Linux perf_event Features and
Overhead

2013 FastPath Workshop

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

21 April 2013

Performance Counters and Workload
Optimized Systems

e With processor speeds constant, cannot depend on
Moore's Law to deliver increased performance

e Code analysis and optimization can provide speedups in
existing code on existing hardware

e Systems with a single workload are best target for cross-
stack hardware/kernel /application optimization

e Hardware performance counters are the perfect tool for
this type of optimization

THE UNIVERSITY OF
LJMAINE 1 WA A4

Some Uses of Performance Counters

e [raditional analysis and optimization

e Finding architectural reasons for slowdown
e Validating Simulators

e Auto-tuning

e Operating System optimization

e Estimating power/energy in software

THE UNIVERSITY OF
LJMAINE z WA A4

Linux and Performance Counters

e Linux has become the operating system of choice in
many domains

e Runs most of the Top500 list (over 90%) on down to
embedded devices (Android Phones)

e Until recently had no easy access to hardware
performance counters, limiting code analysis and
optimization.

THE UNIVERSITY OF
LJMAINE ; WA A4

Linux Performance Counter History

e oprofile — system-wide sampling profiler since 2002

e perfctr — widely used general interface available since
1999, required patching kernel

e perfmon2 — another general interface, included in kernel
for itanium, made generic, big push for kernel inclusion

THE UNIVERSITY OF
CIMAINE : AA/

Linux perf_event

e Developed in response to perfmon2 by Molnar and
Gleixner in 2009

e Merged in 2.6.31 as “"PCL"

e Unusual design pushes most functionality into kernel

e Not well documented nor well characterized

TTTTTTTTTTTTTTT

perf_event Interface

e sys_perf_event_open() system call
e complex perf_event_attr structure (over 40 fields)
e counters started/stopped with ioct1() call

e values read either with read() or samples in mmap()
circular buffer

THE UNIVERSITY OF
[IMAINE ; RAA

perf_event Kernel Features

e Generalized Events — commonly used events on various
architectures provided common names

e Event Scheduling — kernel handles mapping events to
appropriate counters

e Multiplexing — if more events than counters, time based
multiplexing extrapolates full counts

e Per-process counts — values saved on context switch

e Software Events — kernel events exposed by same API

THE UNIVERSITY OF
LJMAINE 7 WA A4

Advanced Hardware Features

e Offcore Response — filtered measuring of memory
accesses that leave the core

e Uncore and Northbridge Events — special support needed
for shared resources (L2, L3, memory)

e Sampled Interfaces
+ AMD Instruction Based Sampling (IBS) — can provide
address, latency, etc., as well as minimal skid

+ Intel Precise Event Sampling (PEBS) — gathers extra
data on triggered event (registers, latency), low-skid

MAINE 8 VA A/

Virtualized Counters

e Recent wversions of KVM can trap on access
to performance MSRs and pass in guest-specific
performance counts, allowing use of performance
counters in a virtualized environment

e counter values have to be save/restored when guest
scheduled

THE UNIVERSITY OF
LJMAINE : WA A4

More on Generalized Events

e Unlike those provided by user-space libraries (PAPI),
hard to know what the actual event is (this is changing)

e Kernel events are sometimes wrong, a lot more hassle to
update kernel than update library

THE UNIVERSITY OF
LJMAINE 10 WA A4

Generalized Events — Wrong Events

Until 2.6.35 total “branches” preset accidentally mapped

to “taken branches”
176.gcc.static.166

» 28M —
S 21M Total
%14M— Taken
5 M-
Mg
0 50 100 150 200

Instruction Interval (100M)

164.9zip.static.log

—— Misses/Total
] —— Misses/Taken
R LR

' S I B I
50 100 150 200 250
Instruction Interval (100M)

—
W
|

Branch Miss %
=
|

S W
I

o 11

THE UNIVERSITY OF

ITD MAINE 11 VA A/

Generalized Events — Similar Events,
Different Meaning

On Nehalem,
e perf_event defines L1D.0P_READ.RESULT_ACCESS

(perf: L1-dcache-loads) as MEM_INT_RETIRED:LOADS
e PAPI defines PAPI_L1_DCR as L1D_CACHE_LD:MESI

181.mcf.static.default

176M —
@ 132M - —— PAPI
g S8M perf_event
S 4aM A

2 Mt SARARAAAS SARAARARS SARAARARS SARAAAS
— 0 100 200 300 400

Instruction Interval (100M)

THE UNIVERSITY OF
[IMAINE 1 RAA

Context-Switch Test Methodology

e To give per-process events, have to save counts on
context-switch. This has overhead

e \We use 1mbench lat_ctx benchmark. Run it with and
without perf measuring It.

e Up to 20% overhead when perf monitoring the threads.
Benchmark documentation claim 10-15% accuracy at
best

THE UNIVERSITY OF
LJMAINE 13 WA A4

Core2 Context-Switch Overhead

THE UNIVERSITY OF

m MAINE

core2 Context Switch Time

20
] —=— perf_event - inactive
--x-- perf_event - active
—e— perfctr - inactive
1 A --x-- perfctr - active
151 i —e— perfmon2 - inactive
] I\ --x-- perfmon2 - active
)
=
o 104
E
|_ i
5 -
O - | | | | | | | |

»*

| | | | | | |
S F R b‘b(o & Q;é\ F B X N ¥ o oY
00 % 2 % q° P 0 g% q®

Kernel Being Tested

14

Common Performance Counter Usage
Models

o Aggregate
e Sampled

e Self-monitoring

Linux perf_event can do all three.

THE UNIVERSITY OF
[IMAINE 15 RAA

Aggregate Counts

$ perf stat -e instructions,cycles,branches,branch-misses,cache-misses

./matrix_multiply_atlas
Matrix multiply sum: s=3650244631906855424.000000

Performance counter stats for ’./matrix_multiply_atlas’:

194,492,378,876 instructions # 2.51 1insns per cycle
77,585,141,514 cycles 0.000 GHz
584,202,927 branches
3,963,325 branch-misses 0.68% of all branches
89,863,007 cache-misses

49.973787489 seconds time elapsed

perf_event sets up events, forks process (start counts on
exec ()), handles overflow, waits for exit, prints totals.

THE UNIVERSITY OF

LJMAINE 16 WA A

Sampled Profiling

$ perf record ./matrix_multiply_atlas

Matrix multiply sum: s=3650244631906855424.000000

[perf record: Woken up 14 times to write data |

[perf record: Captured and wrote 3.757 MB perf.data (7164126 samples)]

$ perf report

Events: 98K cycles

97.36% matrix_multiply 1libblas.so.3.0 .1 ATL_dJIK48x48x48TN48
.62% matrix_multiply matrix_multiply_atlas .l naive_matrix_multipl
.27% matrix_multiply 1libblas.so.3.0 .J] O0x1£1728
.18% matrix_multiply 1libblas.so.3.0 .] ATL_dupMBmmO_8_0_b1l
.16% matrix_multiply 1libblas.so.3.0 .1l ATL_dupKBmm8_2_1_b1l
.14% matrix_multiply 1libblas.so0.3.0 .J] ATL_dupNBmmO_1_0_b1l
.13% matrix_multiply 1libblas.so.3.0 .l ATL_dcol2blk_al

.09% matrix_multiply [kernel.kallsyms] page_fault

Periodically sample, grad state, record for later analysis.

THE UNIVERSITY OF

IMAINE 1 RAAL

Self-Monitoring

retval = PAPI_library_init (PAPI_VER_CURRENT) ;

if (retval !'= PAPI_VER_CURRENT) fprintf (stderr,"Wrong PAPI version\n");
retval = PAPI_create_eventset(&event_set);
if (retval != PAPI_O0K) fprintf(stderr,"Error creating ,eventset\n");

retval = PAPI_add_named_event(event_set, "PAPI_TOT_INS");
if (retval != PAPI_OK) fprintf(stderr,"Error adding ,event\n");

retval = PAPI_start(event_set);
naive_matrix_multiply (0);
retval = PAPI_stop(event_set ,&count);

printf ("Total instructions:,%11d\n",count);

THE UNIVERSITY OF

ITD MAINE 18 VA A/

Self-Monitoring Overhead

e Typical pattern is Start/Stop/Read
e \Want minimal possible overhead

e Read performance is typically most important, especially
if doing multiple reads

TTTTTTTTTTTTTTT

LJIMAINE 1 RAA

Methodology

e DVFS disabled

e Use rdtsc() 64-bit timestamp counter. Typically 150
cycle overhead

e Measure start/stop/read with no code in between
e All three (start/stop/read) measured at same time

e Environment variables should not matter

THE UNIVERSITY OF
LJMAINE 20 WA A4

perf_event Measurement Code

start_before=rdtsc();

ioctl (£fd[0], PERF_EVENT_IOC_ENABLE,O);
start_after=rdtsc();

ioctl (fd[0], PERF_EVENT_IOC_DISABLE,O);
stop_after=rdtsc () ;

read (fd [0] ,buffer ,BUFFER_SIZE*xsizeof (long long));

read_after=rdtsc();

THE UNIVERSITY OF

Uﬂ MAINE 21

perfctr Measurement Code

start_before=rdtsc () ;
perfctr_ioctl_w(fd, VPERFCTR_CONTROL,
&control, &vperfctr_control_sdesc);
start_after=rdtsc () ;
cstatus=kstate->cpu_state.cstatus;
nrctrs=perfctr_cstatus_nrctrs(cstatus);
retry:
tscO=kstate->cpu_state.tsc_start;
rdtscl (now) ;
sum.tsc = kstate->cpu_state.tsc_sum+(now-tscO);
for(i = nrctrs; --i >=0 ;) {
rdpmcl (kstate->cpu_state.pmc[i] .map, now);
sum.pmc[i] = kstate->cpu_state.pmc[i].sum+
(now-kstate->cpu_state.pmc[i].start);
+
if (tscO!=kstate->cpu_state.tsc_start) goto retry;

read_after=rdtsc();

A1 o Y1 3 S GH o AR o o 1 i X 0 0 IR G X' IR - M oX o a B ot Yo INRR=T: o] X8 W
stop_after=rdtsc () ;

THE UNIVERSITY OF

Uﬂ MAINE 22

perfmon2 Measurement Code

start_before=rdtsc () ;

pfm_start (ctx_£fd ,NULL);

start_after=rdtsc();

pfm_stop (ctx_£fd);

stop_after=rdtsc () ;

pfm_read_pmds (ctx_fd,pd,inp.pfp_event_count);

read_after=rdtsc();

THE UNIVERSITY OF

Uﬂ MAINE 23

Overall Overhead / 1 Event, AMD Athlon64
Boxplot: 25th/median/75th, stddev whiskers, outliers

amdOfh Overall Overhead of Start/Stop/Read with 1 Event

|
T

50000

—

Cycles

w e
* %TTT - T%%%

20000 1 T
T

——

I
I

Overhead

ge

100004 1
L

Avera

VS oL oD o> D0 A o@D 9,0.90,.90,.0 0.0 &

Q& Y R ok P o0 oD D O,00,0 0 (© O

O MO0 0 0 0 0 0 0 0 Yo oo o K
F ¥ IR
oY a0 % oy

S

R

THE UNIVERSITY OF
[IMAINE 24 RAA

Overall Overhead / 1 Event, Intel Atom

atom Overall Overhead of Start/Stop/Read with 1 Event

80000 l ;- "
2] N
260000 ! £ 3 X
> % x X X 35
° % T i l
4y}
o X
£40000 ill J_ITTT <1717 1
S il
o T1
(@]
©20000- l
2 X T
< 1

4

0

% Q/ ‘b ‘)(9.) ‘b ’\ ‘b Q)

& & o D o P o0 A\ oD oS q, OO £ ©

Q

NS %@%@%@%b%@%@%@%@ oo oo K2R
Ly AN
o, > oy

)
(b.

THE UNIVERSITY OF

ITD MAINE 25 VA A/

Overall Overhead / 1 Event, Intel Core2

core2 Overall Overhead of Start/Stop/Read with 1 Event
30000 -

» x
ko
(&] J x
>]
320000 o
o] x
(4]
g l H x !
3 T 1 I
5] %%%l - T==T_I_%%%%T
©10000 1 T T
©] N
()
>
< "
0- % Q/ ‘b X B o0 A O Q)
Py S o oD o 6D oD &\ oP o q, O S © 0 ®
QO
S Q:b A S S A B ‘bQ@Q RS
Q ‘bq’ & o°
©°
Qf

THE UNIVERSITY OF

ITD MAINE 26 VA A/

Start Overhead / 1 Event, Intel Core2

core?2 Overall Overhead of Start with 1 Event

20000
e .
515000
> .
Q
©
[4y)
'))}
+=10000 -
5 ' z x
O X
& 1] gdilapsrdeisd
5 i r=TTTT 0T
o 5000 T T =
<
IR
° % Y oD o D o0 A\ P Q,
G S T FEFEE D E S NS
9
& Q,Q’ PN PN Sy o o fb ‘bg@Q %Q‘GQ
< (g» S S
©°
Vv

THE UNIVERSITY OF

UﬂNMdNE

27

Stop Overhead / 1 Event, Intel Core2

THE UNIVERSITY OF

m MAINE

core2 Overall Overhead of Stop with 1 Event
10000

(o]
o
o
o

6000 -

4000

Average Overhead (Cycles)

N

o

o

o
1

X X Xx XX)(X I
i |4 P
n;*+¥i4i*i%% trr

0
Q/ Q/ (b % B o0 L DO Q Q
Py S oV oD of P o0 B\ oP oS q,q,u@(o((\
QO
S Q:b AP PR @@L > > DT AR
<L ‘bq’ X o°
q,QQ, % %
©°
o

28 VA A/

Read Overhead / 1 Event, Intel Core2

perfctr uses rdpmc

THE UNIVERSITY OF

m MAINE

core2 Overall Overhead of Read with 1 Event

20000 -

? _

515000+

>]

o

©

©

© _

<10000-

o)

>

o

: ;

© 1 % x ¥

© 5000 X il Il

z | %;T *i T!]!Txgx_lxi
. T ST
] N
0 %«wabwo@/\% Q

c}“o‘b‘b‘b‘b‘b‘b‘b q, u&@@

{é‘ A A S B 57 o
R SN
QQ‘b & o°

(b

29 VA A/

Overall Overhead / Multiple Events, Core2

core2 Overall Start/Stop/Read Overhead

40000 --=-- 2.6.30-perfmon2
] -=-2.6.32-perfctr

——2.6.32

@ —=—35.0
ESOOOO‘ - x--3.5.0-rdpmc
o -t
= -
o]]
o)
-E2000O—
o
> _
@)
o)
(o)]
© _
10000 -
> _
< :

0

Simultaneous Events Being Measured

THE UNIVERSITY OF

m MAINE 30 WA A 4

Self-Monitoring Overhead Summary

e perfmon2 low-overhead due to very thin layer over
hardware, most of work done in userspace

e perfctr has very fast rdpmc reads

e Some of perf_event overhead because key tasks are in-
kernel and cannot be done before starting events

e Is 20,000 cycles too much to get an event count?
Unclear, but perfctr is much faster, showing there is
room for improvement.

THE UNIVERSITY OF
LJMAINE 31 WA A4

New Non-perf_event Developments

o LIKWID — bypasses Linux kernel, accesses MSRs directly.
_ow overhead, but system-wide only, and conflicts with
perf_event

e LIMiT — new patch interface similar to perfctr

THE UNIVERSITY OF
[IMAINE 5 RAA

Future Work

e AMD Lightweight Profiling (LWP) — (Bulldozer) events
can be setup and read purely from userspace

e Intel Xeon Phi spflt userspace setup instruction

e Investigate causes of overhead in greater depth, as well
as rdpmc performance issues.

e What can we learn from low overhead of perfctr and
perfmon?2?

THE UNIVERSITY OF
LJMAINE 33 VA A4

Questions?

vincent.weaverOmaine.edu

All code and data is available:
git clone
git://github.com/deater/perfevent_overhead.git

THE UNIVERSITY OF
[IMAINE 54 RAA

