
Linux perf event Features and
Overhead

2013 FastPath Workshop

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

21 April 2013



Performance Counters and Workload
Optimized Systems

• With processor speeds constant, cannot depend on

Moore’s Law to deliver increased performance

• Code analysis and optimization can provide speedups in

existing code on existing hardware

• Systems with a single workload are best target for cross-

stack hardware/kernel/application optimization

• Hardware performance counters are the perfect tool for

this type of optimization

1



Some Uses of Performance Counters

• Traditional analysis and optimization

• Finding architectural reasons for slowdown

• Validating Simulators

• Auto-tuning

• Operating System optimization

• Estimating power/energy in software

2



Linux and Performance Counters

• Linux has become the operating system of choice in

many domains

• Runs most of the Top500 list (over 90%) on down to

embedded devices (Android Phones)

• Until recently had no easy access to hardware

performance counters, limiting code analysis and

optimization.

3



Linux Performance Counter History

• oprofile – system-wide sampling profiler since 2002

• perfctr – widely used general interface available since

1999, required patching kernel

• perfmon2 – another general interface, included in kernel

for itanium, made generic, big push for kernel inclusion

4



Linux perf event

• Developed in response to perfmon2 by Molnar and

Gleixner in 2009

• Merged in 2.6.31 as “PCL”

• Unusual design pushes most functionality into kernel

• Not well documented nor well characterized

5



perf event Interface

• sys perf event open() system call

• complex perf event attr structure (over 40 fields)

• counters started/stopped with ioctl() call

• values read either with read() or samples in mmap()

circular buffer

6



perf event Kernel Features

• Generalized Events – commonly used events on various

architectures provided common names

• Event Scheduling – kernel handles mapping events to

appropriate counters

• Multiplexing – if more events than counters, time based

multiplexing extrapolates full counts

• Per-process counts – values saved on context switch

• Software Events – kernel events exposed by same API

7



Advanced Hardware Features

• Offcore Response – filtered measuring of memory

accesses that leave the core

• Uncore and Northbridge Events – special support needed

for shared resources (L2, L3, memory)

• Sampled Interfaces

+ AMD Instruction Based Sampling (IBS) – can provide

address, latency, etc., as well as minimal skid

+ Intel Precise Event Sampling (PEBS) – gathers extra

data on triggered event (registers, latency), low-skid

8



Virtualized Counters

• Recent versions of KVM can trap on access

to performance MSRs and pass in guest-specific

performance counts, allowing use of performance

counters in a virtualized environment

• counter values have to be save/restored when guest

scheduled

9



More on Generalized Events

• Unlike those provided by user-space libraries (PAPI),

hard to know what the actual event is (this is changing)

• Kernel events are sometimes wrong, a lot more hassle to

update kernel than update library

10



Generalized Events – Wrong Events

Until 2.6.35 total “branches” preset accidentally mapped

to “taken branches”

0 50 100 150 200

Instruction Interval (100M)

0M

7M

14M

21M

28M

B
ra

n
c
h
e
s

176.gcc.static.166

Total

Taken

0 50 100 150 200 250

Instruction Interval (100M)

0

5

10

15

B
ra

n
c
h
 M

is
s
 %

164.gzip.static.log

Misses/Total

Misses/Taken

11



Generalized Events – Similar Events,
Different Meaning

On Nehalem,
• perf event defines L1D.OP READ.RESULT ACCESS

(perf: L1-dcache-loads) as MEM INT RETIRED:LOADS

• PAPI defines PAPI L1 DCR as L1D CACHE LD:MESI

0 100 200 300 400

Instruction Interval (100M)

0M

44M

88M

132M

176M

L
1
 D

C
a
c
h
e
 L

o
a
d
s

181.mcf.static.default

PAPI

perf_event

12



Context-Switch Test Methodology

• To give per-process events, have to save counts on

context-switch. This has overhead

• We use lmbench lat ctx benchmark. Run it with and

without perf measuring it.

• Up to 20% overhead when perf monitoring the threads.

Benchmark documentation claim 10-15% accuracy at

best

13



Core2 Context-Switch Overhead

2.
6.

30

2.
6.

31

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39 3.
0

3.
1

3.
2

3.
3

3.
4

Kernel Being Tested

0

5

10

15

20

T
im

e
 (

u
s
)

core2 Context Switch Time

perf_event - inactive
perf_event - active
perfctr - inactive
perfctr - active
perfmon2 - inactive
perfmon2 - active

14



Common Performance Counter Usage
Models

• Aggregate

• Sampled

• Self-monitoring

Linux perf event can do all three.

15



Aggregate Counts

$ perf stat -e instructions,cycles,branches,branch-misses,cache-misses

./matrix_multiply_atlas

Matrix multiply sum: s=3650244631906855424.000000

Performance counter stats for ’./matrix_multiply_atlas’:

194,492,378,876 instructions # 2.51 insns per cycle

77,585,141,514 cycles # 0.000 GHz

584,202,927 branches

3,963,325 branch-misses # 0.68% of all branches

89,863,007 cache-misses

49.973787489 seconds time elapsed

perf event sets up events, forks process (start counts on

exec()), handles overflow, waits for exit, prints totals.

16



Sampled Profiling

$ perf record ./matrix_multiply_atlas

Matrix multiply sum: s=3650244631906855424.000000

[ perf record: Woken up 14 times to write data ]

[ perf record: Captured and wrote 3.757 MB perf.data (~164126 samples) ]

$ perf report

Events: 98K cycles

97.36% matrix_multiply libblas.so.3.0 [.] ATL_dJIK48x48x48TN48x48x0_

0.62% matrix_multiply matrix_multiply_atlas [.] naive_matrix_multiply

0.27% matrix_multiply libblas.so.3.0 [.] 0x1f1728

0.18% matrix_multiply libblas.so.3.0 [.] ATL_dupMBmm0_8_0_b1

0.16% matrix_multiply libblas.so.3.0 [.] ATL_dupKBmm8_2_1_b1

0.14% matrix_multiply libblas.so.3.0 [.] ATL_dupNBmm0_1_0_b1

0.13% matrix_multiply libblas.so.3.0 [.] ATL_dcol2blk_a1

0.09% matrix_multiply [kernel.kallsyms] [k] page_fault

Periodically sample, grad state, record for later analysis.

17



Self-Monitoring
retval = PAPI_library_init(PAPI_VER_CURRENT );

if (retval != PAPI_VER_CURRENT) fprintf(stderr ,"Wrong PAPI version\n");

retval = PAPI_create_eventset( &event_set );

if (retval != PAPI_OK) fprintf(stderr ,"Error creating eventset\n");

retval = PAPI_add_named_event( event_set , "PAPI_TOT_INS" );

if (retval != PAPI_OK) fprintf(stderr ,"Error adding event\n");

retval = PAPI_start(event_set );

naive_matrix_multiply (0);

retval = PAPI_stop(event_set ,& count);

printf("Total instructions: %lld\n",count);

18



Self-Monitoring Overhead

• Typical pattern is Start/Stop/Read

• Want minimal possible overhead

• Read performance is typically most important, especially

if doing multiple reads

19



Methodology

• DVFS disabled

• Use rdtsc() 64-bit timestamp counter. Typically 150

cycle overhead

• Measure start/stop/read with no code in between

• All three (start/stop/read) measured at same time

• Environment variables should not matter

20



perf event Measurement Code
start_before=rdtsc ();

ioctl(fd[0], PERF_EVENT_IOC_ENABLE ,0);

start_after=rdtsc ();

ioctl(fd[0], PERF_EVENT_IOC_DISABLE ,0);

stop_after=rdtsc ();

read(fd[0],buffer ,BUFFER_SIZE*sizeof(long long ));

read_after=rdtsc ();

21



perfctr Measurement Code
start_before=rdtsc ();

perfctr_ioctl_w(fd,VPERFCTR_CONTROL ,

&control , &vperfctr_control_sdesc );

start_after=rdtsc ();

cstatus=kstate ->cpu_state.cstatus;

nrctrs=perfctr_cstatus_nrctrs(cstatus );

retry:

tsc0=kstate ->cpu_state.tsc_start;

rdtscl(now);

sum.tsc = kstate ->cpu_state.tsc_sum +(now -tsc0);

for(i = nrctrs; --i >=0 ;) {

rdpmcl(kstate ->cpu_state.pmc[i].map , now);

sum.pmc[i] = kstate ->cpu_state.pmc[i].sum+

(now -kstate ->cpu_state.pmc[i].start );

}

if (tsc0!=kstate ->cpu_state.tsc_start) goto retry;

read_after=rdtsc ();

_vperfctr_control(fd, &control_stop );

stop_after=rdtsc ();

22



perfmon2 Measurement Code
start_before=rdtsc ();

pfm_start(ctx_fd ,NULL);

start_after=rdtsc ();

pfm_stop(ctx_fd );

stop_after=rdtsc ();

pfm_read_pmds(ctx_fd ,pd,inp.pfp_event_count );

read_after=rdtsc ();

23



Overall Overhead / 1 Event, AMD Athlon64

Boxplot: 25th/median/75th, stddev whiskers, outliers

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

40000

50000
A

v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

amd0fh Overall Overhead of Start/Stop/Read with 1 Event

24



Overall Overhead / 1 Event, Intel Atom

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

20000

40000

60000

80000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

atom Overall Overhead of Start/Stop/Read with 1 Event

25



Overall Overhead / 1 Event, Intel Core2

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Start/Stop/Read with 1 Event

26



Start Overhead / 1 Event, Intel Core2

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

5000

10000

15000

20000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Start with 1 Event

27



Stop Overhead / 1 Event, Intel Core2

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

2000

4000

6000

8000

10000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Stop with 1 Event

28



Read Overhead / 1 Event, Intel Core2

perfctr uses rdpmc

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

5000

10000

15000

20000
A

v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Read with 1 Event

29



Overall Overhead / Multiple Events, Core2

1 2 3 4
Simultaneous Events Being Measured

0

10000

20000

30000

40000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Start/Stop/Read Overhead 

2.6.30-perfmon2

2.6.32-perfctr

2.6.32

3.5.0

3.5.0-rdpmc

30



Self-Monitoring Overhead Summary

• perfmon2 low-overhead due to very thin layer over

hardware, most of work done in userspace

• perfctr has very fast rdpmc reads

• Some of perf event overhead because key tasks are in-

kernel and cannot be done before starting events

• Is 20,000 cycles too much to get an event count?

Unclear, but perfctr is much faster, showing there is

room for improvement.

31



New Non-perf event Developments

• LIKWID – bypasses Linux kernel, accesses MSRs directly.

Low overhead, but system-wide only, and conflicts with

perf event

• LiMiT – new patch interface similar to perfctr

32



Future Work

• AMD Lightweight Profiling (LWP) – (Bulldozer) events

can be setup and read purely from userspace

• Intel Xeon Phi spflt userspace setup instruction

• Investigate causes of overhead in greater depth, as well

as rdpmc performance issues.

• What can we learn from low overhead of perfctr and

perfmon2?

33



Questions?

vincent.weaver@maine.edu

All code and data is available:

git clone

git://github.com/deater/perfevent overhead.git

34


