
Non-Determinism and Overcount on
Modern Hardware Performance

Counter Implementations

Vince Weaver

University of Maine

vincent.weaver@maine.edu

Dan Terpstra

University of Tennessee

terpstra@icl.utk.edu

Shirley Moore

University of Texas at El Paso

svmoore@utep.edu

ISPASS 2013 – 23 April 2013

Hardware Performance Counters

• Low-level CPU counters measuring architectural events

• Not always documented well

• Never guaranteed by hardware engineers to be accurate

Tend to be a bit of an afterthought

• Can they be deterministic?

1

Deterministic Program Example

Execute for exactly 10 million instructions on x86 64:

total is 2 + 1 + 4999997*2 + 3

.globl _start

_start:

xor %rcx ,%rcx # pad total to 10M

xor %rax ,%rax # pad total to 10M

mov $4999997 ,%rcx # load counter

loop:

dec %rcx

jnz loop # repeat 4999997 times

exit:

xor %rdi ,%rdi # return value of 0

mov $60 ,%rax # put exit syscall number (60) in rax

syscall

2

Results

perf stat -e instructions:u,r5301cb:u ./ten_million

Performance counter stats for ’./ten_million’:

10,000,006 instructions:u # 0.00 insns per cycle

2 r5301cb:u

...

10,000,004 instructions:u # 0.00 insns per cycle

1 r5301cb:u

...

10,000,008 instructions:u # 0.00 insns per cycle

3 r5301cb:u

Results on IvyBridge too high by 2 + (2∗r5301cb:u)?

Why?

3

What Makes a Useful, Deterministic,
Event?

• The result does not change run-to-run

(it is not speculative)

• The expected value can be determined by code inspection

• The event occurs often in generic code

4

Is This Really a Problem?

• Have observed up to 2% error on real benchmarks, but

often it is much less.

• Who needs Deterministic Events?

5

Uses of Deterministic Events

• Simulator Validation – compare against hardware

• Validating Basic Block Vectors

• Feedback Directed Optimization – want precise sample

rate

• Hardware Checkpointing / Rollback, Intrusion Analysis

– need to replay asynchronous events at exact time

• Parallel Deterministic Execution – want execution (and

especially locks) to be deterministic

6

External Sources of Non-Determinism

• Operating System Interaction

• Program Layout

• Measurement Overhead

• Multi-thread interactions

7

Custom Assembly Benchmark

• Hand-coded microbenchmark with over 200 million

dynamic instructions

• Exercises most integer, x87 floating point, MMX, and

SSE instructions (up to SSE3)

• Various types of memory accesses, operand sizes (8-bit

through 128-bit SSE) and addressing modes

• Code is looped many times to make anomalies stand out

• Compare against value from code inspection, also

validate with DBI Utils (Pin, Valgrind, Qemu)

8

x86 64 machines investigated

Processor Linux Kernel

Intel Atom 230 3.2 perf events
Intel Core2 X5355 2.6.36.2 perf events
Intel Nehalem X5570 2.6.38.6 perf events
Intel Nehalem-EX X7550 2.6.32-RHEL6 perf events
Intel Westmere-EX 8870 3.2 perf events
Intel SandyBridge-EP 2.6.32-RHEL6 perf events
Intel IvyBridge i5-3427U 3.2 perf events
Intel Pentium D 2.6.28 perfmon2
AMD Phenom 9500 2.6.29 perfmon2
AMD Istanbul 8439 2.6.35 perf events
AMD Bobcat E-350 3.2 perf events

9

Event Types Investigated

• total retired instructions

• retired branches (total and conditional)

• retired loads and stores

• retired floating point and SSE

• not speculative events (retired µops) or uncommon

events (move instructions, cpuid, serializing, barriers,

etc.)

10

Intel Core2 Intel Nehalem / Westmere

Retired
Instructions

INSTRUCTIONS RETIRED INSTRUCTIONS RETIRED
(instructions:u) (instructions:u)

Retired
Branches

BRANCH INSTRUCTIONS RETIRED BRANCH INSTRUCTIONS RETIRED
(branches:u) (branches:u)

Retired Cond
Branches

BR CND EXEC BR INST RETIRED:CONDITIONAL
(r53008b:u) (r5301c4:u)

Retired
Loads

INST RETIRED:LOADS MEM INST RETIRED:LOADS
(r5001c0:u) (r50010b:u)

Retired
Stores

INST RETIRED:STORES MEM INST RETIRED:STORES
(r5002c0:u) (r50020b:u)

Multiplies
MUL ARITH:MUL

(r510012:u) (r500214:u)

Divides
DIV ARITH:DIV

(r510013:u) (r1d40114:u)

FP
FP COMP OPS EXE FP COMP OPS EXE:X87

(r500010:u) (r500110:u)

SSE
SIMD INSTR RETIRED FP COMP OPS EXE:SSE FP

(r5000ce:u) (r500410:u)

Retired
Uops

UOPS RETIRED UOPS RETIRED:ANY
(r500fc2:u) (r5001c2:u)

Hardware Interrupts
HW INT RCV HW INT:RCV
(r5000c8:u) (r50011d:u)

11

Results

Atom Core2
Nehalem
Nehalem-

EX

Westmere-EX
SandyBridge-

EP
IvyBridge

Pentium D
Phenom
Istanbul
Bobcat

Total
hpEF hpEF hpEF hpEF hpEF hpEFD hpEFD

Instructions

Total
hp hpD hp hp hp hp hp

Branches

Conditional
– p D DETRM DETRM ! –

Branches

Loads – hpD hpM hp U hpU –

Stores – DETRM hpD hpD U hpU –

Sources of nondeterminism: h Hardware Interrupts
p Page Faults

Sources of overcount: E x87/SSE exceptions
F OS Lazy FP handling
D Instructions Overcounted
M Instructions Undercounted
U Counts micro-ops

Missing Results: – Event not available
! Test not run

12

Sources of Non-Determinism

• Hardware interrupts – most events increment an extra

time for every hardware interrupt (most common is

periodic timer)

• Page faults – first time memory page accessed, extra

instruction

13

Overcount

• In addition to non-determinism, many events suffer from

over (or under) count where an instruction triggers

multiple times

• Overcount is deterministic, but cannot be predicted in

advance unless you know exact dynamic instruction mix

14

Sources of Overcount Found on Most
Events

• x87 top-of-stack pointer overflows

• Floating point unit used first time

• rep-prefixed string instructions count as single

instruction (DBI tools count each, Pin behavior change)

15

Overcount in Total Retired Instructions

• AMD – fninit, fnsave, fnclex overcount when x87

exception flags set

• Pentium D – two different events

INSTRUCTIONS COMPLETED:NBOGUS

INSTRUCTIONS RETIRED:NBOGUSNTAG

Latter is deterministic (except when interrupt rep string)

but has overcount, specifically fldcw which can cause

2% error on some SPEC2k benchmarks.

16

Overcount in Retired Branches

• AMD – Linux kernel / perf event issue: wrong event

definition until Linux 2.6.35

• Core2 – cpuid instruction counts as a branch

17

Overcount in Retired Conditional Branches

• Nehalem – overcounts for may instructions that start

with opcode 0f (cond branches but also some MMX and

SSE)

18

Overcount in Retired Loads

• Core2 – leave counts twice.

fstenv, fxsave, fsave count as loads.

maskmovq, maskmovdqu, movups, movupd, movdqu

count even when a store to memory.

• Nehalem – paddb, paddw, paddd under count

• Pentium D, SandyBridge, IvyBridge – measure µops

19

Complex Pentium D Behavior

0 256 512 768 1024 1280 1536 1792 2048
Value in RCX for the rep movsb instruction

0

64

128

192

M
e

a
s
u

re
d

 L
o

a
d

s
 o

n
 P

e
n

ti
u

m
 D

20

Overcount in Retired Stores

• Nehalem, Westmere – cpuid, sfence, mfence,

clflush all count as stores

• SandyBridge, IvyBridge – measure µops

21

Summary

Only two known x86 64 events are deterministic with no

overcount:

• INST RETIRED:STORES on Core2

• BR INST RETIRED:CONDITIONAL on Westmere,

SandyBridge and IvyBridge

22

Compensating for Non-Determinism

Is it possible to compensate for non-determinism?

• For total aggregate counts, can subtract off interrupt

counts (if a HW Interrupt event available)

• Sampling and Fast-forwarding a bit trickier.

Can use ReVirt methodology: set counter to overflow

early by a safe amount, compensate, then single-step to

get exact

23

Compensating for Overcount

Is it possible to compensate for non-determinism?

• Difficult for aggregate counts; you need to know the

exact instruction mix

• FastForward is easier, as if you are trying to get to the

same place you will have traversed the same instruction

mix and have the same overcounts

24

Non-x86 64 Architectures

• ARM – can’t measure userspace only on Cortex A8/A9

• ia64 – STORES RETIRED, LOADS RETIRED, and

IA64 INST RETIRED appear deterministic

• POWER6 – instructions:u deterministic, branches:u

has overcount

• SPARC Niagara T-1 – INSTR CNT deterministic

25

Full-sized Benchmarks (SPEC CPU 2000)
Benchmark Pin Results Counter Results Difference

164.gzip.graphic 9,220,255,442+/-0 9,220,318,816+/-1 63,374
171.swim 18,657,590,092+/-0 18,657,604,499+/-0 14,407
175.vpr.place 10,506,996,023+/-0 10,507,367,334+/-1 371,311
175.vpr.route 8,498,211,242+/-0 8,498,625,210+/-1 413,968
176.gcc.200 10,809,876,957+/-0 10,810,247,099+/-14 370,142

177.mesa 35,256,814,647+/-0 35,256,814,675+/-0 28
178.galgel 25,736,467,292+/-0 25,736,468,525+/-0 1,233
179.art.110 3,467,916,650+/-0 3,467,916,650+/-0 0
179.art.470 3,792,351,365+/-0 3,792,351,365+/-0 0
186.crafty 14,715,329,050+/-0 14,715,329,550+/-0 500

187.facerec 17,108,726,507+/-0 17,175,891,130+/-6 67,164,623
188.ammp 31,435,756,072+/-0 31,435,756,072+/-0 0
197.parser 32,254,247,249+/-0 32,254,090,688+/-0 -156,561
200.sixtrack 24,831,293,048+/-0 24,831,447,915+/-1 154,867
252.eon.cook 9,168,538,965+/-10 9,168,538,925+/-21 -40

253.perlbmk.957 853,729,475+/-0 853,824,516+/-0 95,041
253.perlbmk.diffmail 5,192,919,547+/-2 5,192,873,218+/-0 -46,329
253.perlbmk.makerand 188,774,998+/-2 188,774,884+/-1 -114
253.perlbmk.perfect 3,498,063,997+/-2 3,498,435,094+/-0 371,097
254.gap 25,380,689,015+/-0 25,380,688,751+/-0 -264

26

Future Work

• Test more extensively on other architectures

• Auto-generate tests

• Work with chip vendors

• Look at more events and options (Fixed Counter 2)

27

Questions?

vincent.weaver@maine.edu

All code and data is available

http://www.eece.maine.edu/~vweaver/projects/deterministic

git://github.com/deater/deterministic.git

28

