ECE 417 - Introduction to Robotics Notes

Matrix review:
Multiplication:

$$
\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22} \\
r_{31} & r_{32}
\end{array}\right]\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24}
\end{array}\right]=\left[\begin{array}{llll}
t_{11} & t_{12} & t_{13} & t_{14} \\
t_{21} & t_{22} & t_{23} & t_{24} \\
t_{31} & t_{32} & t_{33} & t_{34}
\end{array}\right] \text { where } t_{i j}=r_{r o w i} \cdot s_{c o l j} \text { (dot product) }
$$

sizes: 3 x 2 times $2 \mathrm{x} 4=3 \mathrm{x} 4$
Remember: Row, Column (RC)
Note: Matrix multiplication does not commute:

$$
\text { In general } \boldsymbol{A} \boldsymbol{B} \neq \boldsymbol{B} \boldsymbol{A}
$$

But associate property holds:

$$
(A B) C=A(B C)
$$

For many matrices \boldsymbol{A} (i.e., non-singular matrices) there exists an inverse $\boldsymbol{A}^{\mathbf{- 1}}$ such that

$$
A A^{-1}=A^{-1} A=I
$$

Where I is an identity matrix. E.g.,

$$
\boldsymbol{I}_{33}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Matrix transpose: $\quad \boldsymbol{A}^{\boldsymbol{T}}$ interchanges rows and columns

$$
\left[\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22} \\
r_{31} & r_{32}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
r_{11} & r_{21} & r_{31} \\
r_{12} & r_{22} & r_{32}
\end{array}\right]
$$

