ECE 417 --- ROBOTICS Homework 7 and 8

Solve the inverse kinematics problem for the Lab-Volt robot. We assume ${ }^{0} \mathbf{T}_{5}$ is known and we need to compute θ_{i}. The following method is suggested (use my solution to Homework 6 as a starting point):

Homework 7:

1. Write ${ }^{0} \mathbf{T}_{1},{ }^{1} \mathbf{T}_{2},{ }^{2} \mathbf{T}_{3},{ }^{3} \mathbf{T}_{4}$, and ${ }^{4} \mathbf{T}_{5}$ as functions of θ_{i} (suggestion: leave nonzero d_{i} and a_{i} as symbols --- don't substitute their values).
2. Write ${ }^{0} \mathbf{T}_{3}$ and ${ }^{3} \mathbf{T}_{5}$ and their inverses as functions of θ_{i}.

Homework 8:

1. Solve for the translation components of ${ }^{0} \mathbf{T}_{3}$ by multiplying ${ }^{0} \mathbf{T}_{5}{ }^{5} \mathbf{T}_{3}$ (you are only interested in the translation portion). Note that ${ }^{0} \mathbf{T}_{5}$ and the other link parameters are known. Equate these translation components to the translation components of ${ }^{0} \mathbf{T}_{3}$ (expressions we found above involving θ_{1}, θ_{2}, and θ_{3}). Solve for θ_{1} (using x and y components), then θ_{3} (using r and z), and finally θ_{2} (using r and z) where r is the square root of x squared plus y squared.
2. With θ_{1}, θ_{2}, and θ_{3} now solved for, we know the elements of ${ }^{0} \mathbf{T}_{3}$ and can now solve for ${ }^{3} \mathbf{T}_{5}=$ ${ }^{3} \mathbf{T}_{0}{ }^{0} \mathbf{T}_{5}$ (known values). By equating elements of this to our expression for ${ }^{3} \mathbf{T}_{5}$ found above, we can now solve for θ_{4} and θ_{5}.
