
Paper Appeared in the 2013 FastPath Workshop

Linux perf event Features and Overhead

Vincent M. Weaver
University of Maine

vincent.weaver@maine.edu

Abstract—Most modern CPUs include hardware performance
counters: architectural registers that allow programmers to
gain low-level insight into system performance. In 2009 the
perf event subsystem was added to the Linux kernel, allowing
users to access the performance counters easily, without kernel
patches or recompiles. Performance counter access is now readily
available for all Linux users, from Top500 supercomputers down
to small embedded systems. Tools such as PAPI can use the
perf event interface to provide CPU event support while also
providing information on other system components such as GPUs,
networking, the operating system, energy, power, and more. We
investigate the features and limitations provided by perf event
and compare its overhead against previous Linux performance
counter implementations.

I. INTRODUCTION

With processor speeds holding constant, we cannot depend
on Moore’s Law to deliver increased performance. Workload
optimized systems have the advantage of having only a single
workload of interest, allowing cross-stack hardware, kernel,
and application optimization. Code analysis and optimization
can provide targeted speedups on such code stacks when the
details of the underlying architecture are exposed; hardware
performance counters are the perfect tool for conducting this
type of optimization.

Most moderns CPUs contain hardware performance coun-
ters: architectural registers that allow low-level analysis of
running programs. Performance counter usage has traditionally
been most pervasive in the High Performance Computing
(HPC) field. The Linux operating system has come to dominate
this arena; in the November 2012 TOP500 Supercomputer list
93% of the machines were running some form of Linux [1].
Despite Linux’s importance to HPC, performance counter
support has been lacking. There have been various counter
implementations over the years: all were developed outside of
the main Linux codebase and required custom-patching the
kernel source code.

The relatively recent (in 2009) inclusion of the perf event
subsystem has introduced performance counter access for a
wide range of computers (from embedded through super-
computers) that previously had no default operating system
support. This eases development of tools that allow advanced
workload optimization.

II. BACKGROUND

There are a wide variety of events that can be measured
with performance counters; event availability varies consid-
erably among CPUs and vendors. Some processors provide
hundreds of events; sorting which ones are useful and ac-
curate from those that are broken and/or measure esoteric
architectural minutia can be difficult. Event details are buried

in architectural manuals, often accompanied by disclaimers
disavowing any guarantees for useful results.

Access to hardware performance counters requires directly
accessing special hardware registers (in the x86 world these
are known as Model Specific Registers, or MSRs). There
are usually two types of registers: configuration registers
(which allow starting and stopping the counters, choosing the
events to monitor, and setting up overflow interrupts) and
counting registers (which hold the current event counts). In
general between 2 - 8 counting registers are available, although
machines with more are possible. Reads and writes to the
configuration registers usually require special privileged (ring
0 or supervisor) instructions; the operating system can allow
access by providing an interface that translates the users’
desires into the proper low-level CPU calls. Access to counting
registers can also require special permissions; some processors
provide special instructions that allow users to access the
values directly (rdpmc on x86).

A typical operating system performance counter interface
allows selecting which events are being monitored, starting and
stopping counters, reading counter values, and, if the CPU
supports notification on counter overflow, some mechanism
for passing overflow information to the user. Some operating
systems provide additional features, such as event scheduling
(addressing limitations on which events can go into which
counters), multiplexing (swapping events in and out while ex-
trapolating counts using time accounting to give the appearance
of more physical counters), per-thread counting (by loading
and saving counter values at context switch time), process
attaching (obtaining counts from an already running process),
and per-cpu counting.

High-level libraries and tools provide common cross-
architecture and cross-platform interfaces to performance
counters; one example is PAPI [2] which is widely used in
the HPC community. PAPI in turn can be used by other tools
that provide graphical frontends to the underlying performance
counter infrastructure. Analysis works best if backed by an op-
erating system that can provide efficient low-overhead access
to the counters.

A. Performance Counters and Linux

Patches providing Linux support for performance counters
appeared soon after the release of the original Pentium pro-
cessor. While there were many attempts at Linux performance
counter interfaces, only the following saw widespread use.

1) Oprofile: Oprofile [3] is a system-wide sampling profiler
by Levon which was included into Linux 2.5.43 in 2002. It
allows sampling with arbitrary performance events (or a timer
if you lack performance counters) and provides frequency



Paper Appeared in the 2013 FastPath Workshop

graphs, profiles, and stack traces. Oprofile has limitations that
make it unsuitable for general analysis: it is system-wide only,
it requires starting a daemon as root, and it is a sampled
interface so cannot easily provide aggregate event counts.

2) Perfctr: Perfctr [4] is a widely-used performance
counter interface introduced by Pettersson in 1999. The kernel
interface involves opening a /dev/perfctr device and
accessing it with various ioctl() calls. Fast reads of counter
values are supported on x86 without requiring a system call
using rdpmc in conjunction with mmap(). A libperfctr is
provided which abstracts the kernel interface.

3) Perfmon2: Eranian developed Perfmon2 [5], an exten-
sion of the original itanium-specific Perfmon. The perfmon2
interface adds a variety of system calls with some addi-
tional system-wide configuration done via the /sys pseudo-
filesystem. Abstract PMC (config) and PMD (data) structures
provide a thin layer over the raw hardware counters. The
libpfm3 library provides a high-level interface, providing event
name tables and code that schedules events (to avoid counter
conflicts). These tasks are done in userspace (in contrast to
perf event which does this in the kernel).

4) Post perf event Implementations: perf event’s greatest
advantage is that it is included in the Linux kernel; this is
a huge barrier to entry for all competing implementations.
Competitors must show compelling advantages before a user
will bother taking the trouble to install something else. Despite
this, various new implementations have been proposed.

LIKWID [6] is a method of accessing performance coun-
ters on Linux that completely bypasses the Linux kernel by
accessing MSRs directly. This can have low overhead but can
conflict with concurrent use of perf event. It is limited to x86
processors, and only enables system-wide measurement (since
MSR values cannot be saved at context-switch time).

LiMiT [7] is an interface similar to the existing per-
fctr infrastructure. They find up to 23 times speedup versus
perf event when instrumenting locks. Their methodology re-
quires modifying the kernel and is x86 only.

III. THE PERF EVENT INTERFACE

The perf event subsystem was created in 2009 by Molnar
and Gleixner in response to a proposed merge of perfmon2.
perf event entered Linux 2.6.31 as “Performance Counters
for Linux” and was subsequently renamed perf event in the
2.6.32 release. The interface is built around file descriptors
allocated with the new sys_perf_event_open() sys-
tem call. Events are specified at open time in an elaborate
perf_event_attr structure; this structure has over 40
different fields that interact in complex ways. Counters are
enabled and disabled via calls to ioctl() or prctl() and
values are read via the standard read() system call. Sampling
can be enabled to periodically read counters and write the
results to a buffer which can be accessed via mmap(); signals
are sent when new data are available.

The primary design philosophy is to provide as much func-
tionality and abstraction as possible in the kernel, making the
interface straightforward for ordinary users. The everything-
in-the-kernel theme includes the flagship perf analysis tool:
its source is bundled with the main Linux kernel source tree.
What follows is a list of perf event features.

A. Generalized Events

perf event provides in-kernel generalized events: a com-
mon subset of useful events that are available on most modern
CPUs (such as cycles, retired instructions, cache misses, etc.)
Creating general events is fraught with peril: events are not
documented well by vendors and usually require validation [8].
It is relatively easy to update tables in user code (a user can
even replace a library in their own home directory without
system administrator intervention) but a buggy kernel event
table requires a new kernel and a reboot, which might take
months or years in a production environment.

On AMD processors the “branches” generalized event
mistakenly mapped to “taken branches” rather than “total
branches” for over a year without anyone noticing. (On ARM
Cortex A9 “taken branches” is used in place of “branches”
intentionally, as no suitable all-encompassing branch event
exists). We generate phase plots for SPEC CPU 2000 [9]
to see if the wrong event definitions could lead to wrong
conclusions. Figure 1 shows total versus taken branches for
selected benchmarks. We compile using 64-bit gcc-4.3 using
the -O3 -msse3 options. The phase plot data was gathered
using the task_smpl example from libpfm4 that allows
recording event totals at fixed (in this case 100 million
instruction) intervals. For gcc and gzip the behavior is
complicated; sometimes peaks in total are not matched by a
corresponding peak in taken, and in gcc there are times where
total and taken move in opposite directions. Figure 2 shows the
same benchmarks, but with branch miss percentage rather than
aggregate totals. This is a common optimization metric; if the
generalized “branches” and “branch-misses” events are wrong
then time will be wasted optimizing in the wrong place. We
find in gcc and gzip behavior that is divergent enough that
using taken branches as a synonym for total could misdirect
optimizers.

Sometimes different tools will disagree about which un-
derlying event to use. For the “Level 1 Data Cache Reads”
event on the Nehalem processor PAPI has a PAPI_L1_DCR
predefined event which maps to L1D_CACHE_LD:MESI (de-
scribed by the Intel Volume 3B documentation [10] as “Counts
L1 data cache read request”). The equivalent perf event
generalized event is described at the syscall interface as
the similar-sounding L1D.OP_READ.RESULT_ACCESS (al-
though the perf tool calls it L1-dcache-loads); this
maps to MEM_INST_RETIRED:LOADS (“Counts the number
of instructions with an architecturally-visible load retired on
the architected path”). Figure 3 shows phaseplots for both. For
some benchmarks the events match relatively closely, but in
the two shown the results are different, in some case by a
factor of three!

B. Event Scheduling

Some events have elaborate hardware constraints and can
only run in a certain subset of available counters. Perfmon2
and perfctr rely on libraries to provide event scheduling in
userspace; perf event does this in the kernel. Scheduling is
performance critical; a full scheduling algorithm can require
O(N!) time (where N is the number of events). Various heuris-
tics are used to limit this, though this can lead to inefficiencies
where valid event combinations are rejected as unschedulable.

2



Paper Appeared in the 2013 FastPath Workshop

0 50 100 150 200 250

Instruction Interval (100M)

0M

4M

8M

12M

16M
B

ra
n

c
h

e
s

164.gzip.static.log

Total

Taken

0 50 100 150 200

Instruction Interval (100M)

0M

7M

14M

21M

28M

B
ra

n
c
h

e
s

176.gcc.static.166

Total

Taken

Fig. 1. AMD taken branches versus total branches phaseplot. The former was mistakenly used for the latter by perf event through Linux 2.6.35. The examples
show how the two events can have different (though related) characteristics that could confuse a user that did not know about the mixup.

0 50 100 150 200 250

Instruction Interval (100M)

0

5

10

15

B
ra

n
c
h

 M
is

s
 %

164.gzip.static.log

Misses / Total

Misses / Taken

0 50 100 150 200

Instruction Interval (100M)

0

2

4

6

8

B
ra

n
c
h

 M
is

s
 %

176.gcc.static.166

Misses / Total

Misses / Taken

Fig. 2. These phaseplots show that calculating branch miss rates using the confused taken and total branches can have different results, including behavior that
trends in opposite directions. This is why generalized events need to be chosen carefully and should be exposed to the user for easy validation.

0 100 200 300 400

Instruction Interval (100M)

0M

15M

30M

45M

60M

L
1

 D
C

a
c
h

e
 L

o
a

d
s

179.art.static.470

PAPI

perf_event

0 100 200 300 400

Instruction Interval (100M)

0M

44M

88M

132M

176M

L
1

 D
C

a
c
h

e
 L

o
a

d
s

181.mcf.static.default

PAPI

perf_event

Fig. 3. A hazard of generalized event names: on Nehalem PAPI_L1_DCR (L1 Data Cache reads) and perf event L1D.OP_READ.RESULT_ACCESS may
sound similar but these phase plots show they have different results.

Experimentation with new schedulers is difficult with an in-
kernel implementation as this requires kernel modification
and a reboot between tests rather than simply recompiling a
userspace library.

C. Multiplexing

Some users wish to measure more simultaneous events
than the hardware can physically support. This requires mul-
tiplexing: events are run for a short amount of time, then
switched out with other events and an estimated total count is
statistically extrapolated. perf event multiplexes in the kernel
(using a round-robin fixed interval), which can provide better
performance [11] but less flexibility. Userspace multiplexing is
possible; PAPI can use May’s [12] method of switching events
based on a software timer.

D. Software Events

perf event provides support for kernel software events not
provided by hardware. Events such as context switches and
page faults are exposed to the user using the same interface as
hardware events, allowing easier access by tools.

E. New Hardware Features

As newer chips are released, they have new functionality
that requires operating system support. perf event has added
support for many of these important new features.

1) Offcore Response: Nehalem and newer Intel chips pro-
vide Offcore Response events that allow filtered measuring
of memory accesses (and other activity) that leave the core.
Configuration of an offcore event requires programming two

MSRs rather than one; this requires extra operating system
support and also arbitration to keep multiple users from
programming the limited set of MSR registers simultaneously.

2) Uncore and Northbridge Events: Modern processors
include many cores in one CPU package. This leads to shared
infrastructure (L2 and L3 caches, interconnects, and memory
controllers). There are various events that measure these shared
resources: Intel refers to them as uncore events, AMD calls
them northbridge events; IBM Power has similar events.

Nehalem and later Intel chips have a diverse set of uncore
PMUs that vary from generation to generation. The Nehalem-
EX supports multiple uncores (C-Box, S-Box, B-Box, etc.);
support for these was added in the recent Linux 3.6 release.
Since uncore events access shared resources, the potential
exists that information can be leaked to other users on a multi-
user system. To avoid this security risk access to the shared
events requires special operating system permission.

3) Sampled Interfaces: Recent processors provide sam-
pling interfaces: certain instructions can be tagged and extra
detailed information to be returned to the user.

AMD Instruction Based Sampling (IBS) [13] provides
advanced sampling, where address, latency, cache miss in-
formation, and TLB miss information can be obtained with
minimal, known, skid (that is, the statistics are provided for the
actual instruction causing them and not some later instruction
due to problems of attribution due to out-of-order execution).
This is a huge improvement over normal sampling, where the
skid can be a large unknown quantity.

Intel Precise Event Based Sampling (PEBS) allows specify-
ing information be periodically be gathered for the instruction

3



Paper Appeared in the 2013 FastPath Workshop

TABLE I. MACHINES USED IN THIS STUDY.

Processor Counters Available
Intel Atom 230 2 general 3 fixed
Intel Core2 T9900 2 general 3 fixed
AMD Athlon 64 X2 4 general

2.
6.

30

2.
6.

31

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39 3.
0

3.
1

3.
2

3.
3

3.
4

Kernel Being Tested

0

5

10

15

20

T
im

e
 (

u
s
)

core2 Context Switch Time

perf_event - inactive
perf_event - active
perfctr - inactive
perfctr - active
perfmon2 - inactive
perfmon2 - active

Fig. 4. Context Switch overhead as measured by lmbench when performance
measurement is active and inactive. It is unclear why context switch time
changed so drastically between 2.6.32 and 2.6.34.

immediately following a triggered event; this can include full
register state as well as latency. A latency threshold can be
configured for memory access events.

perf event support for IBS and PEBS currently is used
only for low-skid instruction profiling, but work is underway to
export the extended information available with these interfaces.

4) Virtualized Counters: Recent investments in cloud com-
puting and virtualization have raised interest in using per-
formance counters inside of virtual machines. Recent work
has enabled trapping access to the relevant MSRs to provide
counter support for guest operating systems. perf event pro-
vides additional support for gathering host KVM statistics.

5) AMD Lightweight Profiling: AMD Lightweight Pro-
filing (LWP) [14] is a feature introduced with Bulldozer
processor that allows using performance counters entirely from
userspace, with minimal kernel intervention. Counters can
be configured to measure events and place results directly
into a buffer. This buffer can be polled occasionally by the
user or, optionally, the operating system can send a signal
when the buffer is full. Support for this requires extra saved
state on context switch; this is done by extensions to the
XSAVE/XRSTOR instructions. Support for LWP is not yet
available in the Linux kernel.

IV. OVERHEAD COMPARISON

We compare the overhead of perf event against the perfctr
and perfmon2 interfaces on various x86 64 machines as listed
in Table I. The older interfaces are obsolete with the introduc-
tion of perf event, so to be a suitable replacement perf event
should have equal or better performance characteristics.

A. Context Switch Overhead

To provide per-process performance data, the operating
system saves and restores the counter MSRs at context switch.

We use the lmbench [15] lat_ctx context switch overhead
benchmark (with size 0 / procs 8) to measure the overhead on
various Linux kernels.

Figure 4 shows the average time and error from 10 runs of
each kernel on a Core2 machine, with performance measure-
ment active and inactive (active means the benchmark is run by
the perf tool, inactive it is run standalone). We find the average
overhead can increase up to 20% when the perf event perf
tool is monitoring the benchmark. lmbench is documented as
having a 10-15% error range so this might not be significant.
Kernels before 2.6.34 have wildly different behavior due to
unknown causes; this makes makes comparison with older
perfctr and perfmon2 kernels difficult. On these older kernels
perfctr and perfmon2 only show a 2% overhead penalty.

B. Measurement Overhead

Users often conduct analysis via self-sampling; this in-
volves instrumenting their code (either directly or via a library
such as PAPI) to explicitly take performance measurements.
The counter events are setup at program initialization and
code is inserted at points of interest to start, stop, and read
from the counters. The user wants to gather the counter data
with the minimum possible overhead, as the measurements
themselves will disrupt the flow of the program. We use
the x86 rdtsc timestamp counter instruction to measure
overhead on three x86 64 machines using perf event, per-
fctr, and perfmon2. All three measurements are made in a
single run by placing the timestamp instruction in between
function calls. We compare the overheads for the most re-
cent perfctr and perfmon2 releases. Direct comparisons of
implementations is difficult; perf event support was not added
until version 2.6.31 but perfmon2 development was halted in
version 2.6.30 and the most recent perfctr patch is against
Linux 2.6.32. We also test a full range of perf event kernels
starting with 2.6.32 and running through the 3.5 release. The
kernels were all compiled with gcc 4.4 with configurations
chosen to be as identical as possible. Recent kernels need
/proc/sys/kernel/nmi_watchdog set to 0 to keep the
kernel watchdog from “stealing” an available counter. We also
disable frequency scaling during the experiments.

Figure 5 shows the timing results obtained when starting a
pre-existing set of events, immediately stopping them (with no
work done in between) and then reading the counter results.
This gives a lower bound for how much overhead is involved
when self-monitoring. In these tests only one counter event is
being read. We run 1024 tests and create boxplots that show
the 25th and 75th percentiles, median, errorbars indicating one
standard deviation, and any additional outliers. The perfmon2
kernel has the best results, followed by perfctr. In general all of
the various perf event kernels perform worse, with a surprising
amount of inter-kernel variation.

Figure 6 shows the overhead of just performance counter
reads. perfctr has the lowest overhead by far, due to its use
of the rdpmc instruction. perfmon2 is not far behind, but all
of the perf event kernels lag, including kernels which have
newly-added support for using rdpmc. While rdpmc helps
for perf event, it does not get near the low overhead from
the instruction that perfctr does. This is partly because
the perf event interface requires reading the counter twice and
subtracting to get final results (perfctr only needs one read).

4



Paper Appeared in the 2013 FastPath Workshop

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

40000

50000
A

v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

amd0fh Overall Overhead of Start/Stop/Read with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Start/Stop/Read with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

20000

40000

60000

80000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

atom Overall Overhead of Start/Stop/Read with 1 Event

Fig. 5. Total time overhead boxplots when doing a Start/Stop/Read of one performance counter. With a boxplot, the box shows 25th to 75th percentile (with
median); the error bars show one standard deviation, and any additional outliers are shown.

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

5000

10000

15000

20000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

amd0fh Overall Overhead of Read with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

5000

10000

15000

20000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Read with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

atom Overall Overhead of Read with 1 Event

Fig. 6. Time overhead boxplot when reading one performance counter.

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

40000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

amd0fh Overall Overhead of Start with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

5000

10000

15000

20000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Start with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

10000

20000

30000

40000

50000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

atom Overall Overhead of Start with 1 Event

Fig. 7. Time overhead boxplot when starting one performance counter.

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

2000

4000

6000

8000

10000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

amd0fh Overall Overhead of Stop with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

2000

4000

6000

8000

10000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

core2 Overall Overhead of Stop with 1 Event

2.
6.

30
-p

er
fm

on
2

2.
6.

32
-p

er
fc
tr

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39
3.

0.
0
3.

1.
0
3.

2.
0
3.

3.
0
3.

4.
0

3.
4.

0-
rd

pm
c

3.
5.

0

3.
5.

0-
rd

pm
c

0

5000

10000

15000

20000

A
v
e

ra
g

e
 O

v
e

rh
e

a
d

 (
C

y
c
le

s
)

atom Overall Overhead of Stop with 1 Event

Fig. 8. Time overhead boxplot when stopping one performance counter.

Figure 7 shows the overhead of starting a counter. While
this appears as a simple ioctl() call to the user, it can
trigger a lot of kernel work. perfmon2 is fast, as costly setup
such as event scheduling is done in advance. In contrast the
perf event kernel has to do scheduling at start time. It is
surprising that the perfctr results are not better, but this could

be due to its strangely complicated interface, with complicated
ioctl arguments for start and stop.

Figure 8 shows the overhead of stopping a counter. The
differences between implementations are not as pronounced;
the kernel does little besides telling the CPU to stop counting.

5



Paper Appeared in the 2013 FastPath Workshop

The perf event self-monitoring interface has higher over-
head than previous implementations. This is mostly due to the
amount of work the kernel does at event start time (which
other interfaces can do in advance in user-space). Another
factor is the slowness of counter reads, which are not improved
even when using rdpmc to avoid kernel entry. Overhead for
perf event has a lot of inter- and intra-kernel variation; it has
proven difficult to isolate the reason for this. It is possible
that other unrelated changes to the kernel perturb caches and
other CPU structures enough to cause the variations. Attempts
to narrow down the sources of variation through “git-bisect”
binary searches did not show any obvious candidates for the
variation.

The previous graphs look at overhead when measuring
one event at a time; Figure 9 show variation as we measure
more than one event. As expected the overhead increases
linearly as more events are added since the number of MSRs
read increases with the event count. Surprisingly the rdpmc
perf event code shows the worst overall performance.

V. RELATED WORK

Previous performance counter investigations concentrate
either on the underlying hardware designs or on high-level
userspace tools; our work focuses on the often overlooked
intermediate operating system interface.

Mytkowicz et al. [16] explore measurement bias and
sources of inaccuracy in architectural performance measure-
ment. They use PAPI on top of perfmon and perfctr to in-
vestigate performance measurement differences while varying
the compiler options and link order of benchmarks. They
measure at the high level using PAPI and do not investigate
sources of operating system variation. Their work predates the
introduction of the perf event interface.

Zaparanuks et al. [17] study the accuracy of perfctr,
perfmon2, and PAPI on Pentium D, Core 2 Duo, and AMD
Athlon 64 X2 processors. They measure overhead using libpfm
and libperfctr directly, as well as the the low and high level
PAPI interfaces. They find measurement error is similar across
machines. Their work primarily focuses on counter accuracy
and variation rather than overhead (though these effects can
be related). They did not investigate the perf event subsystem
as it was not available at the time.

VI. FUTURE WORK AND CONCLUSION

We investigate the features of the Linux perf event and
compare its overhead against the existing perfmon2 and perfctr
interfaces. We find that it has higher overhead than previous
implementations at least in part due to its “everything goes
into the kernel” philosophy. Despite the higher overhead,
perf event is becoming feature complete and widely used, and
as such provides great benefit to the Linux community.

CPU vendors continually work on providing faster access
to the counters, including AMD Lightweight Profiling and the
spflt instruction (which can start counters without entering
the kernel) found in the new Intel MIC chip [18]. More
work needs to be done to encourage interaction between the
operating system developers and the hardware designers to
make sure new interfaces are suitable for implementation with
perf event.

With modern high performance architectures only becom-
ing more complicated, performance counters are a key resource
for finding and avoiding system bottlenecks. The merge of
perf event has provided easy access to hardware counters to
Linux users for the first time; the pressure is on to keep
extending the infrastructure until it can meet the needs of all
performance analysts and programmers.

All code and data used in this paper can be found here:
git://github.com/deater/perfeventoverhead.git.

REFERENCES

[1] “Top 500 supercomputing sites, operating system family,”
http://www.top500.org/statistics/list/.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, pp. 189–204, 2000.

[3] J. Levon, “Oprofile,” http://oprofile.sourceforge.net.

[4] M. Pettersson, “The perfctr interface,”
http://user.it.uu.se/˜mikpe/linux/perfctr/2.6/.

[5] S. Eranian, “Perfmon2: a flexible performance monitoring interface for
Linux,” in Proc. 2006 Ottawa Linux Symposium, Jul. 2006, pp. 269–
288.

[6] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proc. of the First International Workshop on Parallel Software Tools
and Tool Infrastructures, Sep. 2010.

[7] J. Demme and S. Sethumadhavan, “Rapid identification of architectural
bottlenecks via precise event counting,” in Proc. 38th IEEE/ACM
International Symposium on Computer Architecture, Jun. 2011.

[8] V. Weaver, D. Terpstra, and S. Moore, “Non-determinism and overcount
on modern hardware performance counter implementations,” in Proc.
IEEE International Symposium on Performance Analysis of Systems and
Software, Apr. 2013.

[9] Standard Performance Evaluation Corporation, “SPEC CPU benchmark
suite,” http://www.specbench.org/osg/cpu2000/, 2000.

[10] Intel, Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, 2009.

[11] R. Azimi, M. Stumm, and R. Wisniewski, “Online performance analysis
by statistical sampling of microprocessor performance counters,” in
Proc. 19th ACM International Conference on Supercomputing, 2005.

[12] J. May, “MPX: Software for multiplexing hardware performance coun-
ters in multithreaded programs,” in Proc. 15th IEEE/ACM International
Parallel and Distributed Processing Symposium, Apr. 2001, p. 8.

[13] P. Drongowski, Instruction-Based Sampling: A New Performance Anal-
ysis Technique for AMD Family 10h Processors, Advanced Micro
Devices, Inc., 2007.

[14] Lightweight Profiling Specification, Advanced Micro Devices, 2010.

[15] L. McVoy and C. Staelin, “lmbench: portable tools for performance
analysis,” in Proc. of the 1996 USENIX Annual Technical Conference,
1996, pp. 279–294.

[16] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in Proc. 14th
ACM Symposium on Architectural Support for Programming Languages
and Operating Systems, Mar. 2009.

[17] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in Proc. IEEE International Symposium on
Performance Analysis of Systems and Software, Apr. 2009, pp. 23–32.

[18] Intel, Knights Corner Performance Monitoring Units, May 2012.

6



Paper Appeared in the 2013 FastPath Workshop

1 2 3 4
Simultaneous Events Being Measured

0

10000

20000

30000

40000

50000

A
v
e
ra

g
e
 O

v
e
rh

e
a
d
 (

C
y
c
le

s
)

amd0fh Overall Start/Stop/Read Overhead 

2.6.30-perfmon2

2.6.32-perfctr

2.6.32

3.5.0

3.5.0-rdpmc

1 2 3 4
Simultaneous Events Being Measured

0

20000

40000

60000

80000

A
v
e
ra

g
e
 O

v
e
rh

e
a
d
 (

C
y
c
le

s
)

atom Overall Start/Stop/Read Overhead 

2.6.30-perfmon2

2.6.32-perfctr

2.6.32

3.5.0

3.5.0-rdpmc

1 2 3 4
Simultaneous Events Being Measured

0

10000

20000

30000

40000

A
v
e
ra

g
e
 O

v
e
rh

e
a
d
 (

C
y
c
le

s
)

core2 Overall Start/Stop/Read Overhead 

2.6.30-perfmon2

2.6.32-perfctr

2.6.32

3.5.0

3.5.0-rdpmc

Fig. 9. Overall overhead while varying the number of events being measured.

7


