

To understand how this relationship graph works for
improved prefetching performance, it is necessary to first
understand how this graph is built. The relationship graph
is built on the fly while the MDS receives and serves
requests from a large number of clients. A look-ahead
history window with a predefined capacity is used to keep
the requests most recently received by the MDS server.

For example, if the history window capacity is set to 10,
only 10 most recent requests are kept in the history
window. Upon the arrival of a new request, the oldest
request in this history window is replaced by the new-
comer. In this way, the history window is dynamically
updated and always contains the current predecessor-
successor relationship at any time. The relationship in-
formation is then integrated into the graph on a per-request

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

Fig. 3. Directory size distribution.

1. The length of filename including an ending “n0” should be rounded/
aligned to a multiple of four bytes, which is an optimization done in the
Ext2 file system implementation.

basis, by either inserting a new edge (if the predecessor-
successor relationship is discovered for the very first time)
or add appropriate weight to an existing edge (if this
relationship has been observed before).

A piece of pseudocode describing how the relationship
graph is built from the beginning is provided in Fig. 6 and
an example is given in Fig. 7 for better understanding.

In this example, an sample request sequence of

ABCADCBA � � �

is given. Fig. 7a shows the step-by-step graph construction
from scratch with a history window size of two (The weight
assignment methodology assumed here is linear decre-
mental, described later in Section 4.5.1). In contrast, Fig. 7b
shows the same relationship graph construction procedure
with a history window size of three.

4.3 Prefetching Based on the Relationship Graph

Once the graph is built for the access sequence
ABCADCBA � � � as shown in Fig. 7a or Fig. 7b, we are
now ready to prefetch a number of successors as a group
with a configurable size in the graph when a cache miss
happens for an element in that group. The prediction
result depends on the order of the weights (represented
by numbers associated with arrows in Fig. 7) of outbound
edges originated from the latest missed element. A larger
weight indicates a closer relationship and a higher
prefetching priority. Assuming the last request A in the
above sample access sequence sees a miss, according to
the graph shown in Fig. 7a, the prediction result will be
fCg if the prefetching group size is one, or fC;Dg if the
prefetching group size is two; similar results deduced
from Fig. 7b will be fBg and fB;Cg, respectively (as
shown in Table 2).

4.4 Major Advantages of Nexus

4.4.1 The Farther the Sight, the Wiser the Decision

The key difference between the relationship-based and

probability-based approaches lies in the ability to look

farther than the immediate successor. The shortcoming of

the probability-based prefetching model is obvious: it only

considers the immediate successors as candidates for future

prediction. As a consequence, any successors after the

immediate successor are ignored. This shortsighted method

is incapable of identifying the affinity of two references with

some intervals, which widely exists in many applications.

For example, for the pattern “A?B,” we can easily find two

situations where this pattern exhibits.

. Compiling programs: gcc compiler(“A”) is always first
launched; and then the source code(“?”) to be
compiled is loaded; at last the common header files
or common shared libraries (“B”) is loaded afterward.

. Multimedia application: initially media player ap-
plication (“A”) is launched; after that the media clip
(“?”) to be played is loaded; at last the decoder
program (“B”) for that type of media is loaded.

In addition to the above mentioned applications, inter-
leaved application I/Os coming from multicore computers
or from many clients will only make things worse. The
probability-based model cannot detect such access patterns,
thus limiting its ability to make better predictions. How-
ever, this omitted information is taken into consideration in
our relationship-based prefetching algorithm, which is able

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 5

Fig. 5. Relationship graph demo. Fig. 6. Nexus grouping algorithm pseudocode.

Fig. 4. Metadata size distribution. (a) Block size ¼ 1;024 Bytes. (b) Blocksize ¼ 2;048 Bytes. (c) Blocksize ¼ 4;096 Bytes.

to look farther than the immediate successor when we build
our relationship graph.

We use the same aforementioned sample trace sequence,
ABCADCBA � � � , to further illustrate the difference be-
tween the probability-based approach and our relationship-
based method. In the probability-based model, since C
never appears immediately after A;C will never be
predicted as A’s successor. In fact, the reference stream
shows that C is a good candidate as A’s indirect successor
because it always shows up next next to A. The rationale is
that the pattern we observed is a repetition of pattern
“A?C” and thus we predict this pattern will repeat in the
near future. As discussed in Section 4.3, should our
relationship-based prediction be applied, three out of four
prediction results will contain C.

From the above example, we clearly see the advantages
of relationship-based prefetching over probability-based
prefetching. The essential ability to look farther than the
immediate successor directly renders this advantage.

4.4.2 Farther Sight within Small Overhead

The aforementioned advantage comes at the cost of a look-
ahead history window. This approach appears to be

prohibitive for other online prefetching algorithms due to

potential high runtime overhead. However, this overhead is

kept minimum in our design. In fact, we actually achieved a

polynomial time complexity for our relationship graph

construction algorithm as shown in Fig. 6.

Theorem 1. The Nexus grouping algorithm given in Fig. 6 bears

polynomial time complexity

Proof. Let L denote the look-ahead history window size; let

n denote the length of the entire metadata access history.

We will first calculate the time required by each step

described in Fig. 6 and then derive the aggregated

algorithm complexity. Step 1 always takes constant time,

i.e., Oð1Þ. Step 2 dictates that steps 3-7 should be executed

n times. Consequently step 3 dictates that steps 4-6 should

run L times. Step 4 requires constant time assuming that a

two-dimensional adjacency matrix representation is

adopted for graph G. Either step 5 or step 6 is chosen to

be executed next according to runtime conditions. Step 5

requires OðN2Þ and step 6 requires Oð1Þ constant time,

regardless of which one is selected, the worst case

scenario is OðN2Þ for steps 5 and 6 combined. Step 7 also

takes constant time, as it replaces the oldest item by

overwriting the array element in the circular history

window pointed by the last element pointer and shifting

that pointer to the next element, thus no scanning or

searching is involved. Putting it all together, the

worst case time complexity for this algorithm is

Oð1Þ þOðnÞ � fOðLÞ � ½Oð1Þ þOðN2Þ� þOð1Þg ¼ Oðn3 � LÞ,
which means a polynomial time complexity. tu

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

TABLE 2
Prediction Results Comparison

P1 means prefetching with group size ¼ 1; P2 means prefetching
with group size ¼ 2; N2 means Nexus with history window size ¼ 2;
N3 means Nexus with history window size ¼ 3.

Fig. 7. Graph construction examples. (a) Look-ahead history window size ¼ 2. (b) Look-ahead history window size ¼ 3.

In contrast, should we apply the same idea to a

probability-based approach, the complexity of the algo-

rithm would be exponential. For example, if look-ahead

history window size is set to 2 (i.e., L ¼ 2) rather than

1 (L ¼ 1 means only looking at the immediate successor), a

probability-based approach would maintain the condi-

tional probability per 3-tuple P ðCjABÞ instead of per

2-tuple P ðBjAÞ. Under the same assumption for graph

representation as used in the proof above, we can prove

that the time complexity will be OðnLÞ for probability-

based approach as opposed to Oðn � LÞ for Nexus. If we

choose to switch to adjacency list graph representation for

the sake of potential less memory usage,2 the algorithm

time complexity would grow to prohibitive OðnLþ2Þ for a

probability-based approach while only Oðn3 � LÞ for Nexus.

4.4.3 Aggressive Prefetching is Natural for Metadata

Servers

All previous prefetching algorithms tend to be conservative
due to the prohibitive misprefetch penalty and cache
pollution [34]. However, the penalty of an incorrect
metadata prefetch might be much less prohibitive than that
of the file data prefetch, and the cache pollution problem is
not as severe as in the case of file data caching. The evidence
is the observation that 99 percent of metadata are less than
4,224 bytes, while 40 percent of file data are larger than
4 KB, as observed in Section 3.4. On the other hand, we also
observe that metadata servers and compute nodes
equipped with multiple gigabytes or even terabytes of
memory become norm. These observations encourage us to
conduct aggressive prefetching on metadata, considering
that a single cache miss at the client site will result in a
mandatary network round-trip latency plus potential disk
operation overhead when the requested metadata server
consequently sees a cache miss.

4.5 Algorithm Design Considerations

When implementing our algorithms, several design factors
need to be considered to optimize the performance.
Corresponding sensitivity studies on those factors are
carried out as follows:

4.5.1 Successor Relationship Strength

Assigning an appropriate weight between the nodes to
represent the strength of their relationship as predecessor
and successor is critical to our algorithm because it affects
the prediction accuracy of our algorithm. A formulated
description of this problem is: Given an access sequence of
length n:

M1M2M3 . . .Mn;

how much weight should be added to the predecessor-
successors edges,

ðM1;M2Þ; ðM1;M3Þ; . . . ; ðM1;MnÞ;

respectively. Four approaches are taken into consideration:

. Identical assignment: Assigning all the successors of
M1 the same importance. This approach is very
similar to the probability model introduced by
Griffioen and Appleton [23]. It may look simple
and straightforward, but it is indeed effective. The
key point is that at least the successors following the
immediate successors are taken into consideration.
However, the drawback of this approach is also
obvious: it cannot differentiate the importance of the
immediate successor and its followers, which might
subsequently skew the relationship strengths to
some extend. This approach is referred to as identical
assignment for later discussions.

. Linear decremental assignment: The assumption behind
this approach is that the closer the access distance in
the reference stream, the stronger the relationship.
For example, we may assign those edge weights
mentioned above in a linear decremental order, as
10 for ðM1;M2Þ, 9 for ðM1;M3Þ, 8 for ðM1;M4Þ, and so
on. (The weight in the example shown in Figs. 7a and
7b is calculated this way.) This approach is referred
to as decremental assignment in the rest of this paper.

. Polynomial decremental assignment: Another possibi-
lity is that, with an increase in the successor distance,
the decrease in the relationship strength might be
more radical than the linear one. For example,
polynomial decremental assignment is a possible
alternative solution. This assumption is based on the
observation of the attenuation of radiation in the air
in real life.

. Exponential decremental assignment: The attenuation of
edge weights might be even faster than polynomial
decremental. In this case, an exponential decrement
model is adopted. This approach is referred to as
exponential decremental assignment in the future.

To find out which assignment method can best reflect the
locality strength in the metadata reference streams, we
conducted experiments on the HP file server trace [14] to
compare the hit rate achieved by those four edge-weight-
assignment methods. To be comprehensive, these experi-
ments are conducted with different configurations in three
dimensions: cache size, number of successors to look ahead
(or history window size), and number of successors to
prefetch as a group (or prefetching group size). In our
experiments, the cache size (as a fraction of total metadata
workset size) varies from 10 to 90 percent in an ascending
step of 20 percent. We found that the effects of prefetching
become negligible once the cache size exceeds 50 percent.
Accordingly, in this paper, we only present the results with
cache size of 10, 30, and 50 percent. In addition, we also
observe that the results for the polynomial assignment is very
close to those for the exponential assignment, so we remove
the former results to show readers a clearer figure. The results
for the remaining three approaches are shown in Fig. 8.

In Fig. 8, the 3D graphs on the left show the hit rate
achieved by those three approaches over three different
cache size configurations (i.e., 10, 30, and 50 percent) with
both the look-ahead history window size and prefetching
group size varying from 1 to 5. (The values are carefully
chosen in order to be representative while nonexhaustive.)
The three 2D graphs on the right show the corresponding

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 7

2. Switching to adjacency list representation may reduce memory space
occupation at the cost of potential computing time increase if the original
adjacency matrix turns out to be a sparse matrix.

planform (an X-Y plane looking downward along the Z axis)
of the same measurements. These 2D graphs clearly show
that the linear decremental assignment approach takes the
lead most of the time. We also notice that the identical
assignment beats others in some cases even though this
approach is very simple. Since the linear decremental
assignment approach consistently outperforms others, in
the future experiments, we will deploy this approach as our
edge-weight-assignment scheme.

4.5.2 How Far to Look Ahead and How Many to Prefetch

To fully exploit the benefit of bulk prefetching, we need to
decide the distance to look ahead and the bulk size to
prefetch. Looking ahead too far may compromise the
algorithm’s effectiveness by introducing noise to the
relationship graph; and prefetching too much may result in

a lot of inaccurate prefetching, possible cache pollution, and
cause performance degradation. We compare the average
response time by performing a number of experiments on a
combination of these two key parameters, i.e., look-ahead
history window size and prefetching group size. In these
experiments, we adopt the same simulation framework
described in Section 5.2. The result is shown in Fig. 9. From
Fig. 9, we found that looking ahead five successive files’
metadata and prefetching two files’ metadata at a time
turned out to be the best combination. The results also seem
to suggest that the larger the look-ahead history window
size, the better the hit rate achieved. This observation
prompts us to experiment on much larger look-ahead history
window, with sizes 10, 50, and 100, respectively, and found
contradicting results to our conjecture: none of those three
look-ahead history window size configurations achieves a
better hit rate than the windows size of 5. The reason is that
looking too far ahead might overwhelm the prefetching
algorithm by introducing too much noise—those irrelevant
future accesses are also taken into consideration as succes-
sors, reducing the effectiveness of the relationships captured
by the look-ahead history window.

In the rest of the paper’s experiments, the look-ahead
distance and the prefetching group size are fixed to 5 and
2, respectively, for best performance gains. In addition,
since a cache size as small as 10 percent is good enough to
demonstrate this performance gain, we will use this as the
default configuration unless otherwise specified.

4.5.3 Server-Oriented Grouping versus Client-Oriented

Grouping

One way to improve the effectiveness of the metadata
relationship graph is to enforce better locality. Since
multiple client nodes may access any given metadata server
simultaneously, most likely request streams from different
clients will be interleaved, making the pattern more difficult
to observe. Thus, it may be a good idea to differentiate the
different clients when building the relationship graph.
Thus, there are two different approaches to build the
relationship graph on the metadata servers: 1) build a single
relationship graph for all the requests received by a
particular metadata server; or 2) build a relationship graph
for requests originated from each individual client and
received by a particular metadata server. In this paper, we
refer to the former version as server-oriented access
grouping, and the latter as client-oriented access grouping.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

Fig. 8. Edge-weight-assignment approaches comparison. (a) Cache
size ¼ 10 percent. (b) Cache size ¼ 30 percent. (c) Cache
size ¼ 50 percent.

Fig. 9. Sensitivity study: look ahead and prefetch. (a) Cache size ¼ 10 percent. (b) Cache size ¼ 30 percent. and (c) Cache size ¼ 50 percent.

We have developed a client-oriented grouping algorithm
and compared it with the server-oriented grouping by
running them on the HP traces, as shown in Fig. 10.

Fig. 10 clearly shows that client-oriented grouping
algorithm consistently outperforms the server-oriented
one. Thus, we adopt the client-oriented grouping algorithm
whenever possible.

4.5.4 Weights Overflow Issue

As the edge weights in the relationship graph are mono-
tonically nondecreasing, over time integer overflow is going
to happen sooner or later. One possible solution to this
problem is using some forms of “big Integer” library that
represents integers of arbitrary size. For example, here is one
such library [35]. However, those libraries may introduce
some unexpected overhead due to the increasing size of data.

Another way to address overflow problem is to recalcu-
late all the weights when one or more of them are going to
be overflowed. Our purpose is to avoid integer overflow
while keeping the order of the weights (do not want to
change the priorities of the vertices connected to this vertex).
An example shown in Fig. 11 illustrates this idea.

In Fig. 11, weight of edge (i,j) means the quantified
relationship from vertex i to j. If data overflow is detected
when edge (i, j) is being renewed, the weights of all the
edges starting from vertex i are simply recalculated as
shown in the right part of Fig. 11. Since it is easy to
enumerate the edges originated from vertex i (no matter
adjacent matrix or list is used), we can reassign new weights
from 0 to N�1 (assume N is the number of edges whose
start point is vertex i) to the edges while make sure the
original weight ordering is not changed. In Fig. 11, there are
five edges E1-E5 in original graph, the order is E1 > E2 >

E5 > E3 > E4, which is also kept in the recalculated graph.
Although the new weights are way less stronger than the
old ones (for example, in the left part of Fig. 11, even if the
weights of E5 is added multiple times, it still cannot exceed
the priority of E2. While in the right part of Fig. 11, a single
addition to the weight of E5 will change the ordering of
prefetching), they can still guarantee the right order for the
immediate succeeding prefetching. In other words, we reset
the priorities of prefetching candidates for metadata i to
solve the integer overflow problem, by partially sacrificing
the formerly accumulated accuracy of weights order. The

time complexity of this operation is O(nlog(n)), which is the
optimized sorting time.

For the sake of simplicity, normal integers (without
overflow) are used in the proof and experiments.

5 EVALUATION METHODOLOGY AND RESULTS

This section describes the workload, the simulation frame-
work, and the detailed simulation we used to evaluate the
metadata performance equipped with Nexus. The metrics
we used here include hit rate and average response time. In
addition, we also studied the impact of consistency control
and scalability of Nexus algorithm.

5.1 Workloads

We evaluate our design by running trace-driven simula-
tions over one scientific computing trace and one file server
trace: the LLNL trace collected at Lawrence Livermore
National Laboratory in July 2003 [36] and the HP-UX
server file system trace collected at the University of
California Berkeley in December 2000 [37]. These traces
gather I/O events of both file data and metadata. In our
simulations, we filter out the file data activities and feed
only metadata events to our simulator.

5.1.1 LLNL Trace

One of the main reasons for petabyte-scale storage systems
is the need to accommodate scientific applications that are
increasingly demanding on I/O and storage capacities and
capabilities. As a result, some of the best traces to evaluate
our prefetching algorithm are those generated by scientific
applications. To the best of our knowledge, the only recent
scientific application trace publicly available for large
clusters is the LLNL 2003 file system trace. It was obtained
in the Lustre Lite [1] parallel file system on a large Linux
cluster with more than 800 dual-processor nodes. It consists
of 6,403 trace files with a total of 46,537,033 I/O events.
Since the LLNL trace is collected at the file system level, any
requests not related to metadata operations, such as read,
write, and execution, are filtered out. Table 3 manifests the
remaining metadata operations in the LLNL trace. These
metadata operations are further classified into two cate-
gories: metadata read and metadata write before fed into
the simulations discussed in Sections 5.2 and 5.3. Opera-
tions such as access, and stat fall into the metadata read
group, while ftruncate64 and unlink belong to the
metadata write group since they need to modify the
attributes of the file. However, the classification of open
and close is not straight forward. An open operation cannot
be simply classified as metadata read since it may create
files according to its semantics in UNIX. Similarly, a

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 9

Fig. 10. Server-oriented grouping versus client-oriented grouping.

Fig. 11. One way to solve the integer overflow problem.

close operation can be classified into both groups since it
may or may not incur metadata update operations,
depending on whether the file attributes are dirty or not.
For open requests, the situation is easier since we can look at
the parameter and return value of the system call to
determine its type. For example, if the parameter is
O_RDONLY and the return value is a positive number,
then we know for sure that this is a metadata read
operation. For close, an eclectic way is that we can always
treat it as a metadata write assuming that the last modify time
field is always updated upon file closure.

5.1.2 HP Trace

To provide a more comprehensive comparison, we also
conduct our simulations on the HP trace [37], a 10-day trace
of file system collected on a time-sharing server with a total
of 500 GB storage capacity and 236 users. Since these traces
are relatively old, we scale up the workload collected in this
environment to better emulate the projected more intensive
workload in a petabyte storage system. We divide each
daily trace collected from 8:00 a.m. to 4:00 p.m., which were
usually the busiest period during a day, into four fragments,
with each fragment containing two hours of I/O accesses.
The time stamps of all events in each fragment are then
equally shifted so that this fragment starts at time instant
zero. Replaying multiple time-shifted fragments simulta-
neously increases the I/O arrival rate while keeping a
similar histogram of file system calls. In addition, the
number of files stored and the number of files actively
visited were scaled up proportionally by adding the date
fragment number as a prefix to all filenames. We believe
that replaying a large number of processed fragments
together can emulate the workload of a larger cluster
without inadequately breaking the original access patterns
at the file system level. Same as what we did for the
LLNL trace, we also filtered out those metadata-irrelevant
I/O operations in our simulations.

5.2 Simulation Framework

A simulation framework was developed to simulate a
clustered MDS-based storage system with the ability to
adopt flexible caching/prefetching algorithms. The simu-
lated system consists of 1,000-8,000 compute nodes (clients)
and 4-256 MDSs. The memory size is set to be 4 GB per MDS
and 1 GB per client. All nodes are connected using high
speed interconnection with an average network delay of
0.3 ms and a bandwidth of 1 Gbit/sec under assumption of a

standard Gigabit Ethernet environment [38]. The intercon-

nect configuration is the same as shown in Fig. 1. In such a

large, hierarchical, distributed storage system, metadata

consistency control on metadata servers as well as the clients

becomes a prominent problem for the designers. However,

the focus of our current study is the design and evaluation of

a novel prefetching algorithm for metadata. To simplify our

simulation design, cooperative caching [39], a widely used

hierarchical cache design, together with its cache coherence

control mechanism, i.e., write-invalidate [40], is adopted on

the metadata servers in our simulation framework to cope

with the consistency issue. The specific cooperative caching

algorithm we adopted is N-chance Forwarding, the most

advanced solution according to the results presented in [39].

We choose the best cooperative caching solution available for

the sake of fair performance comparison. This aims to

evaluate the real performance gain from Nexus. From this

aspect, it also helps to distinguish the effect of Nexus from

that of cooperative caching.
It may also be noticed that the choice of cooperative

caching is pragmatic for its relative maturity and simplicity

and, as such, it does not necessarily imply that it is the only

or best choice for consistency control.
In our simulation framework, the storage system consists

of four layers:

1. client local cache,
2. metadata server memory,
3. cooperative cache, and
4. hard disks.

When the system receives a metadata request, it first checks

its local cache; upon an cache miss, the client sends the

request to the corresponding MDS; if the MDS also sees a

miss, the MDS looks up the cooperative cache as a last

resort before sending the request to disks.
Thus, the overall cache hit rate includes three compo-

nents: client local hit, metadata server memory hit, and

cooperative cache hit. Obviously, local hit rate directly

reflects the effectiveness of the prefetching algorithm

because grouping and prefetching are done on the client site.
If, in the best case, a metadata request is satisfied by the

client local cache, referred to as a local hit, the response time

for that request is estimated as local main memory access

latency. Otherwise, if that request is sent to an MDS and

satisfied by the server cache, also known as a server memory

hit, the overhead of network delay is included in the

response time. In an even worse case, the server cache does

not contain the requested metadata while the cooperative

cache does, defined as a remote client hit, extra network delay

should be considered. In the worst case, when the MDS has

to send the request to the disks where the requested

metadata resides, i.e., a final cache miss, costly disk access

overhead will also contribute to the response time.
Prefetching happens when a client sees a local cache

miss. In this case, the client sends a metadata prefetching

request to the corresponding MDS. Upon arrival of that

request at the metadata server, the requested metadata

along with the entire prefetching group is retrieved by the

MDS from its server cache, cooperative cache, or hard disk.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

TABLE 3
List of Operations Obtained by strace in LLNL Trace Collection

5.3 Trace-Driven Simulations

Trace-driven simulations based on aforementioned HP
trace and LLNL trace were conducted to compare
different caching-prefetching algorithms, including con-
ventional caching algorithms such as Least Recently Used
(LRU), Least Frequently Used (LFU), and Most Recently
Used (MRU), primitive prefetching algorithms such as
First Successor and Last Successor, and state-of-the-art
prefetching algorithms such as Noah (Stable Successor),
Recent Popularity (also known as Best j-out-of-k), and
Probability-Graph-Based prefetching (referred to as PG in
the rest of this paper).

Most previous studies use only prediction accuracy to
evaluate the prefetching effectiveness. However, this
measurement is neither adequate nor sufficient. The
ultimate goal of prefetching is to reduce the average
response time by absorbing I/O requests before they reach
disks. A higher prediction accuracy does not necessarily
indicate a higher hit rate nor a lower average response time.
The reason is, a conservative prefetching scheme, even with
a high prefetching accuracy, might incur little prefetching
actions and thus not as beneficial. So, in our experiments,
we not only measure the cache hit rate, but also the average
response time by integrating a golden disk simulator,
DiskSim 3.0 [41], into our simulation framework.

We conduct experiments for all the caching/prefetching
algorithms mentioned above. For a clear graphic presenta-
tion, we remove the results for less representative algo-
rithms, including LFU, MRU (these two are always worse

than LRU), First Successor, Last Successor, Noah, and

Recent Popularity, since these algorithms are consistently

inferior to PG according to our experimental results and a

similar observation made by Pâris et al. [42]. In addition to

these algorithms, Optimal Caching [43], referred to as OPT

in the rest of this paper, is simulated as an ideal offline

caching algorithm for theoretical comparison purpose. In

OPT, the item to be replaced is always the farthest in the

future access sequence. Since the prefetching group size for

Nexus is set to 2, we have tried both 1 and 2 for this

parameter on PG, referred to as PG1 and PG2, respectively,

in order to provide a fair comparison. In sum, in this paper,

we will present the results for five caching/prefetching

algorithms including Nexus, PG1, PG2, LRU, and OPT.

5.4 Hit Rate Comparison

We have collected the hit rate results for all three levels of

caches: client cache, server cache, and cooperative cache, as

well as the percentage of misses that goes to the server disk,

referring to the explanation in Section 5.2.
Figs. 12 and 13 show the hit rate comparison results

collected on HP trace and LLNL trace, respectively.
Comparing Figs. 12a, 12b, and 12c, it is apparent that

with more clients, and thus larger cooperative cache size
and smaller per-client server cache size, many requests
previously satisfied by the server cache is now caught by
the cooperative cache. However, the client local cache hit
rate and the overall cache hit rate stay relatively consistent.

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 11

Fig. 13. LLNL trace hit rate comparison.

Fig. 12. HP trace hit rate comparison.

In both Figs. 12 and 13, Nexus achieves noticeable better
performance on the client local cache hit rate than the other
four competitors. For example, Nexus can achieve up to
40 percent higher local hit rate than that of LRU and PG1. In
addition, the fact that PG2 obtains consistent higher client
local cache hit rate than PG1 is another implication that
advocates the general idea of group prefetching. Based on
this reasoning, it seems that a projected PG3 algorithm may
potentially outperform PG2 significantly, but its exponen-
tial computational complexity prohibited us from further
exploring in this direction. It is worth reminding that Nexus
only incurs linear or polynomial computational overhead
and thus suits well for group prefetching.

It is surprising to see that Nexus even beats Opt by a
small margin (around 3-10 percent) in terms of local hit rate,
given Opt being the optimal offline caching algorithm with
an unrealistic advantage to actually “see” future request
sequence before making cache replacement decisions. The
only limitation of Opt is the lack of prefetching capability
compared with Nexus. Consider the situation where objects
A-D are always accessed as a group but none of them are
currently in the cache, Opt bears four cache misses.
However, Nexus will prefetch B-D upon a cache miss for
A, resulting in one cache miss and three hits.

It may also be worth mentioning that even though Nexus
achieves the highest client local cache hit rate, its advantage
on overall hit rate is somewhat offset by server cache and
cooperative cache. On the other hand, this observation
confirms that even the best cooperative caching scheme
cannot replace Nexus. At any rate, the overall hit rate does
not fully and truly show the merits of Nexus prefetching
algorithm. Instead, it is the client cache hit rate that may

exhibit the benefits of Nexus. More importantly, even server
cache hit and cooperative cache hit come at the cost of
network delay in the range of milliseconds, considerably
slower than a local hit which incurs only memory access
latency in the range of nanoseconds.

5.5 Average Response Time Comparison

Taking into consideration the possibility that the advantage
of prefetching be compromised if too many extra disk
accesses are introduced, to accurately measure average
response time, we adopted an established disk simulator to
incorporate the disk access time in our simulation. The
procedure of how each single request is serviced is given
detailed explanations in Section 5.2. In the experiments, we
collect the results for both HP trace and LLNL trace and
present their results in Figs. 14 and 15, respectively.

Apparently, the Nexus algorithm excels in all cases in
Figs. 14a and 15a. With 16 servers, increasing the number
of clients from 1,000, 2,000 to 3,000 results in considerable
longer average response time for all algorithms. In
contrast, with 32 servers, the average response time for
Nexus in Fig. 14b and that of Nexus and Opt in Fig. 15b
stays nearly constant while others increase significantly.
Furthermore, in Figs. 14c and 15c, the average response
time for all algorithms seems to stay little changed. Based
on these observations, it seems that individual algorithms
exhibit different degrees of “sensitivity” to increasingly
intensive workloads. More specifically, systems running
the Nexus or Opt algorithm are less likely to be saturated
under the same workload.

The advantage of Nexus comes from two aspects. First of
all, as shown in Figs. 12 and 13, the local hit rate and overall

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

Fig. 14. Comparisons of HP average response time per metadata request. (a) 16 servers. (b) 32 servers. (c) 64 servers.

Fig. 15. Comparisons of LLNL average response time per metadata request. (a) 16 servers. (b) 32 servers. (c) 64 servers.

hit rate of Nexus are higher than the others. In addition, the
computational overhead of this algorithm is kept minimal.
Given these advantages, even in cases where the workload
stress is relatively high (see Figs. 14a and 15a), Nexus shows a
moderate increase in average response time, in contrast to the
much more dramatic increase exhibited by other algorithms.

5.6 Impact of Consistency Control

The study on the impact of consistency control on the
algorithm is also carried out on the HP trace and the
LLNL trace. As the results for LLNL trace and HP trace are
similar, here we only show the average response time
comparison results collected on the HP trace, as in Fig. 16.

These results indicate that the average response time was
not noticeably affected by the consistency control, within a
range of only 5-10 percent. In other words, consistency
control does not entangle Nexus very much. A possible
explanation is that the characteristic of the metadata
workloads in this application are either read only or write
once. In a write intensive workload, the impact of
consistency control may become more noticeable. Regard-
ing to the applicability of Nexus in a practical system,
similar to other prefetching/caching algorithms, our
scheme works better for read dominant applications than
write dominant applications in order to avoid excessive
overhead incurred by the consistent control policy.

5.7 Scalability Study

In a multiclient multi-MDS storage environment, the system
scalability is an important factor directly related to the
aggregated system performance. We studied the scalability
of the metadata servers equipped with Nexus prefetching
algorithm by simulating large numbers of clients and servers.
Our evaluation methodology is that keeping constant
number of metadata servers, we increase the number of
clients and measured the corresponding system throughput,
defined by the aggregate number of metadata I/Os serviced
per second by the metadata servers.

The results in Fig. 17 show that, given four servers, the
throughput does not significantly increase while the number
of clients increase from 1,000 to 8,000, as the system is already
saturated by 1,000 clients at the first place. Prefetching simply
cannot help when the system is overloaded. In the 16-server
case, the throughput increases approximately 6 percent
when the number of clients increase from 1,000 to 2,000,
after that it stops growing since the system became saturated.

With 64 or 256 servers, the system throughput scales up
almost proportionally with the number of clients, indicating
near optimal scalability of the system. As an example, in the
256-server case, the throughput grows from about
6:5� 104 I/O per second with 1,000 clients to about
4:1� 105 with 8,000 clients, more than six times increase is
achieved.

There are three major factors that contribute to its
scalability. First, Nexus algorithm is totally distributed to
clients’ nodes, there is no central control in our design.
System scalability is given serious consideration at the time of
Nexus algorithm design. Second, Nexus algorithm runs on
client site. That means increased number of clients also
provide additional computation power for this algorithm.
Third, there is no interclient communication involved,
eradicating the most prominent factor that limits the
scalability in many distributed systems.

6 CONCLUSIONS

We introduced Nexus, a novel weighted-graph-based
prefetching algorithm specifically designed for clustered
metadata servers. Aiming at the emerging MDS-cluster-
based storage system architecture and exploiting the
characteristic of metadata access, our prefetching algorithm
distinguishes itself in the following aspects:

. Nexus exploits the ability to look ahead farther than
the immediate successor to make wiser predictions.
Sensitivity study shows that the best performance
gain is achieved when the look-ahead history
window size is set to 5.

. Based on the wiser prediction decision, aggressive
prefetching is adopted in our Nexus prefetching
algorithm to take advantage of the relatively small
metadata size. Our study shows that prefetching 2 as
a group upon each cache miss is optimal under the
two particular traces studied. Conservative prefetch-
ing lose the chance to maximize the advantage of
prefetching, and too aggressive but not so accurate
prefetching might hurt the overall performance by
introducing extra burden to the disk and polluting
the cache.

. The relationship strengths of the successors are
differentiated in our relationship graph by assign-
ing variant edge weights. Four approaches for

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 13

Fig. 16. Impact of consistency control. Fig. 17. Scalability study using HP trace.

edge-weight assignment were studied in our sensi-
tivity study. The results show that the linear
decremental assignment approach represents the
most accurate strength for the relationships.

. In addition to server-oriented grouping, we also
explored client-oriented grouping as a way to
capture better metadata access locality by differen-
tiating between the sources of the metadata requests.
Sensitivity study results show the latter approach’s
consistent performance gain over the former ap-
proach, confirming our assumption.

Other than focusing on the prefetching accuracy—an
indirect performance measurement, we pay our attentions to
the more direct performance goal—cache hit rate improve-
ment and average response time reduction. Simulation
results show remarkable performance gains on both hit rate
and average response time over conventional and state-of-
the-art caching/prefetching algorithms.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation under grants CNS-0646910, CNS-0646911, CCF-
0621526, CCF-0811413, and CCF-0621493 and the US Depart-
ment of Energy Early Career Principal Investigator Award
DE-FG0207ER25747. This work was done when Peng Gu was
pursuing his PhD degree in University of Central Florida.

REFERENCES

[1] P. Schwan, “Lustre: Building a File System for 1000-Node
Clusters,” Proc. 2003 Linux Symp., 2003.

[2] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical Bloom Filter Arrays
(HBA): A Novel, Scalable Metadata Management System for
Large Cluster-Based Storage,” Proc. IEEE Int’l Conf. Cluster
Computing, pp. 165-174, Oct. 2004.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. Ninth ACM Symp. Operating Systems Principles,
pp. 29-43, 2003.

[4] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,”
Proc. Seventh Conf. USENIX Symp. Operating Systems Design and
Implementation, pp. 22-22, 2006.

[5] I.F. Haddad, “PVFS: A Parallel Virtual File System for Linux
Clusters,” Linux J., vol. 2000, no. 80, p. 5, 2000.

[6] J.H. Hartman and J.K. Ousterhout, “The Zebra Striped Network
File System,” ACM Trans. Computer Systems, vol. 13, no. 3, pp. 274-
310, 1995.

[7] E. Otoo, D. Rotem, and A. Romosan, “Optimal File-Bundle
Caching Algorithms for Data-Grids,” Proc. ACM/IEEE Conf.
Supercomputing, p. 6, 2004.

[8] M. Gupta and M. Ammar, “A Novel Multicast Scheduling Scheme
for Multimedia Servers with Variable Access Patterns,” Proc. IEEE
Int’l Conf. Comm., May 2003.

[9] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-Bandwidth
Network File System,” Proc. Eighth ACM Symp. Operating Systems
Principles, pp. 174-187, 2001.

[10] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: A Novel Weighted-
Graph-Based Prefetching Algorithm for Metadata Servers in
Petabyte-Scale Storage Systems,” Proc. Sixth IEEE Int’l Symp.
Cluster Computing and the Grid, pp. 409-416, 2006.

[11] S.A. Weil, S.A. Brandt, E.L. Miller, and C. Maltzahn, “Crush:
Controlled, Scalable, Decentralized Placement of Replicated
Data,” Proc. 2006 ACM/IEEE Conf. Supercomputing, p. 31, 2006.

[12] A. Devulapalli and P. Wyckoff, “File Creation Strategies in a
Distributed Metadata File System,” Proc. 21st IEEE Int’l Parallel and
Distributed Processing Symp., pp. 1-10, 2007.

[13] S.A. Weil, K.T. Pollack, S.A. Brandt, and E.L. Miller, “Dynamic
Metadata Management for Petabyte-Scale File Systems,” Proc.
ACM/IEEE Conf. Supercomputing, p. 4, Nov. 2004.

[14] D. Roselli, J.R. Lorch, and T.E. Anderson, “A Comparison of File
System Workloads,” Proc. USENIX Ann. Technical Conf., pp. 41-54,
June 2000.

[15] D. Kotz and C.S. Ellis, “Practical Prefetching Techniques for
Multiprocessor File Systems,” J. Distributed and Parallel Databases
vol. 1, no. 1, pp. 33-51, Jan. 1993.

[16] H. Lei and D. Duchamp, “An Analytical Approach to File
Prefetching,” Proc. USENIX Ann. Technical Conf., Jan. 1997.

[17] A. Tomkins, “Practical and Theoretical in Prefetching and
Caching,” PhD dissertation, 1997.

[18] R.H. Patterson, G.A. Gibson, and M. Satyanarayanan, “A Status
Report on Research in Transparent Informed Prefetching,” ACM
Operating Systems Rev., vol. 27, no. 2, pp. 21-34, 1993.

[19] P. Cao, E.W. Felten, A. Karlin, and K. Li, “Implementation and
Performance of Integrated Application-Controlled File Caching,
Prefetching, and Disk Scheduling,” ACM Trans. Computer System,
vol. 14, no. 4, pp. 311-343, Nov. 1996.

[20] J. Skeppstedt and M. Dubois, “Compiler Controlled Prefetching
for Multiprocessors Using Low-Overhead Traps and Prefetch
Engines,” J. Parallel and Distributed Computing, vol. 60, no. 5,
pp. 585-615, 2000.

[21] T.C. Mowry, A.K. Demke, and O. Krieger, “Automatic Compiler
Inserted I/O Prefetching for Out-of-Core Applications,” Proc.
Second USENIX Symp. Operating Systems Design and Implementa-
tion, pp. 3-17, 1996.

[22] K.M. Curewitz, P. Krishnan, and J.S. Vitter, “Practical Prefetching
via Data Compression” Proc. ACM Int’l Conf. Management of Data,
pp. 257-266, May 1993.

[23] J. Griffioen and R. Appleton, “Reducing File System Latency
Using a Predictive Approach,” Proc. USENIX Summer 1994
Technical Conf., June 1994.

[24] T.M. Kroeger and D.D.E. Long, “The Case for Efficient File Access
Pattern Modeling,” Proc. Seventh Workshop Hot Topics in Operating
Systems (HOTOS ’99), pp. 14-19, 1999.

[25] A. Amer and D.D.E. Long, “Noah: Low-Cost File Access
Prediction through Pairs,” Proc. 20th IEEE Int’l Performance,
Computing and Comm. Conf., pp. 27-33, Apr. 2001.

[26] T.M. Kroeger and D.D.E. Long, “Design and Implementation of a
Predictive File Prefetching Algorithm,” Proc. General Track: 2002
USENIX Ann. Technical Conf., pp. 105-118, 2001.

[27] D.L.A. Amer, D.D.E. Long, and R.C. Burns, “Group-Based
Management of Distributed File Caches,” Proc. 22nd Int’l Conf.
Distributed Computing Systems, pp. 525-534, 2002.

[28] NERSC, “Franklin-Cray XT4,” http://www.nersc.gov/nusers/
systems/franklin/, Oct. 2008.

[29] “The Linux Kernel Archives,” http://www.kernel.org, 2007.
[30] D.D. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly

Assoc., Inc., p. 923, 2005.
[31] S. Microsystems, “Lustre FAQ,” http://wiki.lustre.org/

index.php?title=Lustre_FAQ#Why_did_Lustre_choose_ext3.3F_
Do_you_ever_plan_to_ support_others.3F, Apr. 2008.

[32] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” Proc. First USENIX Conf. File and
Storage Technologies, pp. 231-244, Jan. 2002.

[33] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou, “Scalable Performance of the Panasas
Parallel File System,” Proc. Sixth USENIX Conf. File and Storage
Technologies, pp. 17-33, Feb. 2008.

[34] X. Zhuang and H.-H.S. Lee, “Reducing Cache Pollution via
Dynamic Data Prefetch Filtering,” IEEE Trans. Computers, vol. 56,
no. 1, pp. 18-31, Jan. 2007.

[35] “C++ Big Integer Library,” http://mattmccutchen.net/bigint/,
2009.

[36] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E. Miller, D. Long, and T.
McLarty, “File System Workload Analysis for Large Scale
Scientific Computing Applications,” Proc. 21st IEEE/12th NASA
Goddard Conf. Mass Storage Systems and Technologies, 2004.

[37] E. Riedel, M. Kallahalla, and R. Swaminathan, “A Framework for
Evaluating Storage System Security,” Proc. First USENIX Conf. File
and Storage Technologies, pp. 15-30, 2002.

[38] “IEEE 802.3 Standard,” http://standards.ieee.org/getieee802/
802.3.html, 2005.

[39] M.D. Dahlin, R.Y. Wang, T.E. Anderson, and D.A. Patterson,
“Cooperative Caching: Using Remote Client Memory to Improve
File System Performance,” technical report, Univ. of California,
Dec. 1994.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

[40] J. Archibald and J.L. Baer, “Cache Coherence Protocols: Evalua-
tion Using a Multiprocessor Simulation Model,” ACM Trans.
Computer Systems, vol. 4, no. 4, Nov. 1986.

[41] J.S. Bucy and G.R. Ganger, “The Disksim Simulation Environment
Version 3.0 Reference Manual,” technical report, School of
Computer Science, Carnegie Mellon Univ., Jan. 2003.

[42] J.-F. Pâris, A. Amer, and D.D.E. Long, “A Stochastic Approach to
File Access Prediction,” Proc. Int’l Workshop Storage Network
Architecture and Parallel I/Os, pp. 36-40, 2003.

[43] D.E. Knuth, “An Analysis of Optimal Caching,” J. Algorithms,
vol. 6, pp. 181-199, 1985.

Peng Gu received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology, Wuhan, China, and
the PhD degree in computer engineering from
the University of Central Florida, Orlando. He is
a software engineer in the Core Operating
System Division, Microsoft Corp., Redmond,
Washington. His research interests include file
and storage systems, parallel I/O architecture,
and high performance computing.

Jun Wang received the BEng degree in
computer engineering from Wuhan University
(formerly Wuhan Technical University of Sur-
veying and Mapping), the MEng degree in
computer engineering from the Huazhong Uni-
versity of Science and Technology, China, and
the PhD degree in computer science and
engineering from the University of Cincinnati
in 2002. He is a member of the faculty of the
School of Electrical Engineering and Computer

Science, University of Central Florida, Orlando. His research interests
include I/O architecture, file and storage systems, parallel and
distributed computing, cluster and P2P computing, and performance
evaluation. He has received several major US National Science
Foundation (NSF) research awards from the Computer Systems
Research Program and the Advanced Computation Research Pro-
gram, respectively, and the US Department of Energy Early Career
Principal Investigator Award Program. He is a member of the IEEE,
the IEEE Computer Society, the ACM, and the Usenix.

Yifeng Zhu received the BSc degree in electrical
engineering from the Huazhong University of
Science and Technology, Wuhan, China, in
1998, and the MS and PhD degrees in computer
science from the University of Nebraska, Lincoln,
in 2002 and 2005, respectively. He is currently
an assistant professor in the Department of
Electrical and Computer Engineering, University
of Maine. His research interests include parallel
I/O storage systems, supercomputing, energy

aware memory systems, and wireless sensor networks. He served as the
program chair of the IEEE NAS ’09 and the SNAPI ’07, the guest editor of
a special issue of the International Journal of High Performance
Computing and Networking, and the program committee of various
international conferences, including ICDCS, ICPP, and NAS. He
received the Best Paper Award at the IEEE CLUSTER ’07 and several
research and education grants from the US National Science Foundation
HECURA, ITEST, REU, and MRI. He is a member of the ACM, the IEEE,
the IEEE Computer Society, and the Francis Crowe Society.

Hong Jiang received the BSc degree in
computer engineering in 1982 from Huazhong
University of Science and Technology, Wuhan,
China, the MASc degree in computer engineer-
ing in 1987 from the University of Toronto,
Canada, and the PhD degree in computer
science in 1991 from the Texas A&M Univer-
sity, College Station. Since August 1991, he
has been at the University of Nebraska-Lincoln
(UNL), where he served as a vice chair of the

Department of Computer Science and Engineering (CSE) from 2001 to
2007 and is a professor of the CSE. At UNL, he has graduated 10 PhD
students who upon their graduations either landed academic tenure-
track positions or were employed by major US IT corporations. His
present research interests include computer architecture, computer
storage systems and parallel I/O, parallel/distributed computing, cluster
and Grid computing, performance evaluation, real-time systems,
middleware, and distributed systems for distance education. He serves
as an associate editor of the IEEE Transactions on Parallel and
Distributed Systems. He has more than 150 publications in major
journals and international conferences in these areas, including the
IEEE-TPDS, IEEE-TC, JPDC, ISCA, FAST, ICDCS, OOPLAS,
ECOOP, ICS, HPDC, ICPP, etc., and his research has been supported
by the US National Science Foundation (NSF), the Department of
Defense (DOD), and the State of Nebraska. He is a member of the
ACM, the IEEE Computer Society, and the ACM SIGARCH.

Pengju Shang received the BS degree from
Jilin University, Changchun, China, and the MS
degree from Huazhong University of Science
and Technology, Wuhan, China. He is currently
a PhD student in Computer Engineering School
at the University of Central Florida, Orlando. His
specific interests include transaction proces-
sing, RAID systems, storage architecture, and
neural networks.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GU ET AL.: A NOVEL WEIGHTED-GRAPH-BASED GROUPING ALGORITHM FOR METADATA PREFETCHING 15

