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Performance Counters and Workload
Optimized Systems

e With processor speeds constant, cannot depend on
Moore's Law to deliver increased performance

e Code analysis and optimization can provide speedups in
existing code on existing hardware

e Systems with a single workload are best target for cross-
stack hardware/kernel /application optimization

e Hardware performance counters are the perfect tool for
this type of optimization
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Some Uses of Performance Counters

e [raditional analysis and optimization

e Finding architectural reasons for slowdown
e Validating Simulators

e Auto-tuning

e Operating System optimization

e Estimating power/energy in software
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Linux and Performance Counters

e Linux has become the operating system of choice in
many domains

e Runs most of the Top500 list (over 90%) on down to
embedded devices (Android Phones)

e Until recently had no easy access to hardware
performance counters, limiting code analysis and
optimization.

THE UNIVERSITY OF
LJMAINE ; WA A4



Linux Performance Counter History

e oprofile — system-wide sampling profiler since 2002

e perfctr — widely used general interface available since
1999, required patching kernel

e perfmon2 — another general interface, included in kernel
for itanium, made generic, big push for kernel inclusion
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Linux perf_event

e Developed in response to perfmon2 by Molnar and
Gleixner in 2009

e Merged in 2.6.31 as “"PCL"

e Unusual design pushes most functionality into kernel

e Not well documented nor well characterized
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perf_event Interface

e sys_perf_event_open() system call
e complex perf_event_attr structure (over 40 fields)
e counters started/stopped with ioct1() call

e values read either with read() or samples in mmap()
circular buffer
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perf_event Kernel Features

e Generalized Events — commonly used events on various
architectures provided common names

e Event Scheduling — kernel handles mapping events to
appropriate counters

e Multiplexing — if more events than counters, time based
multiplexing extrapolates full counts

e Per-process counts — values saved on context switch

e Software Events — kernel events exposed by same API
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Advanced Hardware Features

e Offcore Response — filtered measuring of memory
accesses that leave the core

e Uncore and Northbridge Events — special support needed
for shared resources (L2, L3, memory)

e Sampled Interfaces
+ AMD Instruction Based Sampling (IBS) — can provide
address, latency, etc., as well as minimal skid

+ Intel Precise Event Sampling (PEBS) — gathers extra
data on triggered event (registers, latency), low-skid
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Virtualized Counters

e Recent wversions of KVM can trap on access
to performance MSRs and pass in guest-specific
performance counts, allowing use of performance
counters in a virtualized environment

e counter values have to be save/restored when guest
scheduled
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More on Generalized Events

e Unlike those provided by user-space libraries (PAPI),
hard to know what the actual event is (this is changing)

e Kernel events are sometimes wrong, a lot more hassle to
update kernel than update library

THE UNIVERSITY OF
LJMAINE 10 WA A4



Generalized Events — Wrong Events

Until 2.6.35 total “branches” preset accidentally mapped

to “taken branches”
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Generalized Events — Similar Events,
Different Meaning

On Nehalem,
e perf_event defines L1D.0P_READ.RESULT_ACCESS

(perf: L1-dcache-loads) as MEM_INT_RETIRED:LOADS
e PAPI defines PAPI_L1_DCR as L1D_CACHE_LD:MESI
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Context-Switch Test Methodology

e To give per-process events, have to save counts on
context-switch. This has overhead

e \We use 1mbench lat_ctx benchmark. Run it with and
without perf measuring It.

e Up to 20% overhead when perf monitoring the threads.
Benchmark documentation claim 10-15% accuracy at
best
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Core2 Context-Switch Overhead
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Common Performance Counter Usage
Models

o Aggregate
e Sampled

e Self-monitoring

Linux perf_event can do all three.
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Aggregate Counts

$ perf stat -e instructions,cycles,branches,branch-misses,cache-misses

./matrix_multiply_atlas
Matrix multiply sum: s=3650244631906855424.000000

Performance counter stats for ’./matrix_multiply_atlas’:

194,492,378,876 instructions # 2.51 1insns per cycle
77,585,141,514 cycles 0.000 GHz
584,202,927 branches
3,963,325 branch-misses 0.68% of all branches
89,863,007 cache-misses

49.973787489 seconds time elapsed

perf_event sets up events, forks process (start counts on
exec () ), handles overflow, waits for exit, prints totals.
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Sampled Profiling

$ perf record ./matrix_multiply_atlas

Matrix multiply sum: s=3650244631906855424.000000

[ perf record: Woken up 14 times to write data |

[ perf record: Captured and wrote 3.757 MB perf.data (7164126 samples) ]

$ perf report

Events: 98K cycles

97.36% matrix_multiply 1libblas.so.3.0 .1 ATL_dJIK48x48x48TN48
.62% matrix_multiply matrix_multiply_atlas .l naive_matrix_multipl
.27% matrix_multiply 1libblas.so.3.0 .J] O0x1£1728
.18% matrix_multiply 1libblas.so.3.0 .] ATL_dupMBmmO_8_0_b1l
.16% matrix_multiply 1libblas.so.3.0 .1l ATL_dupKBmm8_2_1_b1l
.14% matrix_multiply 1libblas.so0.3.0 .J] ATL_dupNBmmO_1_0_b1l
.13% matrix_multiply 1libblas.so.3.0 .l ATL_dcol2blk_al

.09% matrix_multiply [kernel.kallsyms] page_fault

Periodically sample, grad state, record for later analysis.
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Self-Monitoring

retval = PAPI_library_init (PAPI_VER_CURRENT) ;

if (retval !'= PAPI_VER_CURRENT) fprintf (stderr,"Wrong PAPI version\n");
retval = PAPI_create_eventset( &event_set);
if (retval != PAPI_O0K) fprintf(stderr,"Error creating ,eventset\n");

retval = PAPI_add_named_event( event_set, "PAPI_TOT_INS" );
if (retval != PAPI_OK) fprintf(stderr,"Error adding ,event\n");

retval = PAPI_start(event_set);
naive_matrix_multiply (0);
retval = PAPI_stop(event_set ,&count);

printf ("Total instructions:,%11d\n",count);
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Self-Monitoring Overhead

e Typical pattern is Start/Stop/Read
e \Want minimal possible overhead

e Read performance is typically most important, especially
if doing multiple reads
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Methodology

e DVFS disabled

e Use rdtsc() 64-bit timestamp counter. Typically 150
cycle overhead

e Measure start/stop/read with no code in between
e All three (start/stop/read) measured at same time

e Environment variables should not matter
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perf_event Measurement Code

start_before=rdtsc();

ioctl (£fd[0], PERF_EVENT_IOC_ENABLE,O);
start_after=rdtsc();

ioctl (fd[0], PERF_EVENT_IOC_DISABLE,O);
stop_after=rdtsc () ;

read (fd [0] ,buffer ,BUFFER_SIZE*xsizeof (long long));

read_after=rdtsc();
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perfctr Measurement Code

start_before=rdtsc () ;
perfctr_ioctl_w(fd, VPERFCTR_CONTROL,
&control, &vperfctr_control_sdesc);
start_after=rdtsc () ;
cstatus=kstate->cpu_state.cstatus;
nrctrs=perfctr_cstatus_nrctrs(cstatus);
retry:
tscO=kstate->cpu_state.tsc_start;
rdtscl (now) ;
sum.tsc = kstate->cpu_state.tsc_sum+(now-tscO);
for(i = nrctrs; --i >=0 ;) {
rdpmcl (kstate->cpu_state.pmc[i] .map, now);
sum.pmc[i] = kstate->cpu_state.pmc[i].sum+
(now-kstate->cpu_state.pmc[i].start);
+
if (tscO!=kstate->cpu_state.tsc_start) goto retry;

read_after=rdtsc();
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stop_after=rdtsc () ;
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perfmon2 Measurement Code

start_before=rdtsc () ;

pfm_start (ctx_£fd ,NULL);

start_after=rdtsc();

pfm_stop (ctx_£fd);

stop_after=rdtsc () ;

pfm_read_pmds (ctx_fd,pd,inp.pfp_event_count);

read_after=rdtsc();
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Overall Overhead / 1 Event, AMD Athlon64
Boxplot: 25th/median/75th, stddev whiskers, outliers

amdOfh Overall Overhead of Start/Stop/Read with 1 Event
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Overall Overhead / 1 Event, Intel Atom

atom Overall Overhead of Start/Stop/Read with 1 Event
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Overall Overhead / 1 Event, Intel Core2

core2 Overall Overhead of Start/Stop/Read with 1 Event
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Start Overhead / 1 Event, Intel Core2

core?2 Overall Overhead of Start with 1 Event
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Stop Overhead / 1 Event, Intel Core2
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core2 Overall Overhead of Stop with 1 Event
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Read Overhead / 1 Event, Intel Core2

perfctr uses rdpmc
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core2 Overall Overhead of Read with 1 Event
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Overall Overhead / Multiple Events, Core2

core2 Overall Start/Stop/Read Overhead
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Self-Monitoring Overhead Summary

e perfmon2 low-overhead due to very thin layer over
hardware, most of work done in userspace

e perfctr has very fast rdpmc reads

e Some of perf_event overhead because key tasks are in-
kernel and cannot be done before starting events

e Is 20,000 cycles too much to get an event count?
Unclear, but perfctr is much faster, showing there is
room for improvement.
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New Non-perf_event Developments

o LIKWID — bypasses Linux kernel, accesses MSRs directly.
_ow overhead, but system-wide only, and conflicts with
perf_event

e LIMiT — new patch interface similar to perfctr
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Future Work

e AMD Lightweight Profiling (LWP) — (Bulldozer) events
can be setup and read purely from userspace

e Intel Xeon Phi spflt userspace setup instruction

e Investigate causes of overhead in greater depth, as well
as rdpmc performance issues.

e What can we learn from low overhead of perfctr and
perfmon?2?
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Questions?

vincent.weaverOmaine.edu

All code and data is available:
git clone
git://github.com/deater/perfevent_overhead.git
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