ECE 417 --- ROBOTICS Homework 7 and 8

Solve the inverse kinematics problem for the Lab-Volt robot. We assume ${}^{0}\mathbf{T}_{5}$ is known and we need to compute θ_{i} . The following method is suggested (use my solution to Homework 6 as a starting point):

Homework 7:

- 1. Write ${}^{0}\mathbf{T}_{1}$, ${}^{1}\mathbf{T}_{2}$, ${}^{2}\mathbf{T}_{3}$, ${}^{3}\mathbf{T}_{4}$, and ${}^{4}\mathbf{T}_{5}$ as functions of θ_{i} (suggestion: leave nonzero d_{i} and a_{i} as symbols --- don't substitute their values).
- 2. Write ${}^{0}\mathbf{T}_{3}$ and ${}^{3}\mathbf{T}_{5}$ and their inverses as functions of θ_{i} .

Homework 8:

- 1. Solve for the **translation components** of ${}^{0}\mathbf{T}_{3}$ by multiplying ${}^{0}\mathbf{T}_{5} {}^{5}\mathbf{T}_{3}$ (you are only interested in the translation portion). Note that ${}^{0}\mathbf{T}_{5}$ and the other link parameters are known. Equate these translation components to the translation components of ${}^{0}\mathbf{T}_{3}$ (expressions we found above involving θ_{1} , θ_{2} , and θ_{3}). Solve for θ_{1} (using *x* and *y* components), then θ_{3} (using *r* and *z*), and finally θ_{2} (using *r* and *z*) where *r* is the square root of *x* squared plus *y* squared.
- 2. With θ_1 , θ_2 , and θ_3 now solved for, we know the elements of ${}^{0}\mathbf{T}_3$ and can now solve for ${}^{3}\mathbf{T}_5 = {}^{3}\mathbf{T}_0{}^{0}\mathbf{T}_5$ (known values). By equating elements of this to our expression for ${}^{3}\mathbf{T}_5$ found above, we can now solve for θ_4 and θ_5 .