
UMaine VMW Group Tech Report
UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

Advanced Hardware Profiling and Sampling

(PEBS, IBS, etc.): Creating a New PAPI

Sampling Interface

Vincent M. Weaver
University of Maine

vincent.weaver@maine.edu

August 2, 2016

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

Abstract

One common way of conducting performance analysis is profiling via
sampling, where periodically the CPU is interrupted and its state is
recorded, and full system behavior is extrapolated. This can be easily
done if the counter hardware supports an overflow interrupt so that pro-
cessor state can be periodically polled. This methodology can give detailed
program behavior at the expense of overhead and accuracy.

Modern CPUs often support more advanced forms of sampling. This
includes Intel’s Precise Event-Based Sampling (PEBS) and AMD’s In-
struction Based Sampling (IBS). These allow gathering the samples in
hardware, possibly multiple at a time, with potentially much lower over-
head. In addition, the sampling hardware provides other benefits, such as
low “skid” events, which improves accuracy.

We would like PAPI to support these new interfaces, but it will require
an overhaul to the existing PAPI sampling interfaces.

1 Introduction

When conducting performance analysis the easiest type of report to get is for
the total, aggregate results. The total number of cycles a program ran, the total
number of cache misses, the total wall clock time the program ran. While this
is of interest, often more detail is wanted. Where did the cache misses happen,
what function took the most cycles, etc. The most straightforward way to get
this type of information is to periodically interrupt the program’s execution and
gather performance information. A detailed breakdown of program behavior
can be extrapolated based on these representative samples. There is a tradeoff
between overhead and accuracy; the more often you sample the more accurate
the results, but at the same time if you sample too frequently you will start to
add overhead and affect the program being measured.

Modern processors try to help with sampling and provide hardware inter-
faces. However the features provided by the hardware overlap a bit and there
can be some confusion about what one means by “sampling”. It can be any of
the following features:

• Sampled Profiling – as described earlier, periodically interrupting pro-
gram execution to grab a hardware event count or register state. Most
CPUs can do this purely hardware or can emulate it in software (by using
some sort of timer).

• Low-latency Sampling – instead of having periodic interrupts and man-
ually gather program state, some hardware allows automatically sampling
multiple times to a dedicated memory buffer without any operating system
(interrupt) involvement. This has lower latency than traditional interrupt-
based sampling. Intel PEBS does this.

• Hardware Profiling – at regular intervals the CPU is interrupted and
detailed information about the current instruction is logged. Often the

2

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

actual instruction logged is randomly chosen after a certain trigger point.
AMD IBS and PEBS do this.

• Extra CPU State – PEBS and IBS log additional CPU state that cannot
be obtained from the context structure provided by the overflow signal
handler. This includes register state, kernel register state (if the interrupt
happened in the kernel), branch predictor outcome, instruction latencies,
sources of cache misses, etc.

• Low-skid Interrupts – One issue with measurements involving inter-
rupts is “skid”: once an overflow interrupt happens, it takes a CPU (espe-
cially modern complex out-of-order designs) some amount of time to stop
the processor and pinpoint exactly which instruction was active at time
of the overflow. Often there is an offset between the instruction indicated
versus the one causing the interrupt (this offset is called skid). PEBS
and IBS provide support for low-skid sampling, at the expense of some
additional overhead.

• Last Branch Sampling – The hardware keeps track of the last branches
taken, and allows generating call stacks. Intel LBR allows this.

• Processor Trace – The CPU logs to a buffer details on all instructions
being executed (although usually this is filtered, as the raw data stream
can be huge otherwise). Intel Processor Trace and ARM CoreSight are
examples of this.

This document describes in more detail these interfaces as well as how to
access them on Linux machines. We then describe how the PAPI [1] performance
library currently supports sampling, and how it can be improved.

2 Hardware Sampling Interfaces

Sampling interfaces vary by vendor and processor model. This is a quick
overview of support found on recent processors.

2.1 Intel x86 64

2.1.1 Traditional Sampling

Intel chips have supported hardware interrupts on counter overflow since the
introduction of hardware performance counters in the original Pentium proces-
sor.

To conduct sampling, one programs a counter so that it will overflow after
a certain number of counts (say 100,000 cycles). This will generate a hardware
interrupt. The hardware interrupt can then gather information on the program
state at this time (such as registers, program counter, event counts, etc) and
return it to the user.

3

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

Under Linux a NMI (non-maskable) interrupt is used, which means sampling
can (with certain limitations) also be used to profile the operating system kernel.

Intel hardware with architectural performance monitoring 2 or later support
“PMI Overhead Mitigation” which allows freezing counts automatically when
a performance monitoring interrupt (PMI) happens. This allows measurements
to not include the counts imposed by the interrupt handler in with the rest of
the results.

2.1.2 Precise Event-based Sampling (PEBS)

Recent Intel chips support Precise Event Based Sampling (PEBS), as described
in Chapter 18 of the Intel 64 and IA-32 Architectures Software Developer’s Man-
ual (Volume 3)[2]. PEBS support originated in Pentium 4 and Core architec-
tures. It is available on all subsequent processors as well as some Atom proces-
sors (Silvermont and later?). Note: support is broken on some Sandybridge-EP
machines due to a firmware bug, so if you see a message in dmesg describing
this be sure you update your CPU microcode.

When a processor is configured for a PEBS event overflow info can be logged
efficiently (possibly without even triggering a costly interrupt?). When the
overflow happens, PEBS is armed. The next instruction that triggers the event
is logged, and assuming there is space in the relevant DS (data store) area a
record is logged holding information on the sample.

Only a subset of events can be used as PEBS events, and sometimes only a
certain counter slot can be used.

Things that can be configured vary by architecture but include: Trap vs
fault: specifies whether the event recorded is the next or the current one. Reg-
isters to save: can specify whether all registers are saved, or just the instruction
pointer/flags. Can also store latency data, transactional memory data, TSC
value, and counter value.

Nehalem
Nehalem lets you gather PEBS in all four event slots and load latency. The
PEBS results indicate the state after the instruction has executed.

It also supports load latency, which reports latency in cycles from first dis-
patch to final retirement. When enabled, load instructions are randomly chosen
to accumulate the load latency info. The returned value for latency is the last
randomly tagged event, not necessarily the one that triggered the PEBS opera-
tion. Info returned is Data Linear Address (linear address (physical mem?) of
the value being loaded), latency value, and data source which indicates where
in the memory hierarchy the load happened from.

Sandybridge
When hyperthreading is enabled up to 8 performance counters are available,
but PEBS only works in the lower 4. Now supports store instructions for load
latency at least as far as linear address and type, but cycle count always zero.
More PEBS events supported. When load latency is enabled it has to be the
only active PEBS event. In addition info is returned on whether the load hit
the DTLB/STLB.

4

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

Precise store is now available. Only in counter3. After PEBS triggers, info
on the very next store are recorded.

Low-skid. Precise Distribution of Instructions Retired (PDIR). Provides
low-skid results. Senses when an interrupt is about to happen and prepares for
it (possibly slows down execution noticeably too). Only INST RETIRED.ALL
in counter slot 1. Enables trap on the actual instruction that caused the event.

Haswell
Precise store replaced by data address profiling. DataLA or Data Linear Address
Profiling. When the PEBS record is generated, also records the linear address
of the destination of load or source of store. Also indicates if it was a hit in
closest (likely L1) cache.

Eventing IP. The address of the instruction that caused the PEBS event is
also recorded.

Also support for transactional memory in PEBS.
Skylake

Adds a field that reports TSC value. Adds additional front-end events (iTLB
and iCache misses).

Xeon Phi
Possibly has PEBS support(?).

Atom
On Goldmont Atom can record PEBS records for all events. However for non-
precise events there’s no guarantee about what instruction actually generated
the sample. It can also record the TSC, and info on which event caused the
overflow (if multiple are enabled). Reduced skid and linear address are also
available.

2.1.3 Last Branch Record (LBR)

Starting with the Pentium 4 most Intel hardware supports logging a trace of
the last branches that were executed (Last Branch Record). See Chapter 17 of
the Vol3b documentation. The number of branches recorded varies from 4 up
to 32.

This is not strictly a sampling interface but at least under Linux the data is
handled similarly.

If the Branch Trace Store (BTS) is enabled, the last branch record of the
last N records can be written out to memory in the BTS area, part of the Debug
Store (DS) save area. It can be a circular buffer, and can cause an interrupt
when full. This is documented as having the possibility to slow down program
execution.

The LBR record contains various information on the branch. Last branch
from (location branched from), Last branch to (location branched to), predicted
(whether the branch was correctly predicted or not).

Nehalem
You can filter the branch types you are interested in.

Haswell
Supports call-stack recording, where you can configure it to record the branches

5

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

in a LIFO setup (i.e. when you return from a function call, the branches that
have happened since the initial call to the function are backed off). This allows
generating a call stack more easily especially with programming languages that
have deep call trees.

Skylake
Changes the format a bit, and includes transactional memory info as well as
cycle counts. Has 32 entries now. Can capture length of time in basic block
with TSC.

Atom Goldmont
You can also obtain number of cycles since last branch.

2.1.4 Intel Resource Director (RDT, CMT, MBM, CQM)

Available on server machines (Haswell Xeon E5 v3 and newer).
Cache monitoring technology (CMT). Can measure cache occupancy of pro-

gram in last level cache.
Memory bandwidth monitoring (MBM). Monitor memory bandwidth be-

tween cache levels.
Resource monitoring ID (RMID) to a task, processor or group of processors,

used for monitoring. Then the values can be read out.
On Xeon E5 v4 processors (Broadwell) RDT also supports cache allocation

technology (CAT) and code data prioritization (CDP). This allows one to give
hints on how much cache a program should be allowed to use.

CQM is Cache Quality-of-service Monitoring but the most recent volume 3B
does not mention it? Related to Memory Bandwidth Monitoring (MBM) [3].

2.1.5 Processor Trace (PT)

Intel Processor Trace [4] lets you record program execution traces. The first
implementation is control flow tracing. Can log enough info to give an exact
program flow trace. Can generate basic block vectors. Can trace power events
too.

Aims for less than 5% overhead, records latency info. Records one bit
taken/not-taken on conditional branches, enough to reconstruct program flow.
Mode changes also logged.

2.1.6 Data Save Area (DS)

This is a memory region where LBR and PEBS data is recorded. It is divided
into three parts; a management area which has all the configuration information,
the BTS area and the PEBS area. Each area has a given size, and a threshold
when an interrupt is generated. For PEBS it also holds the value of what to
reset the PEBS threshold to be.

6

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

2.2 AMD x86 64

2.2.1 IBS

AMD chips support Instruction Based Sampling (IBS). This is described in the
various BIOS and Kernel Development Guides [5, 6]. There have also been
various other papers describing it in more detail [7, 8].

IBS was introduced with Barcelona (fam10h) to aid in creating low-skid
profiles.

IBS selects a random instruction (or micro op) and record info. An interrupt
is generated after this has happened. Two types; instruction fetch (TLB and
instruction cache behavior) and instruction execution.

For instruction fetch the following information is logged: if fetch completed
or was aborted, number of cycles spent on the fetch, if it hit in the caches and
TLB, the linear/physical address corresponding to the fetch. For instruction
execution the following is logged: only one micro-op of the instruction can be
tagged, branch status of the instruction, linear/physical address of instruction,
linear/physical address of load/store destination, (linear address is address after
segmentation) data cache statistics (hit or not, latency), clocks from tag until
retire, clocks from execution until retire, DRAM and MMIO source info.

Unlike PEBS these values aren’t stored in a memory buffer, but in a set of
MSRs. The counter is only 20 bits wide? Only one pending at a time, cannot
write multiple samples to a buffer.

Only works on three events, cycles, cycles:p, and uops.

2.3 Intel Itanium

Itanium supports an Execution Trace Buffer for recording traces.
It also supports Instruction EAR and Data EAR (address range constraints)

which PAPI supports when profiling.

2.4 ARM

ARM has no PEBS or IBS equivalent, but it does have something similar to
processor trace called CoreSight.

2.5 POWER

I am sure POWER has some advanced features, have not had time to look into
them yet.

7

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

3 Existing Tool Support

3.1 Software Profiling

3.1.1 profil

On some UNIX implementations there is a profil() system call that will peri-
odically interrupt program execution and generate a profile histogram.

Linux does not support this system call, although the C library implements
it in software via an itimer timer that triggers every 10ms.

3.1.2 gprof

gprof lets you instrument your program at compile time (with the -pg option)
and then at run time it will report how long each function was called and how
much time was spent in it. This is a bit intrusive overhead wise, and requires
you have access to the source code.

3.1.3 valgrind

Valgrind [9] does dynamic-binary instrumentation. One of its tools is “callgrind”
which will instrument basic blocks on the fly and allow creating profiles which
can be viewed with the “callgrind annotate” tool. It also has “cachegrind”
which runs the code through a cache simulator.

The primary downside to valgrind and similar tools is the slowdown which
ranges from 10-100x slower than natively running.

3.2 NUMA Profiling

3.2.1 numap

numap [10] presents an API for gathering sampled data for use when analyzing
NUMA systems.

The API:

• init samp session() – initialize data structures

• samp read start(), samp write start() – setup the perf event() mmap
buffer, once per thread

• get count() – returns results

• samp read stop(), samp write stop() – when finished

• print rd(),print wr() – pretty print the results from the samples

First init samp session() called to specify threads to be profiled. Then
samp read start() called to setup the mmap buffer. The code of interest hap-
pens. Then samp read stop() called to stop sampling. Finally the results
printed with print rd() which decodes the binary blob returned by the kernel.

8

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

It is also possible to get the data results directly (the data of interest is mostly
the PEBS data: instruction pointer of the instruction, address of the load/store,
“weight” which is the number of cycles, and data src which is the part of the
hierarchy causing the result.

3.2.2 Others

Memphis [11] and MemProf [12] (AMD only, IBS). Need to fill in with more
details.

HPCToolkit [13]
I am sure I am missing some.

3.3 GPU Profiling

Some GPU hardware supports a profiling interface too, specifically recent NVIDIA
devices [14].

For MAXWELL GPUs and CUDA 7.5. With CUPTI you create a sampling
data structure PC SAMPLING ACTIVITY, SOURCE LOCATOR, and KERNEL ACTIVITY.

To use the Activity API you initialize, register callbacks, enable the activi-
ties, and set the sample rate.

4 Linux perf event interface

Linux perf event, as of the 4.7 kernel (current as of the writing of this), supports
much of the advanced hardware sampling interfaces.

4.1 Sampled Profiling

As long as your system supports overflow interrupts you can do statistical sam-
pling with perf. perf record -e cpu-cycles followed by perf report You
can specify the event, the frequency, and a whole host of other options.

Even if you do not have a proper overflow interrupt (for example, one is
not available on the original BCM2835 Raspberry Pi machines) you can usually
simulate it using the task-clock software event.

4.2 Low-latency Sampling

Perf will do low-latency sampling automatically if you have a PEBS capable
CPU and you are sampling on a PEBS event. The samples are gathered until
a watermark threshold is crossed, and only then will you receive a notification
that the buffer is full and ready to be processed.

Perf can do something similar even without PEBS, in that you can queue
up multiple samples before having userspace notified. This avoids the overhead
of your process being woken up with a signal every time the event triggers, but
there is still the overall overhead of an interrupt happening every overflow.

9

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

By default perf cannot do multiple PEBS samples at once, as it needs to
record other values that only the OS can provide, such as pid/tid. This is
known as “single-entry” mode.

To enter N-entry mode need to set fixed period, no timestamp (except Sky-
lake), PEBS buffer flushed on context-switches, no LBR [15].

4.3 Hardware Profiling

AMD IBS is a bit different than PEBS. Rather than a memory buffer, the
sampled info is stored in a set of MSRs that need to be read before the next
sample comes in. There are a much more limited set of events that can be used.
Also there are two types of IBS profiles, frontend and backend.

The IBS results are presented as separate perf PMUs, ibs op and ibs fetch.
The sampled results will have the instruction pointer and register results, but
the other extended values are not folded back into the normal sampling interface
like PEBS results (no weight, ip, etc field), but the results are dumped as a RAW
result and you will need a special decoder to gather.

The various IBS parameters (as described in the event docs) can be set man-
ually, such as below setting the random low bit enable (to slightly randomize
where overflows happen).

perf record -e ibs fetch/rand en=1/GH

perf record -e ibs op/cnt ctl=1/GH

4.4 Extra Processor State

Linux perf event supports returning a large amount of data with each sample.
Some of the sample types are extended with PEBS data when available.

Currently any of the following can be dumped into a sample by perf:

• PERF SAMPLE IP – instruction pointer

• PERF SAMPLE TID – thread ID

• PERF SAMPLE TIME – a timestamp

• PERF SAMPLE ADDR – effective address (requires PEBS?)

• PERF SAMPLE READ – counts for all events in group

• PERF SAMPLE CALLCHAIN – helps if you have LBR?

• PERF SAMPLE ID – a unique id for the group leader

• PERF SAMPLE CPU – current CPU

• PERF SAMPLE PERIOD – current sampling period

• PERF SAMPLE STREAM ID – another unique ID

10

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

• PERF SAMPLE RAW – raw data (PMU specific).
On IBS this contains the raw MSR dumps which include the below (and
other) info:

– Fetch: Randomize event enabled, TLB miss, TLB size, icache miss,
fetch addresses

– Execute: address, microcode, branch fused, branch predicted, cache
hit, offcore (northbridge) source, tlb latency, memory width, l2 cache
miss, load or store, TLB stats, alignment, branch target access, phys-
ical address

• PERF SAMPLE BRANCH STACK – branch stack from LBR

• PERF SAMPLE REGS USER – current user level register state.

• PERF SAMPLE STACK USER – user stack, to allow stack unwinding
(usefull for call traces)

• PERF SAMPLE WEIGHT – for PEBS this is the cycle time

• PERF SAMPLE DATA SRC – this is the PEBS cache miss hierarchy info

• PERF SAMPLE IDENTIFIER – another unique ID, but in a fixed loca-
tion

• PERF SAMPLE TRANSACTION – has to do with Intel TSX transac-
tional memory

• PERF SAMPLE REGS INTR – current register state at interrupt, can
be in userspace. If PEBS enabled and a precise event is being measured
then the registers here are the ones gathered by PEBS.

Note that the PEBS weight and data source data can be hard to interpret
and often gives non-intuitive results, such as it reporting a cache miss taking
more cycles to complete than an L3 cache miss. This is (at least in part) because
the cycles count can take into account other things going on in the chip unrelated
to the memory hierarchy.

A quick way to access the PEBS results with perf is:

perf mem record

perf mem report

Skylake Frontend:
perf record -e cpu/event=0xc6,umask=0x1,frontend=0x12/pp

Skylake TSC:
perf record -c 1000003 -e cpu/event=0xc0,umask=1/upp

perf script -F ip,time,

11

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

4.5 Low-skid Interrupts

The perf event open interface [16] supports various levels of low-skid measure-
ments on an event. This is set by the precise ip field, which is indicated by
putting :p values on the end of events (:p, :pp, :ppp). Only a subset of events
support precise reporting, and it varies by processor model.

The following precise settings are supported:

• Level 0 – an event can have arbitrary skid

• Level 1 – request constant skid

• Level 2 – request zero skid (but the processor might not always be able to
deliver)

• Level 3 – require zero skid (or equivalent, such as “randomization to avoid
shadowing effects”).

Using low skid events can slow down your measurements (we have experi-
mentally shown this as part of a cluster computing class project). The problem
of skid is caused by out-of-order processors having so many instructions in flight
that it would severely complicate the processor to try to track the exact instruc-
tion causing a perf interrupt, especially since it’s somewhat unusual to have them
enabled. So what the chip apparently does is monitor the overflow counter, and
when it gets close to overflowing it slows down the processor (possibly reduc-
ing the number of instructions in flight simultaneously) until the event actually
triggers, making it easy to target the exact instruction.

To use a precise event under perf you can do something like this:
perf stat -e instructions:p

although it is of limited use for aggregate counts.
Usually you will use it in something like this:

perf record -e instructions:pp /bin/ls

followed by
perf report.

The perf record command sets up a buffer for PEBS to sample in, and the
samples recorded should have lower skid than if you had used the event without
the :p specifiers.

On Intel chips, PEBS support gives you level 1 of precise events, LBR and
PEBS format v2 gives you level 2 (IP Fixup), and PEBS prec dist support gives
you level 3.

Note Level 2 support uses the LBR to help adjust things, so if you are doing
branch sampling you might not be able to get such support.

On AMD machines precise IP is supported through the IBS interface. Both
Level 1 and Level 2 are supported. Only three events are supported, cpu-cycles,
r076 (also cycles) and r0C1 (uops). Previously you possibly needed to specify
you want to run system wide -a not just per-task to do this (which often requires
root) but at least on a recent machine this does not seem to be necessary.
perf stat -a -e cpu-cycles:p

12

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

4.6 Last Branch Sampling

This info can be gathered with the raw perf event PERF SAMPLE BRANCH STACK
option. Lists the last so many branches (16 on recent machines), address and
target, and whether predicted.

Also which branches are recorded can be filtered. Some machines can do
this in hardware, others the kernel does it in software for you.

See perf record -b -e cpu/event=0xc0,umask=0x1/upp triad perf report

--no-branch-stack

4.7 Branch Trace Store

This has its own PMU driver and uses a special AUX area of the mmap buffer
away from (and mostly independent from) the normal sample buffer.

It can return branches, their ip, their target, and whether they hit or miss.
perf record -e branches:u -c 1 -d

The following is supposed to print some of that info but it doesn’t (?)
perf script -f ip,addr,sym,symoff,dso

4.8 Processor Trace

For more info see [17]. It uses the AUX mmap buffer just like BTS does.
perf record -e intel pt//u

4.9 Memory Bandwidth Monitoring

In theory can do this:
perf stat -e intel cqm/llc local bw/ -a

perf stat -e intel cqm/llc total bw/ -a

but unclear if this has made it to mainline kernel yet? (check on that).

4.10 Offcore / Uncore / RAPL

perf event supports measuring most of the new event types on chips, including
offcore and uncore (measuring events off the main core, usually involving the
memory hierarchy) as well as estimated power and others.

Often these events do not have interrupts dedicated too them (or if so, are
limited or buggy in some way). So they cannot easily be used for sampling.

However the readings from the events themselves can be read at sample
time.

5 Current PAPI

PAPI has various existing sampling interfaces.

13

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

5.1 Statistical Sampling

PAPI overflow() will set up a routine that is run at overflow time.

i n t PAPI overflow (i n t EventSet , i n t EventCode ,
i n t thresho ld , i n t f l a g s ,
PAPI over f low handler t handler) ;

When an overflow happens, a UNIX signal is sent which PAPI handles and
then calls the user’s handler.

typede f void (∗ PAPI over f low handler t)
(i n t EventSet , void ∗ address ,
long long ove r f l ow vec to r , void ∗ context) ;

This returns the address that the overflow happened at (for profiling) as
well as the CPU context which on Linux has the various register state as they
were the last time they were in userspace (note that the overflow might have
happened in kernel space, you need to do more advanced work in kernel to get
the register state of the actual overflow in that case).

If there is no hardware overflow available, a software timer can be used
instead.

PAPI uses the perf event sampling interface, but triggers on every overflow,
which can cause a lot of overhead. Also PAPI is the only known user of this
interface, so it sometimes breaks and the linux-kernel developers do not always
notice right away.

5.1.1 Underlying Interface

The user calls PAPI overflow().
papi.c

• Parameter sanity checking is conducted.

• If PAPI OVERFLOW FORCE SW is set, or the hardware does not support hard-
ware overflow, then this is simulated using a timer.

• If threshold is 0, it means disable overflow

• Otherwise initialize the event to take overflows

• Call the set overflow() function of the proper PAPI component
components/perf event/perf event.c

– Set up attr structure for event to be a sampled event

– Call papi hwi start signal() to setup signal handler

– Call pe update control state to tear down and restart all of the
events to reflect the updated attr fields. It calls open pe events()
which will call tune up fd() if it is a sampling event (tune up fd()
allocates the MMAP sampling buffer).

14

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

5.2 Low-latency Sampling

PAPI currently does not support using the multiple samples per interrupt func-
tionality provided by Linux and by PEBS.

5.3 Extended Sample Data

When using PAPI overflow() PAPI does not support returning info besides the
instruction pointer, although in theory the register state can also be manually
gathered from the signal context on Linux.

Currently it is not possible to get the advanced sample info (kernel register
state, latencies, branch predictor outcome, cache hierarchy extra info, etc.)

5.4 Profile Interface

5.4.1 PAPI profil()

This interface is meant to be identical to the UNIX “profil” system call.
PAPI profil()

PAPI sprofil()

i n t PAPI spro f i l (P A P I s p r o f i l t ∗prof , i n t pro fcnt ,
i n t EventSet , i n t EventCode , i n t thresho ld , i n t f l a g s) ;

A range of addresses to watch is given, and then there is a regular overflow
which stops, notes the instruction pointer, and then increments the value in a
set of ”bins”. This can be used to generate a profile of where the code has been
executing.

As far as I can tell this interface is not widely used, PAPI overflow() is
much more popular.

Internally this interface uses the PAPI overflow() interface.

5.5 Low-skid Interrupts

In theory PAPI can use these events if you use PAPI add named event() and
use a proper event with one of the :p qualifiers tagged on the end.

Note and TODO: I have not tried this recently.

5.5.1 Last Branch Sampling

PAPI has no support for this currently.

5.5.2 Processor Trace

PAPI has no support for this currently.

6 Proposed PAPI Interface Concerns

We plan to enhance PAPI to have a better sampling interface.

15

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

6.1 Sampled Profiling

PAPI currently supports this, so most of the future work is how to extend this
without breaking backward compatibility.

6.2 Low-latency Sampling

This mostly means queuing up multiple events at once without triggering an
interrupt or signal. This could be easy to do, modify the PAPI overflow() in-
terface so it only overflows after a certain number of overflows, and then it’s up
to the handler to read multiple overflow values.

6.3 Extended Sample Data

Many users are interested in getting extended sample data that modern hard-
ware preserves. This includes register state, cache miss info, instruction laten-
cies, etc.

It is possible in software currently to get the IP and register state from
the signal overflow context, however that only gives the user context (i.e. the
last executing userspace code before the interrupt happened). If the overflow
actually happened in the operating system you need the help of perf to return
those values.

6.3.1 numap Proposal

See the info on numap in Section 3.2.1.

6.3.2 XSEDE’15 Paper Proposal

The paper by Lopez et al. [18] discussed a new interface that would allow gath-
ering the extended info on a sample. It is a thin interface over the perf event
PEBS support. The results returned are similar to those from the numap pro-
posal.

i n t PAPI sample in it (i n t EventSet , i n t EventCode ,
i n t sample type , i n t sample per iod ,
i n t thresho ld ,
PAPI sample handler t handler) ;

typede f void PAPI sample handler t (i n t signum ,
s i g i n f o t ∗ i n fo , void ∗ucontext) ;

The sample type passed in would just be the values the raw Linux interface
is expecting. The result would be a binary blob of encoded perf records. Of
most interest to NUMA profiling is what Linux currently returns for PEBS data:
instruction pointer of the instruction, address of the load/store, “weight” which
is the number of cycles, and data src which is the part of the hierarchy causing
the result. (Note the previously described limitations with these results).

16

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

Limitations of this proposed interface is how Linux-centric it is (PAPI is in
theory supposed to be platform agnostic), as well as requiring the user to have
a perf event record decoder (a non-trivial piece of code) either included in PAPI
or else hand constructed.

Another concern is how to remain forward compatible, as Intel adds more
features to PEBS how can we return those too without requiring tools to be
recompiled.

In addition the interface is Intel specific, for example AMD IBS results can-
not be returned via the interface as it stands. Should PAPI have a layer of
indirection that provides a more generic interface on top? Or just report raw
perf event data?

6.4 Low-skid Interrupts

Currently PAPI relies on libpfm4’s perf event parsing to handle the :p precise
event notation.

We could add infrastructure to handle precise event information in the tra-
ditional PAPI way of PAPI set opt() but it is likely no one would want to use
it as it requires an extra 2-3 calls for each event you add.

The other solution is just deprecate the PAPI set opt() calls and enforce all
option setting by event name strings (the various :u and :k for setting domain
have already started us down this path). This is fairly easy to do on Linux
perf event systems but it would mean extra custom string parsing on all non-
Linux platforms (are they relevant anymore?)

6.5 Last Branch Sampling

Should we add a PAPI interface to return call chains? This might require linking
against a library that handles printing backtraces.

6.6 Processor Trace

Again this might be useful, but the resulting data would likely be a perf-specific
binary blob, and the main problem would be somehow translating this to what
the user wants.

6.7 Other Concerns

6.7.1 System-Wide Profiling

Currently PAPI has a very process and thread-specific profiling mode.
Often it would be more interesting to have a system-wide view of what is

going on, especially if one is worrying about NUMA performance.
By its nature the perf event sampling interface is per-processor (need to

open one buffer per core) so it can handle this, but how to express this back to
the PAPI code?

17

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

6.7.2 Real Time or Later Analysis

Another thing to consider: will most users be trying to analyze their code while
the program is running? Or will they be storing it to disk for later analysis?

If in real time, PAPI must provide libraries for dumping perf data, general-
izing it, and providing a fixed format that can be handled on the fly.

If the users really just want to store raw perf event data (but self-monitored,
unlike perf’s full-program granularity) for later analysis it simplifies things as a
separate suite of tools can be developed for use independent of the core PAPI
library.

7 Proposed PAPI Interface

7.1 Thin perf event wrapper, write direct to file

This would be the simplest interface for the user.

i n t PAPI sample in it (
i n t EventSet ,
i n t EventCode ,
i n t sample type ,
i n t sample per iod ,
char f i l ename) ;

You would use an existing eventset, pick which event to sample on, pick
a sample type that is component specific (so on perf event would just be the
types perf event supports), a sample frequency, and the name of a file to dump
everything to.

Values could not be easily read on-the-fly.
Once the program is done it is up to the user to read the file and interpret

the values (PAPI could provide sample routines to help do this).
The data could be written out in the existing perf.data format that the

perf utility uses [19, 20, 21].
In theory various existing tools can parse the raw perf.data files:

• pmu-tools parser https://github.com/andikleen/pmu-tools

• quipper C++ parser, part of chromiumos-wide-profiling

• gooda https://github.com/David-Levinthal/gooda

• flame graphs http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.
html

7.2 Thin perf event wrapper, user gets notice of data

This proposal is the one from the XSEDE paper.

18

https://github.com/andikleen/pmu-tools
https://github.com/David-Levinthal/gooda
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

i n t PAPI sample in it (
i n t EventSet ,
i n t EventCode ,
i n t sample type ,
i n t sample per iod ,
i n t thresho ld ,
void ∗ bu f f e r ,
i n t b u f f e r s i z e ,
PAPI samp l e fu l l c a l l back handler) ;

typede f void PAPI samp l e fu l l c a l l back (void) ;

Again the sample type is just a component specific value, for perf event just
the ones Linux supports.

In this case the user creates a memory buffer and size. When the Linux
MMAP sample buffer is full, it will copy the results to this buffer and call the
sample handler callback. It’s up to the user to do something with the data
(write it to disk, parse it, etc.)

The user can also set a “threshold” value so that with a value of 1 it is called
each sample, or else it can be set higher and only be notified of every X samples.

This is much more flexible for live self-monitoring, at the expense of a much
more complex interface.

7.3 Others?

Most other likely suggestion is something that abstracts things more, something
like instead of a raw memory buffer PAPI provides a structure

PAPI sample in fo t {
long addr ;
long r eg s [3 2] ;
long e f f e c t i v e a d d r e s s ;
i n t a c c e s s t y p e ;
i n t l a t ency ;

} ;

and this gets filled in, ideally in a cross-platform manner. The problem with
this is while useful for NUMA profiling, it ignores most of the other interesting
data fields that perf event is capable of providing.

8 Conclusion

New hardware has some pretty impressive advanced sampling hardware, how-
ever creating a generic software interface for it remains difficult. PAPI users
would like access to the newer data, so we need to come up with a useful way
to do this that does not break too many existing programs.

19

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

9 Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. SSI-1450122.

References

[1] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable inter-
face to hardware performance counters,” in Proc. Department of Defense
HPCMP User Group Conference, June 1999.

[2] Intel Corporation, Intel R© 64 and IA-32 Architectures Software Developer’s
Manual Volume 3: System Programming Guide, June 2015.

[3] K. Juvva, “Memory bandwidth monitoring in linux for HPC applications,”
in Linux Con North America 2015, Aug. 2015.

[4] A. Kleen and B. Strong, “Intel R©processor trace on Linux,” in Tracing
Summit 2015, 2015.

[5] Advanced Micro Devices, BIOS and Kernel Developers Guide (BKDG) For
AMD Family 15h Models 00h-0Fh Processors, Jan. 2013.

[6] Advanced Micro Devices, BIOS and Kernel Developers Guide (BKDG) For
AMD Family 15h Models 30h-3Fh Processors, Mar. 2014.

[7] P. Drongowski, Instruction-Based Sampling: A New Performance Analysis
Technique for AMD Family 10h Processors. Advanced Micro Devices, Inc.,
2007.

[8] P. Drongowski, L. Yu, F. Swehosky, S. Suthikulpanit, and R. Richter, “In-
corporating instruction-based sampling into AMD CodeAnalyst,” in Proc.
IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 119–120, Mar. 2010.

[9] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 89–100, June
2007.

[10] M. Selva, L. Morel, and K. Marquet, “numap: A portable library for low
level memory profiling,” Tech. Rep. RR-8879, INRIA, Mar. 2016.

[11] C. McCurdy and J. Vetter, “Finding and fixing numa-related performance
problems on multi-core platforms,” in Proc. IEEE International Symposium
on Performance Analysis of Systems and Software, pp. 87–96, Mar. 2010.

[12] R. Lachaize, B. Lepers, and V. Quéma, “Memprof: A memory profiler
for NUMA multicore systems,” in USENIX Annual Technical Conference,
June 2012.

20

UMAINE-VMW-TR-PEBS-IBS-SAMPLING-2016-08

[13] X. Liu and J. Mellor-Crummey, “A tool to analyze the performance of
multi-threaded programs on NUMA architectures,” in Proc. of the 19th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 259–272, Feb. 2014.

[14] S. Ragate, “GPU PC sampling utility,” tech. rep., Innovative Computing
Lab, University of Tennessee, 2015.

[15] S. Eranian, “Linux perf events status update,” in Scalable Tools Workshop,
Aug. 2016.

[16] V. Weaver, “perf event open manual page,” in Linux Programmer’s Manual
(M. Kerrisk, ed.), Dec. 2013.

[17] A. Kleen, “Adding processor trace support to Linux,” Linux Weekly News,
July 2015.

[18] I. Lopez, S. Moore, and V. Weaver, “A prototype sampling interface for
PAPI,” in Extreme Science Engineering Discovery Environment Confer-
ence, July 2015.

[19] U. Fässler and A. Nowak, “perf file format,” tech. rep., CERN Openlab,
Sept. 2011.

[20] J. Olsa, “perf & CTF,” in Tracing Summit 2014, 2014.

[21] A. Kleen, “perf.data file format specification draft.”
https://lwn.net/Articles/644919/, 2015.

21

	Introduction
	Hardware Sampling Interfaces
	Intel x86_64
	Traditional Sampling
	Precise Event-based Sampling (PEBS)
	Last Branch Record (LBR)
	Intel Resource Director (RDT, CMT, MBM, CQM)
	Processor Trace (PT)
	Data Save Area (DS)

	AMD x86_64
	IBS

	Intel Itanium
	ARM
	POWER

	Existing Tool Support
	Software Profiling
	profil
	gprof
	valgrind

	NUMA Profiling
	numap
	Others

	GPU Profiling

	Linux perf_event interface
	Sampled Profiling
	Low-latency Sampling
	Hardware Profiling
	Extra Processor State
	Low-skid Interrupts
	Last Branch Sampling
	Branch Trace Store
	Processor Trace
	Memory Bandwidth Monitoring
	Offcore / Uncore / RAPL

	Current PAPI
	Statistical Sampling
	Underlying Interface

	Low-latency Sampling
	Extended Sample Data
	Profile Interface
	PAPI_profil()

	Low-skid Interrupts
	Last Branch Sampling
	Processor Trace

	Proposed PAPI Interface Concerns
	Sampled Profiling
	Low-latency Sampling
	Extended Sample Data
	numap Proposal
	XSEDE'15 Paper Proposal

	Low-skid Interrupts
	Last Branch Sampling
	Processor Trace
	Other Concerns
	System-Wide Profiling
	Real Time or Later Analysis

	Proposed PAPI Interface
	Thin perf_event wrapper, write direct to file
	Thin perf_event wrapper, user gets notice of data
	Others?

	Conclusion
	Acknowledgments

