
Proposed Post-4.2 PAPI API/ABI Changes

Vince Weaver

vweaver1@eecs.utk.edu

13 March 2012

Abstract

While expanding the number of components available on PAPI we are running into some

limitations that were missed during the 3.x to 4.0 PAPI-C transition. In order to move forward,

we will need to break the PAPI ABI, API, and component interface. Most of the changes will

hopefully be small and not noticed by the average PAPI user. We are preparing this document

in advance in the hope that we can get feedback from those affected by these changes.

1

Contents

1 Background 4

2 Changes to the Component Development Interface (CDI) 4

2.1 Changes to .cmp info . 4

2.1.1 Splitting Operating System Specific fields out of .cmp info 4

2.1.2 Other Changes to the .cmp info structure 6

2.1.3 Processor Specific fields in .cmp info . 6

2.1.4 Counter Attributes . 6

2.1.5 Proposed Additions to the .cmp info structure 7

2.2 Changes to papi vector t Function Pointers . 7

2.2.1 Splitting Operating System Specific fields out of papi vector t 7

2.2.2 Removing Bipartite Map Functions . 8

2.2.3 Repurposing the User Function . 8

2.2.4 Native Event Conversion Routines . 9

2.2.5 Removing Obsolete Functions . 9

2.2.6 Proposed Additions to papi vector t . 9

3 New/Modified PAPI interface functions 10

3.1 PAPI add named event() . 10

3.2 PAPI remove named event(), PAPI query named event() 11

3.3 PAPI which component() . 11

3.4 PAPI enum component event() . 11

3.5 PAPI enum components() . 12

4 Extensions to PAPI event info t 12

4.1 Reducing the Size of PAPI event info t . 12

4.2 Specifying non-64bit uint Values . 13

4.3 Specifying Units . 13

4.4 Specifying Component . 14

4.5 Kluge et al.’s other Extensions . 14

5 Event Enumeration Issues 14

5.1 Event Fields that take a Range . 15

5.2 Software Events . 15

5.3 Privileged Events . 15

5.4 Missing Invert and Edge Umasks . 15

2

6 Removing the 16-component limit 16

7 PAPI Named Events Transition 16

7.1 Component Name Prepending . 17

8 Error Propagation 17

9 Extended Sampling Interfaces 18

10 Extended User-events 18

11 Virtualized Events (PAPI-V) 18

12 Dynamic Frequency-Scaling; Removing use of MHz in PAPI code 19

13 Avoiding High-Latency Component Initialization 20

14 Properly Detecting Component Availability 20

15 Mitigating Long Latency Reads 21

16 Other Issues for Discussion 21

16.1 More Code Coverage . 21

16.2 Removing Obsolete Components/Substrates . 21

16.3 Improving Test Infrastructure . 22

16.4 Locking Changes . 22

16.5 Official CDI interface . 22

16.6 Outside Comments . 22

3

1 Background

We are currently extending PAPI in new directions and we are encountering various limitations

of the current PAPI 4.2 API/ABI as well as the PAPI-C component interface (known as the

Component Development Interface, or CDI).

What follows are discussions of new functionality that will require extending the ABI in non-

backwards compatible ways. Since such extensions will require a major version number bump, we

are trying to have as many changes as possible happen at the same time to avoid needing a similar

change at a later time.

ABI changes, while annoying for backward compatibility, usually just require programs to be

recompiled. A few of the changes we are making may also require API changes, which would

involve users having to make changes to their code. We will do our best to avoid API changes as

it is inconvenient for everyone involved.

We are preparing this document in advance so that the various PAPI users can provide feedback,

both to let us know if we have missed anything, as well as to protest changes that might require

too much code-churn.

2 Changes to the Component Development Interface (CDI)

The PAPI-C component interface (also known as the Component Development Interface or CDI)

was originally based on the hooks needed by the perfctr substrate. Because of this, the CDI contains

many fields and function pointers not needed by most modules. Some of these extra fields may

cause confusion, some really are Operating System (not module) specific, and pretty much none of

it is documented well.

2.1 Changes to .cmp info

The CDI consists of two parts. The first is the .cmp info structure that contains info on a compo-

nent. The second is the function vector that contains the interfaces used by the component. The

.cmp info structure is directly exposed as ABI to the user via the PAPI get component info(),

so any changes made here will break both the API and the ABI (although users are only affected

if they access some of the more obscure fields directly, something that is hopefully unlikely).

2.1.1 Splitting Operating System Specific fields out of .cmp info

Currently the 0th component (usually the hardware performance counter substrate: either perf event,

perfctr, or perfmon2 on Linux) has a special meaning. Its component fields hold various OS specific

4

information, such as kernel version numbers, POSIX timer values, etc. Other components can set

these values in their own .cmp info structure, but these are ignored.

We propose splitting these fields out into their own structure. This allows the OS specific values,

of which there only need to be one copy, to stand alone. It also allows building PAPI without a HW

perfcounter component, something that is useful on systems without perfcounter support (such as

pre-2.6.31 versions of Linux, or even Mac OSX or Windows). Previously this could be accomplished

with the “any-null” substrate, but for various reasons this was a sub-optimal solution. With this OS

separation it would become possible to build multiple perfcounter implementations into PAPI and

choose the proper one at runtime (enabling a dual perfctr/perf event PAPI) although the usefulness

of that has probably dwindled now that perf events is widely available.

Most of the fields being moved involve the POSIX itimers. You only get three per process;

currently values set in the component itimer fields were likely ignored as usually only the ones in

component[0] are referenced (although the PAPI code is not consistent in this area). If components

want to do software multiplexing or overflow they need to be able to set these values. How to avoid

conflict in this case is an open question.

To implement the OS split, the following needs to be done:

• The following fields are removed from .cmp info and put into a new PAPI os info t struc-

ture: itimer sig, itimer num, itimer ns, itimer res ns, clock ticks, os version.

• The following new fields are included in PAPI os info t: name, version.

• A new int papi init os(void) function is added for each supported Operating System

that initializes the new PAPI os info t structure.

• All uses of papi hwd[0]->cmp info are turned into papi os info

We should pad the structure with some extra members so that we can further extend things

without breaking the ABI.

A get os info() type helper function might be nice to have, so that components can access

this info without having to declare the main structure as globally visible.

ABI breakage: yes, the size of the cmp info structure

CDI breakage: yes, components that access obscure cmp info fields

API breakage: yes, anything that gets a cmp info struct and acts on the more obscure fields

Implemented: yes: bbd7871f4

5

2.1.2 Other Changes to the .cmp info structure

Currently the name and version fields are automatically set by CVS. With the change to git we’ll

have to change how these are set. Currently code caring about the name field tends to do code of

the sort:

if strstr(cmp_info.name,"example.c")}

Because of this, we should standardize on the name field being the name of the component source

file.

ABI breakage: yes, the names of the components

CDI breakage: yes, the names of the components

API breakage: yes, the names of the components

Implemented: 6f0c1230f29b5f

2.1.3 Processor Specific fields in .cmp info

Currently we carry along some processor-specific flags. Should these be removed? This information

is only really relevant to the specific perfcounter components, and should be revealed as part of

enumeration.

Unfortunately many programs (including some of the PAPI ctests) access these values directly

from .cmp info.

The fields of interest are Itanium: data address range, instr address range, cntr IEAR events,

cntr DEAR events, cntr OPCM events, opcode match width, profile ear, Intel: edge detect,

invert, Power5: cntr groups.

ABI breakage: yes

CDI breakage: no, as components shouldn’t care about these values

API breakage: yes; these values are exposed in cmp info

Implemented: partial; edge detect, invert: 401f37bc59

2.1.4 Counter Attributes

There are a few fields that describe the counters. Are they worth keeping? Many are not used inter-

nally by PAPI at all, but outside programs can access them directly via PAPI get component info().

The fields fast counter read, fast real timer, and fast virtual timer might provide use-

ful information on the latency of various operations, and may guide someone who is instrumenting

code in critical sections. The definition of “fast” can be a bit arbitrary though.

6

The cntr umasks field specifies whether events can have umasks. These days PAPI internally

just assumes all events can, so this value is meaningless.

ABI breakage: yes

CDI breakage: maybe

API breakage: yes; these values are exposed in cmp info

Implemented: N/A

2.1.5 Proposed Additions to the .cmp info structure

We should add a short name field that components can set, and this can be prepended to event

names. Also a description field to describe what a component does.

Should we add a type field that notes whether a component is a CPU, I/O, etc? The papi xml event info

tries to provide this info. Should it be a string, an enum, or something else?

We should also add padding so we can make ABI changes in the future.

ABI breakage: yes

CDI breakage: yes

API breakage: yes; these values are exposed in cmp info

Implemented: partial; short name and description: 9f3e634a6b4

2.2 Changes to papi vector t Function Pointers

The CDI provides a large number of function pointer hooks, many of which are a legacy of its

perfctr substrate heritage and not needed by most components.

2.2.1 Splitting Operating System Specific fields out of papi vector t

As with .cmp info, we propose creating a separate papi os vector t structure and moving OS-

specific functions there.

To implement the OS split, the following needs to be done (we have implemented these changes

already and they seem to work):

• The following pointers are removed from papi vector t and put into a new papi os vector t

structure: get real cycles, get real usec, get virt cycles, get virt usec, update shlib info,

get system info, get memory info, and get dmem info.

• The following new fields added to papi os vector t: get real nsec, get virt nsec.

• The new int papi init os(void) function initializes the new PAPI os vector t structure.

7

• All components that reference the OS specific fields should have them removed (none should

be using them anyway).

In the past, some substrates may have used CPU counters when calculating the result of

.get real cycles. We would not be able to support that with these new changes.

Another issue is .get memory info and how it applies to components. For example, a GPU

might want to provide memory information for its onboard RAM. The best solution might be to

leave a get memory info function hook for providing this kind of information and rename the OS

one to get system memory.

ABI breakage: no

CDI breakage: yes

API breakage: no

Implemented: yes: 40bc4c57f8f9

2.2.2 Removing Bipartite Map Functions

There are various function pointers that provide support for bipartite map event scheduling (bpt map avail,

bpt map set, bpt map exclusive, bpt map shared, bpt map preempt, and bpt map update). This

was developed for the complicated POWER event group dependencies, but was made generic so

other code could use it. Currently only perfctr uses it, as libpfm3 and perf event kernels in theory

handle the scheduling for you.

Should we make this code non-generic and just fold it in with the perfctr code?

ABI breakage: no

CDI breakage: yes

API breakage: no

Implemented: yes: e69815d7429b2

2.2.3 Repurposing the User Function

There is a user function defined, which is currently unused.

This could be a good way to solve the “how do I set component-specific values” problem.

Perhaps the user function could be used to pass in name/value string pairs that a component

could act on.

If are breaking the API/ABI anyway though we might as well just add a new routine. Also a

way to export the values supported.

8

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: N/A

2.2.4 Native Event Conversion Routines

Currently we have the following: ntv name to code, ntv code to name, ntv code to descr, ntv code to bits

and ntv bits to info.

ntv code to bits is currently only implemented by perfctr. This causes problems, as PAPI get event info()

does .ntv code to bits followed by .ntv bits to info. Because of this, the event info t struc-

ture is only available when using perfctr.

Ideally we should add a new ntv code to info function. We discuss this a bit further in

Section 2.2.6. Once we have that, ntv bits to info will be removed.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: yes: 9c54840e5

2.2.5 Removing Obsolete Functions

The .add prog event function is only used by PAPI add pevent() PAPI-3 compatibility code and

not actually implemented by any of the substrates. It should probably be removed.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: yes: 8da3622291a

2.2.6 Proposed Additions to papi vector t

ntv code to info()

As described earlier, it currently is not possible to get access to the event info t informa-

tion if ntv code to bits is not available (and it’s not for many components). By adding a

ntv code to info(), we can allow direct access to the event info, which is necessary to allow

9

access to enhanced event information.

get real nsec, get virt nsec.

Currently PAPI has support for PAPI get real nsec() and PAPI get virt nsec() which are just

extrapolated from the cycle count based on MHz. This is suboptimal on platforms that can actually

return nanosecond values. We should make an OS-vector for this and let OSes that support proper

nanosecond reporting handle things themselves.

Component Specific Settings

An often requested feature is some way to change component settings, similar to ioctl().

This would allow changing internal component options (such as sampling interval in the coretemp

component). The current method of setting options, PAPI set opt(), only lets you set a certain

subset of features, and is not extensible without modifying papi.h.

One suggestion is re-using the user function, and passing in name/value pairs in string format

that the component could then parse. Since we are breaking API/ABI anyway, we could just add

a new function totally. In that case we should also add a way of providing a list of which settings

are possible to users.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: N/A

3 New/Modified PAPI interface functions

The PAPI interface has many functions; here we propose a few more.

3.1 PAPI add named event()

int PAPI add named event(int EventSet, char *EventName);

Currently adding an event by name is a two stage process: first you run PAPI event name to code()

(checking for errors) and then pass the result to PAPI add event(). With the move to all named

events this gets a bit cumbersome; this is a very common operation. We can easily implement a

function that does both for us.

ABI breakage: no

10

CDI breakage: no

API breakage: no

Implemented: yes; 1c87d89c4a7

3.2 PAPI remove named event(), PAPI query named event()

int PAPI remove named event(int EventSet, char *EventName);

int PAPI query named event(char *EventName);

These are similar in idea to PAPI add named event().

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: yes; 1c87d89c4a7

3.3 PAPI which component()

int PAPI which component(int event);

This is helpful when using multiple components, especially when we drop 16-event limit.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: no

3.4 PAPI enum component event()

int PAPI enum component event(int *EventCode, int cid, int modifier);

PAPI enum event() does not take a component ID; it gets the component number from the

bitfield. This needs to be changed when we move to break the 16-component limit.

ABI breakage: no

CDI breakage: no

API breakage: no

11

Implemented: no

3.5 PAPI enum components()

int PAPI enum components(int current, int modifier);

With new support for distinguishing between components that are compiled-in versus enabled,

we need some way of enumerating components.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: no

4 Extensions to PAPI event info t

In Kluge et al.’s “Collecting Distributed Performance Data with Dataheap” paper they describe

other useful event description fields that we might want to provide to users. PAPI’s diverse set

of components can now report values that are more than just unitless 64-bit unsigned values. We

need to provide units, datatypes, and other such information to the user.

The best way to provide this information is to extend the PAPI event info t structure and ex-

port this information to the PAPI user. This is in theory possible with PAPI get event info(), but

currently this breaks on most substrates/components as they do not implement the ntv code to bits

function, as described in Section 2.2.6.

ABI breakage: yes, we change external visible PAPI event info t

CDI breakage: components will have to handle the new fields

API breakage: yes, we change external visible PAPI event info t

Implemented: yes; c4579559d7

4.1 Reducing the Size of PAPI event info t

The current PAPI event info t looks like this:

typedef struct event_info {

unsigned int event_code;

unsigned int event_type; /* preset only */

12

unsigned int count; /* number of terms */

char symbol[PAPI_HUGE_STR_LEN]; /* name of the event */

char short_descr[PAPI_MIN_STR_LEN]; /* not used */

char long_descr[PAPI_HUGE_STR_LEN];

char derived[PAPI_MIN_STR_LEN]; /* presets */

char postfix[PAPI_MIN_STR_LEN]; /* postfix presets */

unsigned int code[PAPI_MAX_INFO_TERMS];

char name[PAPI_MAX_INFO_TERMS][PAPI_2MAX_STR_LEN];

char note[PAPI_HUGE_STR_LEN]; /* developer note */

} PAPI_event_info_t;

Many of these fields are predefined-event only, and take up a lot of space with all those static

character arrays.

It might make sense to change the static arrays to dynamically allocated ones to reduce footprint,

though this raises the issue of having to free these strings later.

In the end, making the visible structure smaller broke too many things. Leaving it as is but

changing the behind-the-scenes structs made more sense. Users rarely allocate more than one

PAPI event info t anyway.

4.2 Specifying non-64bit uint Values

Currently results returned by PAPI are always unsigned 64-bit integers. There are other values that

can be cast to fit in the same return value: signed 64-bit, 64-bit floating point values, two 32-bit

values (a ratio?). A field can be added to PAPI event info t that says what the value contains,

and the possibilities are probably small enough to be assigned #defines.

It might be desirable to return more than just 64-bit values. Especially components that might

want to return chunks of values at a time to be processed later. It is unclear the best way to handle

this. One proposal is to return points to blobs of memory, though this could get messy quickly.

Implementing the fits-in-64-bits option will be easy; designing a proper infrastructure for bigger

values will be hard.

4.3 Specifying Units

Currently we assume the result is a unitless “count”. Some of our components already need to

specify units (Watts, Joules, Kelvin, etc.).

A field can be added to PAPI event info t. Probably the best idea is having this be a string,

that way it is easily extensible without having to have a huge list of unit #defines in papi.h.

13

4.4 Specifying Component

We should have a field in PAPI event info t that quickly allows following back to the parent

component.

4.5 Kluge et al.’s other Extensions

In Kluge et al.’s “Collecting Distributed Performance Data with Dataheap” paper they describe

other useful fields that we might want to add to the PAPI event info t structure. Many of these

are useful when trying to correlate system-wide events, and also when correlating events collected

from different components with non-synchronized timestamps.

• Location (Local, Uncore, CPU)

• Unit and Data Type (Mentioned previously)

• Value Type (monotonic, sum, instantaneous)

• Time Scope (from start or since last)

• Read Mode and Frequency

5 Event Enumeration Issues

One of the more difficult tasks that PAPI does is enumerate a list of all possible events, such as is

done with the papi native avail utility.

Currently, you can enumerate in various ways. PAPI itself handles enumerating the predefined

events (including many ways of sub-sorting).

Enumeration of native events is handled by each component. Each must support PAPI ENUM FIRST,

PAPI ENUM EVENTS and PAPI NTV ENUM UMASKS. This allows finding the first event, finding each sub-

sequent event, and finding all umasks (options) for each event.

Some of the HW counter substrates support more advanced enumeration, such as for example

PAPI NTV ENUM GROUPS on POWER.

Recently we have encountered event types that cannot be enumerated with the current PAPI

setup.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: N/A

14

5.1 Event Fields that take a Range

Some event times currently available in libpfm4 actually take a umask with a range, not just a

plain umask value. For example, on Intel processors there’s a CMASK field which can take an 8-bit

parameter.

Currently there is no way to specify the availability of this so that it shows up sanely in

papi native avail.

The best option for exposing this is probably adding a new enumeration type that enumerates

these and returns a value like “CMASK=0-255”. Currently enumeration only operates on strings;

there is no way to pass back ranges. After passing back a value like shown the user will have to

parse the string back into a range (and not just blindly try to use it as a umask).

This might also be useful for specifying events that fit a pattern, such as reporting “CORE0-

15:TEMPERATURE” in a temperature component rather than enumerating 16 different ones ex-

plicitly.

Returning results like this will break programs that try to enumerate all possible events (al-

though that’s already a bit of a losing proposition). To not break things it might make more sense

to provide yet another enumeration type where a program has to specifically ask for umasks that

take a range, maybe PAPI NTV ENUM RANGES.

5.2 Software Events

On perf events there is a distinction between hardware events and software events provided by the

kernel. Even if HW counting is not working (due to lack of support, etc.) the SW events are still

supported. It would be good to be able to enumerate these and use them even if the HW counters

are not available. This is also useful in virtualized systems where access to the HW counters might

not be available, but a perf event kernel is still installed and can provide SW events.

5.3 Privileged Events

Some events can only be run by privileged users. It would be nice to expose this to users so they

can know not to use them unless they have root privileges. This includes events such as ones that

set the ANY bit on Intel Nehalem machines (on perf event kernels) as well as Uncore events.

5.4 Missing Invert and Edge Umasks

While libpfm4/perf event supports the “invert” and “edge” qualifiers on Intel processors, PAPI

does not report these during enumeration. This entry is to remind me to add support for these;

they are considered extended attributes but to add support we have to make sure not to include

the “user” or “kernel” attributes.

15

6 Removing the 16-component limit

Currently the component is specified by a 4-bit field in the eventcode. This limits the number of

compiled-in components to 16. We are going to remove this limitation.

This is a multi-step process:

• Remove calls to PAPI COMPONENT INDEX(), PAPI COMPONENT MASK() and PAPI COMPONENT AND MASK()

• Replace PAPI COMPONENT INDEX(eventcode) calls with an as-yet not written papi which component(event)

call. This call will be slower than the simple shift/mask of the previous implementation. The

new implementation will probably have to do a papi ntv code to info() and requires a lot

of the proposed change to all-string events to be completed.

ABI breakage: no

CDI breakage: maybe, if components are making assumptions based on event bits

API breakage: no

Implemented: N/A

7 PAPI Named Events Transition

A long-term PAPI goal is to migrate to the use of named events (strings for names) rather than

externally visible eventcodes. This is driven by the lack of room in a 32-bit eventcode to encode

all possible bit-fields in a modern CPU counter event, especially once components are thrown into

the mix.

The libpfm4/perf event substrate was a first implementation of this kind of infrastructure, and

that seems to work. Here, events are created and assigned an eventcode at lookup time (once they

are determined to be valid).

The transition to all named events is a multi-step process:

• First, utilities (such as papi native events and papi xml event info) should stop reporting

event values (done in PAPI 4.2.1). Since event codes are internal only and generated on the

fly, there’s no guarantee that the event codes reported in one run of a tool will be the same

during the next run.

• Second, code assumptions based on event bit-fields need to be removed. This is primary the

assumption that the component number can be found from the 4 almost upper 4-bits of the

event code.

16

• Third, some functions will have to be changed to have a component field. This work was

done incompletely when component support was added. Most notably, PAPI enum event()

needs to be changed.

There are some other things that need to be worked out. Currently events are allocated when

they are first looked up (not at add time). This means that a program that enumerates all events

could create thousands to millions of events, when only a few are used. This would waste memory

and also slow lookups.

When doing a lookup by name, the simple approach would do a linear search of all events,

one component at a time. This could be slow. It might make sense to have an additional layer

of indirection that caches all event names and has a pointer to the actual events inside of each

component.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: N/A

7.1 Component Name Prepending

We’ve been discussing stealing the libpfm4 naming convention and having an optional compo-

nent name pre-pended to events. This will make it more clear which events are which, and

handle cases where multiple components have the same name. This could lead to events like

cpu::INSTRUCTIONS RETIRED:ALL and gpu0::TEXTURE MISSES. For backward compatibility all

components will be searched if an event does not provide a pre-pended component name.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: N/A

8 Error Propagation

There have been separate discussions by the PAPI developers on this topic. Here’s a quick summary

of the two issues involved:

• PAPI’s error functions (PAPI perror() and PAPI strerror()) should be closer to their

POSIX equivalents, and

17

• It would be nice to have some method of passing more detailed error information (including

possibly strings) up through the PAPI stack from the components

ABI breakage: yes

CDI breakage: yes

API breakage: yes

Implemented: N/A

9 Extended Sampling Interfaces

perf event provides a complex sampling infrastructure, where multiple samples can be queued up

and only read when a threshold is crossed. Currently we have no way of exposing this to the user.

Also, support for Intel PEBS and AMD IBS sampling will eventually make it into the kernel.

These provide extra values when sampling, anything from latency values to entire CPU state. We

need to find a good way to export these values in a way that the user can access.

Various components, especially power ones, also return values in big buffers with multiple

measurements at once. Exporting this through the traditional PAPI interfaces will be a challenge.

10 Extended User-events

Should we always enable User-Defined events? Should the pre-defined event codes be absorbed by

user-defined events? Can we create user-defined events using events found in the components?

11 Virtualized Events (PAPI-V)

There are many issues to be resolved before PAPI-V (PAPI for virtualized systems) can be declared

finished. Here’s a brief sampling.

It is possible to detect (usually) if we’re running inside of a VM by checking a flag in /proc/cpuinfo

on Linux. We should set a value in the hardware structure. In theory there’s a special cpuinfo

interface for getting VM name and version. We should report that too.

In perf events there is the notion of Software Events that can be safely used inside of a VM

even if there is no HW-event virtualization. Should we add a way to tell if an event is a SW event

at enumeration time? This also can be used in the workaround to avoid kernel crashes on older

Linux kernels where overflow on SW event would crash things.

Should we make attempts to report real wall-clock time to users, in addition to the standard

real and virtual time? Are our virtual time routines confusingly named now that Virtual Machine

18

virtualization has taken over the term virtual?

As various VMs are adding support for virtualized and para-virtualized performance counters

accessible from the guest, we should test and make sure PAPI runs under them.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: reporting we are in VM: d7496311119

12 Dynamic Frequency-Scaling; Removing use of MHz in PAPI

code

Currently our tests fail if frequency scaling (either for power-save or for turbo-boost) happens. We

read the CPU frequency from /proc/cpuinfo at startup and use this value always. This value is

guaranteed to be wrong on systems doing DVFS because the system is likely idle when PAPI starts

but soon after the frequency is ramped up as the load increases.

Linux supports reading the current cpu frequency (and all possible frequencies) from files under

/sys. The key missing feature is that Linux will not notify you in any way if the frequency changes,

so there’s no way for PAPI to know short of periodically checking.

Some of the PAPI code in fallback mode uses the MHz to estimate cycles if a RDTSC-style

counter is not available. We should remove all uses of MHz like this unless the platform it is running

on guarantees this will stay constant.

The various PAPI tests also like to make assumptions based on the MHz value which should be

removed or otherwise worked around.

We should add a minimum mhz and maximum mhz value to the hw info t structure. These can

be set based on the files in /sys. This will take into account DVFS, as well as stranger things

such as heterogeneous processors such as the ARM BIG.little. The old MHz values can probably

be kept to preserve backwards compatibility, but its use should be deprecated.

ABI breakage: yes

CDI breakage: no

API breakage: yes

Implemented: N/A

19

13 Avoiding High-Latency Component Initialization

Some components (most notably CUDA) can take a relatively long time to initialize. This can

cause tools using PAPI to have a large startup overhead, even when the user does not plan to use

the component at all.

To address this it might be useful to have lazy initialization of the component infrastructure.

The component should only be initialized if a user tries to create an eventset using that component.

Currently PAPI initializes all components at PAPI library init() time, even if they are never

used. Ideally events could be enumerated even if a component was not initialized. This is not

possible for components that gather the event names using an external library (like CUDA). The

slowdown could also be mitigated if the component was always specified in the event name (using

the :: syntax) but for backward-compatibility reasons we do not require this.

A short-term solution might be to have initialization only happen at enumeration time or event

add time, but this would impact users who might assume event-add is a quick process.

Another suggested solution is that a low-level interface could be added that changes init into

a two-stage process. First the library is initialized enough to see which components are available.

Then a second init function is called that either enables all components (the way things currently

work) or else just a selected few.

ABI breakage: maybe

CDI breakage: no

API breakage: maybe

Implemented: N/A

14 Properly Detecting Component Availability

Currently if a component is compiled in, it is assumed that the hardware the component accesses is

available and working. This is not always the case, especially on distributions that enable as many

components as possible and run on various machines.

Until PAPI 4.2.1 if a component returned an error in its init substrate() routine, then PAPI

as a whole would fail. To get around this, components worked around this by indicating success

but setting num native events to be 0. As of PAPI 4.2.1 there is a workaround that will set this

workaround by default if a PAPI error is returned.

A proper solution is to just remove the component from the papi hwd[] structure if init substrate()

fails. The code to do this is very small, as shown in a patch sent to us by Bull.

ABI breakage: yes

20

CDI breakage: yes

API breakage: yes

Implemented: yes 6b18415879c16f

15 Mitigating Long Latency Reads

As we move away from only CPU counter reads, there becomes the potential for long-latency reads.

For example, reading values from a power meter connected to the system via a serial cable can take

milliseconds. This can start to impact the performance of the program being measured.

One possible solution would be to have a component spawn a separate thread that handles I/O

(almost like a daemon). This thread can periodically poll the hardware, and the PAPI component

can return a cached (though possibly slightly old value) with low latency.

Setting this up properly can be a complicated process; it might be worthwhile to provide

infrastructure that handles this.

16 Other Issues for Discussion

16.1 More Code Coverage

Code that is not compiled quickly breaks. The PAPI code is littered with #ifdefs and configure

options, so much so that a lot of code quietly breaks without anyone noticing.

To fix this I’ve been attempting to remove as many ifdefs as possible. Have as much configuration

be determined at run time as possible.

Use configure as little as possible as well, again try to determine things at runtime.

A big help will be to have configure enter component subdirs and call those subconfigures. Many

people do not test some of the more obscure components because there’s this barrier to entry, and

it is hard to script.

16.2 Removing Obsolete Components/Substrates

The ACPI component was removed when it was found to be not providing useful information.

At what point should perfctr and perfmon2 substrates be dropped? The Solaris OS support?

Should Windows support be dropped? It hasn’t worked in ages and its #ifdefs make the code

extremely messy.

Any-null support has been dropped.

21

16.3 Improving Test Infrastructure

The current test infrastructure reports many spurious errors when a counter such as PAPI FP OPS

is unavailable. The tests should detect this early and do a “skip” rather than a fail.

We should also probably add a test early on that detects if counters are not available, and skip

any tests that depend on HW counters being available. This will allow the tests to run on systems

like VMs where PAPI is still usable for timing and components but not for HW counting.

We should also add infrastructure for things like perf event specific tests. I have a number of

these but they are currently outside the main PAPI tree.

16.4 Locking Changes

The locking code is a bit of a mess. A big chunk (including the papi lock.h header) can go away

with the any-null removal.

The actual declaration of the locks (for Linux at least) should be moved out of the libpfm4 code

and into the Linux generic code.

Fallbacks for using POSIX pthread mutexes should be added. This is very useful when using

Valgrind to debug the code. This will need a configure switch to enable. (It is not a huge change

to the code, as currently PAPI always links with pthreads on Linux).

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: yes: 92689f626b

16.5 Official CDI interface

Should we have an official “papi cdi.h” that is included by modules, rather than them including

“papi internal.h” and getting access to everything?

16.6 Outside Comments

A way to distinguish between events that can/cannot be sample sources. Currently the only way

to determine this is to check whether an event is ’derived’ in the preset event info structure.

22

