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ABSTRACT
Modern memory hierarchies are complex pieces of hardware, com-
bining memory controllers, caches, and memory-management units
in a desperate attempt to keep modern high-speed processors fed
with data. Recent developments, including the introduction of non-
volatile memory, further complicate the situation.

Operating systems are highly tuned to current memory systems;
modifying them to take advantage of new developments is a difficult
process. The low-level code involved is complex and hard to follow.
This makes teaching students about modern memory systems a
struggle, as wading through the complicated code in a full operating
system like Linux can be frustrating.

To this end we develop vmwOS, a simple operating system de-
signed for low-cost Raspberry Pi development boards. Although
inexpensive, these widely used boards support most of the features
of modern memory systems, including 64-bit addresses, multi-level
caches, multi-core, and full ARMv8 processor and MMU support.
vmwOS is simple enough that students can follow the code and
make modifications for memory hierarchy exploration.

We describe a number of memory research topics that can be
explored with this infrastructure, including a detailed examination
of simulating non-volatile RAM support.

CCS CONCEPTS
• Applied computing → Computer-assisted instruction; • Soft-
ware and its engineering → Virtual memory; • Information
systems→ Flash memory; •Hardware→ Non-volatile memory;

KEYWORDS
Operating Systems, Memory Systems, Raspberry Pi

ACM Reference Format:
Pascal Francis-Mezger and Vincent M. Weaver. 2018. A Raspberry Pi Op-
erating System for Exploring Advanced Memory System Concepts. In
The International Symposium on Memory Systems (MEMSYS), October 1–
4, 2018, Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3240302.3240311

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS, October 1–4, 2018, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6475-1/18/10. . . $15.00
https://doi.org/10.1145/3240302.3240311

1 INTRODUCTION
Modern computer memory hierarchies are complex, combining var-
ious interacting levels of caches, memory controllers, and memory
technologies in an effort to hide the wide gap between memory
and processor access latencies. This long-standing latency disparity
issue is often called the MemoryWall [43]. In addition to the caches
involved, most modern systems have some sort of virtual memory
infrastructure which adds its own complications and latencies. The
introduction of new memory technologies, including non-volatile
memory, is only going to make the situation worse.

It is difficult to write code that can obtain high performance in the
face of such a complicated underlying architecture. User code often
relies on the operating system to handle the setup, configuration,
and manipulation of the memory hierarchy. The memory-related
code in the operating system becomes just as complex and hard to
understand as the underlying hardware. Current operating systems
end up highly tuned to existing memory systems; modifying them
to take advantage of recent developments in memory system design
can be a difficult process.

All of this complexity makes it difficult to teach about modern
memory systems and their interactions with system software. Wad-
ing through the relevant code in a full-featured operating system
like Linux can be a frustrating exercise.

To make things easier for students we propose vmwOS, a simple
operating system designed for low-cost Raspberry Pi development
boards. Although inexpensive, these widely used boards support
most of the features of modern memory systems, including 64-bit
addresses, multi-level caches, multi-core, and full ARMv8 processor
and MMU support. The operating system is simple enough that
students can understand it, make modifications, and explore the
modern memory landscape.

We describe the hardware found on Raspberry Pi boards, the
features of the vmwOS, and then propose various memory sys-
tem explorations that can be done. This includes investigating the
benefits and tradeoffs of the various levels of caches, hands-on
manipulation of the virtual memory infrastructure, and experimen-
tation with non-volatile RAM concepts.

2 COMPLEXITY IN MEMORY EDUCATION
Memory systems are critically important to modern processor per-
formance, however the topic is complex enough that it is difficult
to cover in depth during a typical computer architecture course.
The topics involved can fill their own 1000 page long textbook [19].

There are a few common ways of teaching memory hierarchies
which we elaborate on below.
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2.1 Simple Cache Examples
Often in a semester-long undergraduate computer organization or
computer architecture class there is time to spend a few weeks on
caches and virtual memory. A typical way to do this is to go over the
concepts, then to go through a handful of contrived cache examples.
These may not go through more than a few tens of instructions,
and the caches involved are simplified hierarchies of the type last
found in desktop machines in the 1990s.

While students usually can work out on paper the cache miss
behavior of these simple caches, it often does not translate to a deep
intuitive feel for the problems facing modern memory systems.

2.2 Hardware Measurements
Another way to investigate the memory system is to take measure-
ments on actual hardware. Most modern systems support hard-
ware performance counters, which can allow measurement of ar-
chitectural events that occur during program execution. This in-
cludes things such as cycles, branch predictor misses, and retired
instructions, but also memory system events such as cache hits
and misses and TLB misses. More advanced processors can report
things such as detailed DRAM statistics, cache coherency events,
inter-processor and off-core memory transfers, and sampled cache
latency values. These results can be gathered on Linux using tools
such as perf [14].

While gathering these cache and memory statistics is straightfor-
ward, interpreting them can be difficult. Even deterministic events
such as retired instructions can have cases of overcount and non-
determinism [42]. Non-deterministic events such as cache misses
can have surprising results, especially when run on systems with
other programs running. Advanced hardware features like hard-
ware prefetching can cause surprisingly low cache miss rates that
do not match the simple models typically taught in classes. Many
modern chips have fairly comprehensive sets of errata involving
the memory-related performance counters, again causing confu-
sion when the results gathered do not match expectations. Even
determining the expected, proper, results can be difficult, as full
parameters for the cache hierarchy are proprietary information and
are not generally available for most processors, especially high-end
desktops and servers.

Due to these issues hardware performance counters can be a
valuable tool for exploring memory hierarchies, but the results
often lead to more questions, rather than answers.

2.3 FPGA Implementation
One way around the problem of not knowing the details of a com-
mercial memory hierarchy is to build your own from scratch. These
days it is impractical to fab your own chip in actual silicon, but it is
possible to make a design using a field-programmable gate array
(FPGA) [34]. FPGAs are essentially re-programmable hardware, and
can be used to design full memory hierarchies.

One downside to using FPGAs in a class is that unless the stu-
dents come in with previous FPGA knowledge, it can take a large
amount of time to bring them up to speed on the various tools and
techniques needed. A full memory hierarchy can be a complicated
thing to design, especially if multi-core is involved. In addition, im-
plementing a modern-sized cache with megabytes of SRAM storage

will take a fairly large and expensive FPGA. Designing a memory
controller for modern DDR4 DRAM is complex challenge; often
an FPGA board will come with a built-in DRAM interface, but it is
probably not possible for students to design one from scratch.

2.4 Cache Simulators
Software cache simulators are usually easier to design than FPGA
ones. Complicated hardware structures often map into just a few
lines of code. The primary downside of software cache simulators
is that they are much slower than real hardware. A typical “cycle-
accurate” CPU and memory system simulator, such as Gem5 [7]
might have a slowdown of 1000x over native execution. Gem5
includes a simple DRAM simulator, but hooking up a more accurate
DRAM simulator such as MemSys slows it down by nearly 2x [24].
Another DRAM simulator, DRAMSim2 [33] increase the runtime
of an already slow simulator MARSSx86 by 30%.

Aside from speed, software simulation can have other issues.
Software cache simulators are not always validated [41], and when
they are, the accuracy can vary wildly [15]. The slowdown found
when using software simulation means typically only trivial exam-
ples can be run, as otherwise even a small benchmark might takes
days to weeks to run. Simulator codebases also tend to be com-
plicated, so while changing cache parameters for experimentation
is often straightforward, any more complicated experimentation
with the entire memory hierarchy quickly leaves the range of class-
project complexity and becomes a MS or even PhD thesis amount
of work.

2.5 Operating System Exploration
One last way of investigating memory is the one we propose in this
paper: investigating at the operating system level. The operating
system is responsible for configuring the memory system, and
can be deeply involved in its functioning, especially when virtual
memory is involved.

As of version 4.17, the Linuxmmmemory-management directory
has almost 130,000 lines of C code, not counting the additional per-
architecture directories that average a few thousand lines each. This
is complex code that is difficult to understand, even by the experts
responsible for maintaining it.

The primary issue with understanding the code is it is designed
to be highly performant at the expense of readability. High-end
modern architectures, such as ARM and x86, can have complex
virtual memory setups. The need for cross-platform code code can
lead to multiple layers of abstraction that can be hard to follow.

To provide a teaching environment where students can learn
about memory system and operating system interactions we pro-
pose using the simple vmwOS operating system, targeted at low-
cost Raspberry Pi development boards. This allows experimentation
on relatively simple systems, with a bare-bones and simple operat-
ing system. Using a low-cost development board helps; if something
goes wrong it is inexpensive and simple to start over from scratch
without risking damaging or corrupting a more important desk-
top or workstation. Also, by the time the students make it to an
advanced memory class they typically have experience with the
Raspberry Pi class boards and so have at least some knowledge
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of the hardware involved and a feel for what performance can be
obtained from the boards.

3 RELATEDWORK
There are numerous existing educational operating systems avail-
able. Ours is unusual in that we wish to make it easy to explore
modern developments in the memory hierarchy.

3.1 Educational Operating Systems
Andrew S. Tanenbaum’s Minix [35, 36] is a UNIX-like operating sys-
tem used for teaching OS design. He also wrote Amoeba, designed
for exploring distributed systems [37].

Another popular teaching operating system is xv6 fromMIT [26]
based on Version 6 of UNIX. There is a Raspberry Pi port of xv6 [18]
but it does not currently have multi-core support. Another educa-
tional OS developed at MIT is JOS which primarily runs on x86
systems [25].

Xinu [12] is an educational operating system that has recently
been ported to the Beaglebone Black embedded board.

NACHOS (Not Another Completely Heuristic Operating Sys-
tem) [10] is an educational OS but it only runs on MIPS processors.
Pintos [28] was designed as a replacement to NACHOS that runs
on x86 hardware. There is a Re-Pintos [21] effort that has plans to
port it to the Raspberry Pi.

3.2 Bare-metal Raspberry Pi
There are many simple bare-metal operating systems written for the
Raspberry Pi. Many of them are just people experimenting with the
platform, and they rarely get to the stage of having a full traditional
operating systemwithmulti-tasking, filesystems, and device drivers.
Most were written for testing or curiosity reasons and are not
specifically designed for use in an educational environment.

One fairly complete embedded type operating system is Ultibo [2],
written in Free Pascal. While it has fairly comprehensive device
driver support, its memory support is primarily a matter of setting
up the caches and virtual memory so simple programs can run.

BakingPi [1] is a bare-metal operating system development kit,
designed for use in classes. It walks through a number of lessons on
setting up a bare-metal Raspberry Pi operating system, but stops
before reaching the program loading and multi-tasking stages.

For most of these projects virtual memory is something to be set
up just enough so that caches work correctly, and then ignored. It
is not an integral part of the operating system experience like we
are attempting with vmwOS.

4 THE RASPBERRY PI ARCHITECTURE
The Raspberry Pi is a family of low-cost ARM boards developed
by the Raspberry Pi Foundation [30]. These boards were originally
designed for use in the educational market, but have also found
great success in other areas. They are widely used by electronics
hobbyist and as a base for general purpose low-cost computing.
While low-performance by today’s standards, the boards are per-
fectly capable of being used as desktop computers, and one common
use is to make small-scale low-cost computing clusters [11].

There have been a large number of Raspberry Pi models since
the release of the original in 2012, as seen in Table 1. We will focus

Figure 1: Raspberry Pi 3B running vmwOS, with serial con-
sole cables connected.

in describing the hardware found in the Raspberry Pi3, as it has
been out long enough to be commonly in use by students, and also
because it is a 64-bit system and thus more interesting for the type
of explorations we wish to undertake. Some selected details on
some of the models are broken out in Table 2.

4.1 Raspberry Pi 3
The Raspberry Pi 3B is the first 64-bit iteration of the Raspberry
Pi line. Recently the Pi 3B+ has been released, with the primary
improvements being in thermal handling, moving the ACT (activ-
ity) LED back to a normal GPIO pin, and the upgrade to gigabit
Ethernet (still limited by being driven by a USB2 connection). We
will primarily be describing the Pi 3B (not the 3B+) in most of our
discussions. A picture of a Pi 3B can be seen in Figure 1.

4.1.1 CPU. The CPU in a Pi 3B is a Broadcom BCM2837 (also
known as a BCM2710). It is a quad-core 64-bit Cortex-A53 ARMv8
processor. It can run at 1.2GHz but often due to thermal reasons it
is automatically scaled down to 600MHz when under load.

4.1.2 GPU. The GPU found on Raspberry Pis is the Broadcom
VideoCore IV. The BCM2835 family was originally designed as
a large GPU with an ARM CPU tacked on the side. Because of
this, unlike most ARM setups, it is the GPU that is responsible for
booting the system. The GPU even runs its own operating system
(ThreadX). On the Pi 3B the GPU is capable of up to 28.8GFLOPS
and has built-in video decoding hardware. The system RAM is
shared between the GPU and CPU, with the RAM split set at boot.

The architecture of the GPU is not well known. Some work
has been done to reverse-engineer the assembly language of the
GPU [9, 16]. Some more information has reached the community
after Broadcom hired Linux developer Eric Anholt to produce a fully
functional Linux driver [22]. Linux supports the Quad-Processor
Unit (QPU) interface that allows a simple GPGPU like interface to
the GPU for calculations [17, 27].

4.1.3 Memory Hierarchy. The board contains 1GB of LPDDR2
RAM. One complaint about the Pi platform is the relative lack of
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Table 1: Raspberry Pi Models: CPU type, cost and power usage when idle and under Linpack load. Power usage marked un-
known is because we do not have a board of that type to test.

Model CPU Arch RAM Power Power Cost
Idle Linpack

Model Zero BCM2835 ARMv6 512MB 0.8W 1.4W $5
Model Zero-W BCM2835 ARMv6 512MB 0.6W 1.0W $10
Compute Node BCM2835 ARMv6 512MB 1.9W 2.2W $30
Compute Node 3 BCM2837 ARMv8 1GB ? ? $30

Model 1A BCM2835 ARMv6 256MB ? ? $25
Model 1A+ BCM2835 ARMv6 512MB 0.8W 1.0W $20
Model 1B BCM2835 ARMv6 512MB 2.7W 3.0W $35
Model 1B+ BCM2835 ARMv6 512MB 1.6W 1.9W $25

Model 2B (v1) BCM2836 ARMv7 1GB 1.8W 3.6W $35
Model 2B (v1.2) BCM2837 ARMv8 1GB 1.7W 4.1W $35

Model 3B BCM2837 ARMv8 1GB 1.8W 4.8W $35
Model 3B+ BMC2837 ARMv8 1GB 2.6W 7.3W $35

Table 2: More detailed specifications for a selection of Rasp-
berry Pi models

Pi Zero Pi 1B+ Pi 3B
CPU BCM2835 BCM2835 BCM2837
Arch ARM1176 ARM1176 ARMv8
Speed 1GHz 700MHz 1GHz
Cores 1 1 4
Bits 32 32 64
GPU VideoCoreIV VideoCoreIV VideoCoreIV

250MHz 250MHz 300MHz
Memory 512MB 512MB 1GB
RAM type LPDDR2 LPDDR2 LPDDR2
L1 icache 16k 16k 32k
L1 dcache 16k 16k 32k
L2 cache 128k (GPU) 128k (GPU) 512k
Network none 100MB (USB) 100MB (USB)
Cost $5 $25 $35

memory. According to Eben Upton (founder of the Raspberry Pi
Foundation) this is not due to the architecture of the chip (although
the design of the SoC addressing blocks makes it hard to add more
RAM in a backwards compatible way). Rather the lack is due to the
current relatively high cost of RAM [31].

The L1 instruction cache is 32k, 2-way, and 64-bytes wide, VIPT,
pseudo-random replacement, critical word first. The L1 data cache
is 32k, 4-way, and 64-bytes wide, PIPT, with pseudo-random replace-
ment. Both caches are protected by error detection and correction.
The L2 cache is 512k, 16-way, and acts primarily as a victim cache.
There is a hardware prefetcher, as well as software prefetch instruc-
tions. Memory coherency uses the MOESI protocol.

The MMU supports multiple page sizes. There is a two-level
TLB: a micro-TLB with 10 entries and a 512 entry 4-way main TLB.
There is also a walk cache and an IPA cache (the latter is used
when translating virtual-machine pages). The micro-TLB can be
configured for round robin or random replacement.

4.1.4 Power Consumption. The Pi started out as a development
board designed to be powered with a USB-micro connector. Because
of this, early models did not draw much more than can be provided
by at USB2.0 connection (500mA * 5V = 2.5W). For the 3B model,
a 2.4A power supply is recommended and the power draw can
exceed 5W. Table 1 lists power measurements for some models
while idle and also while running the high-performance Linpack
(HPL) benchmark.

4.1.5 Thermal Issues. As mentioned previously, the chip pack-
age was originally designed as a GPU board with a small CPU
tacked to the side as a helper. Because of this the thermal sensor
used for throttling was located over the GPU. As the CPU has
been upgraded over the years this has led to issues as the CPU can
overheat under load before the heat diffuses over to the tempera-
ture sensor. This leads to problems, such as the model 3B crashing
when under heavy load, for example running high-performance
Linpack [32]. The overheating issues have been addressed in the
new 3B+ model.

4.1.6 Hardware Performance Counters. The Raspberry Pi has
various hardware performance counters that can be used for ar-
chitectural exploration. As with most modern CPUs, the counters
involved vary with hardware generation. The Pi3B supports over
thirty different events, including TLB, L1 instruction, L1 data, and
L2 combined metrics.

4.1.7 Hardware Interfaces. While not necessarily useful formem-
ory experiments, the SoC supports a large amount of other hard-
ware interfaces. This includes i2c, SPI, camera, GPIO, PWM, HDMI,
composite, USB, Ethernet, wireless, Bluetooth, serial ports, and an
SD-card interface. See the Broadcom 2835 Peripherals Document
for more information [8].

5 VMWOS BACKGROUND
vmwOS is an operating system written for the Advanced Operating
System course at our institution. Its initial design goal was to allow
hands-on coding in a generic senior or graduate level Operating
System course.
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In this course, the students gradually implement features. They
start in week one with a blinking LED, and add features in follow-
ing assignments until they end up with a limited multi-tasking
operating system. There is an open-ended final project where more
advanced topics not covered by previous assignments can be ex-
plored.

vmwOS is the total, working OS from which the class assign-
ments are based. While it might be nice to just hand the students the
ARM Architectural Reference Manual and the Broadcom Peripheral
Document and have them figure things out on their own, that is
not really practical for a class of this scope. Therefore solutions are
provided based on the vmwOS code so that students who might
struggle with one assignment do not fall completely behind as the
course moves on.

Over the years the course has been taught the vmwOS has ac-
cumulated enough features that it is a fairly usable standalone OS.
We have started looking into using it for other purposes, including
the topic of this paper which is to adapt it for use when teaching a
graduate level advanced memory system topics course.

One might suspect the name of the OS has something to do
with virtual memory or virtual machines, but actually it is not-so-
modestly named after the initials of the primary author’s name. A
screenshot of the system soon after boot running a multitasking
demo can be seen in Figure 2.

The current goal of vmwOS is to provide a fully usable, multi-
core, 64-bit operating system, that provides highly configurable
access to the memory hierarchy. As an extra challenge the code
should be kept simple enough that it can be used for teaching a
senior-level operating systems course.

5.1 vmwOS: current status
vmwOS is under constant development, what follows is the current
status of the operating system.
64-bit support

vmwOS was initially developed on the original 32-bit Raspberry
Pi systems. It currently runs on all models of Pi, but in 32-bit mode.
Even though the Pi 3B has an ARMv8 64-bit processor, vmwOS
currently runs in ARMv7 32-bit compatibility mode. It should be
relatively straightforward to update to native 64-bit. All of the
driver work has already been done, but some difficult parts remain
(including converting all of the assembly language to ARM64 which
can be very different from ARM32 assembly).
Multi-core support

Multicore support is partially implemented and will hopefully
be completed in the near future. At boot all four cores are config-
ured, and inter-core communication via inter-process interrupts
(IPI) is working. The remaining tasks are ensuring proper locking
everywhere, and to make the scheduler multi-core aware.
Virtual Memory support

Currently vmwOS activates the MMU (memory management
unit) and sets up some rudimentary kernel/user memory protection.
However, full virtual memory at the page level is not enabled. In-
stead page tables are set up using coarse 1MB “section” pages, with
a 1:1 mapping of physical to kernel addresses. There is memory
protection between the kernel (which lives in the bottom 16MB)
and the rest of userspace, but there is no inter-process protections.

This means the kernel currently behaves like MMU-less Linux
(ucLinux) [39]. Binaries are position-independent and memory pro-
tection between processes is on the honor system.
Scheduler/Multi-tasking

The OS supports multi-tasking, including running jobs in the
background (waitpid()). The scheduler is simple, using a round-
robin algorithm. If no jobs are ready then an idle task runs, which
enters low-power mode via the wfi instruction. A system timer is
programmed to trigger the scheduler at 64 Hz.
Wait Queues

When a process blocks on I/O, it is put to sleep by being placed
on a wait queue. When the I/O completes, all waiting threads are
woken up.
Memory Allocation

The kernel memory allocation is very simple. There are two
regions, user and kernel. Memory is handed out in 4k chunks, with
a find-first method. A free list bitmap tracks the memory.
Executables

Executables use the Binary Flat (BFLT) file format [38]. Code is
first built into regular ARM Linux ELF executables and an included
custom tool is used to convert it to the much simpler BFLT. While
BFLT is simple and much easier to implement than ELF, it does
support more advanced features, such as limited support for run-
time linking and shared libraries. Our OS currently does not support
these more advanced features.
Userspace

Userspace executables for the OS are written in C, and a very
simple C library (vlibc) is provided. This library provides the mini-
mum support required for the included programs, which include a
simple shell and various system utilities and games.

While generic Linux-like C programs can be ported fairly easily,
there are some limitations that can make this difficult (a limited C
library, variables/functions should be declared static to avoid use
of the GOT, etc).
Device Drivers

The Raspberry Pi supports a large number of devices on the SoC,
but currently only a few have drivers in our OS. There are drivers
for console output, both to the serial port as well as a framebuffer.
Console input is supported over the serial port, as well as an external
PS/2 keyboard adapter via GPIO (there is no USB support currently).
There are drivers for the randomnumber generator and temperature
sensor. A simple sound beep effect is implemented via the pulse-
width modulation (PWM) GPIO support. The only block device
currently supported in a ramdisk, but work on an SD-card via SPI
driver is underway.
Filesystems

Currently the only filesystem supported is romfs. The operating
system currently boots with a read-only romfs ramdisk image. We
plan to implement FAT and ext2 support in the near future.

5.2 vmwOS Challenges
Writing the vmwOS has been challenging, mostly due to lack of
documentation. The Pi hardware is documented in the BCM Pe-
ripherals document [8] and the newer Pi 3 features can be found in
the Quad-A7 document [40]. The ARMv7 processor is described in
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Figure 2: vmwOS running a printa/printb multitasking demo in a serial console.

the Architectural Reference Manuals [3, 4], and more specific doc-
umentation can be found in Cortex-A53 related documents [5, 6].
Despite all of these rather large documents, often the best resource
has been asking in the “bare-metal” section of the official Raspberry
Pi Foundation forums [29].
Challenge: Booting

Booting is the first challenge. We had working boot code for
earlier Pi models, but recent firmware versions changed to cause
multicore to come up in hypervisor mode. This required changing
the boot code so it starts off by switching back to normal mode.
Previously system information was provided at boot via the old
Linux ATAGS interface. Recently the Pis have transitioned to using
device-tree files which involves having a full device-tree parser
which is run early in the boot process.
Challenge: MMU

Setting up the MMU and page tables are complicated at the best
of times. On the Pi you must have the MMU going before caches
can be enabled (so you can mark the memory-mapped I/O regions
as non-cacheable). There are about 20 different bits that need to be
set properly in the multi-core setup before virtual memory happens
properly. Even more of a challenge is getting the bits set to properly
enable cache coherency between cores. Other issues can get in the
way, such as what happens if some cores are accidentally left in
hypervisor mode while the primary core is not. That particular
problem led to a lot of frustration during bringup of multi-core
support.
Challenge: Locking

On the Pi3 you need to use the load-link/store-conditional ldrex
/ strex instructions for locking. These instructions only work if
the caches are running, and those need the MMU running first. This
does make it difficult bringing up the system, as all of the above has
to be working before locking can be used. Having proper locking
in the serial I/O console can be difficult, especially if you use the
same routines for printing early (pre-cache setup) boot messages.
Challenge: Cache Flushing

The ARM processor has various ways for flushing caches, and
these become important once multi-core support is enabled. The
documented ways for flushing the cache do not seem to always
work. The best place to find working cache flushing code is the
Linux kernel, as that is known to work and is often written by ARM
engineers. Additionally, the Pi has a complex relationship with
the GPU and various non-cacheable memory address ranges for
communicating to the GPU via a mailbox interface. It is sometimes
necessary to flush the caches after these interactions too, again this
is not well documented.

6 PROPOSED MEMORY EXPLORATIONS
The goal of our vmwOS work is to provide an easy platform for
operating system and memory hierarchy exploration. What follows
are some research areas of interest that can be investigated with
our setup.

6.1 Cache Experimentation
One relatively simple topic to explore is the behavior of a modern
cache hierarchy as various parameters are manipulated.
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One simple thing to explore is how a modern system behaves
is how a system behaves with various parameters of the cache
subsystem manipulated. Not all hardware supports low-level cache
manipulation, and on most other operating systems it can be diffi-
cult if not impossible to change parameters once the system is up
and running.

6.1.1 Disabling the Cache. The various Raspberry Pi models
support disabling the caches. In fact, on some models the Pi the
firmware does not enable caches at boot so it is up to the operating
system to enable them. On older models the L1 data and instruc-
tion caches (and the related branch predictor) could be enabled
separately.

Enabling the caches can make a huge performance difference.
An example of the difference found with a memset() benchmark
(on an older model 1A+ system) can be seen in Table 3. These are
result from a homework assignment given to the students, where
they time various memset() implementations with caches enabled
and disabled. The students are often surprised by the huge increase
in performance. They also get to implement their own memset()
to see if they can beat the provided one.

This type of experimentation is more difficult when running in
multicore mode, as the ldrex / strex locking used for mutexes
depends on caches being enabled. It is still possible to do the exper-
iment, but only if multicore is disabled.

6.1.2 Disabling the Prefetcher. The various Pi models support
disabling/enabling the hardware memory prefetcher. Also some of
the prefetch parameters can be tuned.

We have previously attempted disabling the prefetcher on other
ARM development boards (such as the Cortex-A9 Pandaboard)
under Linux and ran into many difficulties. In one instance the
prefetcherwas disabled andwhenwe inquiredwere told the prefetcher
hardware was broken on this particular device. In other cases when
trying to disable / enable the prefetcher by setting the low-level
CPU register from Linux it was blocked, as the TrustZone security
setup by the firmware disabled changing the setting after boot.

We are interested in testing the prefetcher setup under the Pi in
hopes it is more configurable than on the other boards we have tried.
These experiments can also involve the ARM software prefetch
instruction which is available on the Pi.

6.2 Virtual Memory Experiments
Virtual memory is a complicated topic that is not often well under-
stood, even by computer architects. We find that one can learn a
lot by trying to set up virtual memory from scratch, rather than
relying on an existing operating system to do all the work for you.

6.2.1 Changing the Page Size. vmwOS currently only supports
1MB section-style paging, but once we add support for finer gran-
ularity paging it should be possible to do interesting explorations
of the tradeoffs with multiple page sizes, or even transparent huge
paging (THP). The Cortex A53 supports 4KB, 64KB, 1MB, 2MB,
16MB, 512MB, and 1GB page sizes.

In addition, once 64-bit support is finished, the large virtual
address space (currently 48-bits) could be explored and used in non-
traditional ways. One example could be exploring the overhead of
address-space layout randomization which is used for security.

6.2.2 Page Protection. The ARM page tables support the normal
sets of protections, including non-executable pages. The Cortex-
A53 support kernel non-execute support, so that kernel execution
cannot be redirected into userspace code. It would be interesting to
test the feasibility of enabling this security feature.

6.2.3 Separate Coherence Zones. On the Cortex-A53 you can in-
dependently configure the cores to not take part in cache coherency.
This could in theory allow different zones with separate views of
main memory. It would be interesting to see how this feature could
be made useful. In addition, cache-coherency can be specified at a
per-page level via a bit in the page table entry.

6.2.4 TLB Performance. The TLB is multi-level and supports
using address-space identifiers (ASID) to avoid the cost of flushing
the TLB on context switch. Experiments can be done here to see
what the tradeoffs are in using this.

Also the TLB on some of the Pi models is configurable, and the
page replacement algorithm can be changed on the fly.

6.3 DRAM
The Pi3B comes with 1GB of LPDDR2 memory. We are somewhat
limited in what we can do by the built-in memory controller and
the soldered-on DRAM chip (in some cases it is bonded directly to
the processor!)

6.3.1 DRAMConfiguration. The firmware configures theDRAM
parameter at startup. The firmware is just a file on the boot SD-
card that is run by the GPU at boot time, and efforts have reverse-
engineered some of how this works. In theory it might be possible
to re-write the firmware to allow arbitrarily setting the settings of
the DRAM in order to experiment with the timings.

6.3.2 Rowhammer. With low-level OS access to the memory,
it would be interesting to see how hard it would be to trigger
Rowhammer [20] style memory corruption. This should be made
easier by the 1:1 virtual/physical mapping of our memory, as well
as the ability to disable the caches.

6.4 NVRAM
Operating systems with volatile RAM typically operate in a per-
petual state of potential failure. Any small fluctuation in power
can wipe the memory, causing the data to be permanently lost.
This can increase the overhead of any routines that wish to safely
write to memory, as any dirty data must be written back to disk
to be saved even if it remains resident in memory. There has been
increasing interest recently to avoid this issue by using non-volatile
RAM (NVRAM) in systems. While this is not necessarily a new
development (old systems with core memory behaved just like this),
modern systems typically assume system RAM is volatile and will
lose its contents when power is removed.

Modern operating systems are not designed with NVRAM in
mind and may not handle the addition of it to a system optimally.
The Linux developers, for example, have had many discussions
about how to support NVRAMwithout needless copying of memory
or having to modify or create new filesystems [13].

There are various concerns on how to present NVRAM via the
OS. One is to simply implement a filesystem on top of it, but current
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Table 3: memset() performance on Raspberry Pi A+ BCM2835 700MHz LPDDR2 RAM. Each test is 16 repetitions of a 1MB
memset(). 1-byte is just a simple loop, one byte at a time, 4-byte is a simple loop, writing an integer at a time, 64-byte uses the
ARM stm instruction to write 64B at a time. Results are shown with no cache, and various combinations of instruction cache,
data cache, and branch predictor being enabled. Theoretical maximum speed of LPDDR2@400MHZ = 8GB/s.

Implementation Hardware Enabled cycles time MB/s
C 1-byte No Cache 937M 1.338s 12 MB/s

L1-I$ 355M 0.507s 32 MB/s
L1-I$+brpred 271M 0.387s 41 MB/s

L1-I$+brpred+D$ 116M 0.166s 96 MB/s
C 4-byte No Cache 206M 0.294s 54 MB/s

L1-I$ 68M 0.097s 165 MB/s
L1-I$+brpred 64M 0.091s 176 MB/s

L1-I$+brpred+D$ 29M 0.041s 391 MB/s
ASM 64B No Cache 23M 0.0335s 478 MB/s

L1-I$ 18M 0.0253s 631 MB/s
L1-I$+brpred 18M 0.0257s 622 MB/s

L1-I$+brpred+D$ 9M 0.0126s 1268 MB/s
Linux / glibc 1400 MB/s

Theoretical max 8000 MB/s

filesystems assume high-latency accesses over various busses to
disk (rather than a direct memory connection). The OS filesystem
layer is not optimized for high-speed access and can squander the
low-latency benefits of NVRAM. Another issue is that typically
when accessing data from disk, copies are made to memory (in disk
caches, or just to bring programs in to execute them). These extra
copies provide no benefit on NVRAM systems, so the OS should
be modified to avoid them either by turning off disk caches and by
allowing execute-in-place of binaries. A final issue with NVRAM
is consistency, to ensure that once a processor writes to NVRAM
the value is stored out properly in case of a crash. Processor caches
will cache memory accesses, and will require explicit cache flush
instructions to make sure values get written out to NVRAM.

All of these NVRAM / OS interactions can be investigated with
vmwOS, with the limitation that the Raspberry Pi systems them-
selves cannot directly support NVRAM. We propose emulating
NVRAM in software to enable this type of experiment.

6.4.1 More NVRAM Background. NVRAM is a storage medium
that retains stored data even when power is removed, unlike more
traditional SRAM (Static Random Access Memory) and DRAM (Dy-
namic RandomAccess Memory). Until recently, no NVRAM options
existed that could compete with SDRAM at the larger sizes, but
now there are several technologies that will soon compete on the
consumer market. These types of NVRAM include PRAM (Phase-
change RAM), F-RAM (Ferroelectric RAM), and MRAM (Magnetore-
sistive RAM). Each of these have their respective drawbacks, but are
likely to be competitively priced versus traditional SDRAM. They
also will be able to compete in terms of size, write-erase cycles, and
speed. The availability of NVRAM to consumers can provide inter-
esting benefits to computing, and will trigger significant redesign
in how software and operating systems manage memory.

6.4.2 Drawbacks of Modeling NVRAM using SPI Flash. The hard-
ware being used is currently a Raspberry Pi 3 Model B+; chosen

simply because it is the newest Raspberry Pi model. vmwOS sup-
ports the Pi 3B+ in all avenues that are needed for the research.

NVRAM is currently difficult to obtain, especially in sizes over a
few Megabytes, and generally utilizes a specialized bus that is not
available for external connection on a device such as the Raspberry
Pi. In order to model NVRAM, an SPI (Serial Peripheral Interface)
connected microSD card is being used as a backing store to provide
permanent non-volatile storage. This is useful as an emulation tool
as it is cheap, easily to interface, and easily available.

We connect an SD card to our system using an Adafruit SPI mi-
croSD breakout seen in Figure 3. SD cards have a startup command
sequence that can be used to set the card to SPI mode, which must
be done at 100-400kHz clock speed. Commands can then be sent to
check the SD cards type and version to verify the card’s available
features and commands.

There are various drawbacks of using SD to emulate NVRAM.
Challenge: Lack of Byte Addressing

A common factor of the new NVRAM technologies is their abil-
ity to be byte addressable. This allows reading and writing with
very little overhead in terms of manipulating data that is currently
unnecessary. Unfortunately, in general SD cards are only able to be
read and written in blocks, commonly of sizes 512 or 1024 bytes.
This means that if a single byte needs to be updated, the entire 512
byte block must be read out, changed, and then written back. Typi-
cal program behavior of repeatedly writing to small local variables
in RAM can lead to huge overheads and waste if these are directly
mapped to SD flash.
Challenge: Speed

One drawback of the microSD storage is significantly slower
speeds than SDRAM, and slower than the NVRAM begin simulated.
For example DDR4 PC4-25600 SDRAM, which is a fairly common
memory used in consumer available computers, has a theoreti-
cal maximum bandwidth of 25.6GB/s. The current testing has the
microSD communicating SPI with a clock rate of 117.37kHz. Ne-
glecting overhead in sending commands, this gives a theoretical
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Figure 3: Adafruit microSD breakout module used for
NVRAMmodeling

maximum bandwidth of 14.671KB/s meaning the SDRAM is the-
oretically 1.75x106 times faster. Increasing the SPI clock speed to
25MHz, which is generally an upper limit for high performance SPI
communications with an SD card, the SDRAM would still be 8192
times faster.

This holds for the latency for access as well. Most SD cards must
be read and written in 512 byte chunks. The latency to read/write a
byte is minimum the command size plus the time to read a byte, and
maximum command size and time to read 512 bytes. At 117.37kHz
this gives 477us-35.3ms. Compare this to the average latency of
SDRAM, which is generally in the range of a few nanoseconds.
Challenge: Direct Memory Mapping

In general computing, the CPU can directly read and write data
in memory. This has low overhead and is extremely fast. When
using the microSD card as NVRAM, the data cannot be directly
accessed by the CPU, and instead needs to be read into the SDRAM.
This adds overhead for the processes utilizing the NVRAM, and
increases the complexity of the code.

Another issue is what to do with writes. One way of doing this is
to mark all RAM as read-only and using the virtual memory subsys-
tem to trap on writes, and then at this point write the memory to SD
as well as memory (or alternately, to cache the write and write out
when convenient or once enough dirty memory has accumulated).
Challenge: Limited Read Write Cycles

A computing system is more or less constantly accessing mem-
ory, whether to fetch instructions or to load and store data. Storing

Figure 4: Sector failure percentage versus time under sus-
tained write at 117.37kHz and 25MHz for a 2GB and 8GB SD
card with 3000 writes per sector before likely failure

data is troublesome, as a common characteristic of flash based
storage is a limit in write cycles. The more write cycles a certain
sector has, the higher the likelihood of failure. For a Kingston MLC
Flash, this is rated at 3000 write cycles. Using the max bandwidth
at 117.37kHz clock speed for SPI this could be accomplished in
105.9s for a 512 byte section. A 2GB SD card would have around
3906 usable sections of 512 bytes, so even with wear leveling to
distribute writes evenly across all available space, it would be worn
out completely in 114.9 hours of continuous writes.

The largest issue with this isn’t necessarily complete failure, it
is that as sectors fail the chances of irrecoverable data loss greatly
increase. This can create system instability as well as loss of impor-
tant data. The percentage of sector failure over time based on SD
size and write speed is shown in Figure 4.

6.4.3 Proposed SD/NVRAM Memory Emulation. There are vari-
ous ways that NVRAM can be implemented in an operating system.
We look at having a hybrid NVRAM/DRAM interface, where the
system has both DRAM and NVRAM. User processes can request
that regions of NVRAM be mapped into their address space, which
are then accessed as normal RAM. We then emulate this using the
virtual memory system and make sure that all write accesses are
backed up to the SD. Upon reboot the OS restores these memory
areas and processes can find them again.

Corruption of the memory allocation table can corrupt all of
the stored NVRAM. For this reason, a fail safe was implemented
adding an additional 512 byte buffer and 512 byte information
block to the memory allocation table. Any time data is written to
the memory allocation table it is first written to the buffer, a bit
is set in the information block indicating the memory allocation
table is about to be written, and the address to be written to is
added to the information block. The bit in the information block
is only cleared when the write to the memory allocation table has
successfully finished. If the write fails after some bytes have already
been written, but not all, or if the kernel boots and reads in the
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informational block and the write bit is set, then the kernel can
recover without the corruption of data.

While this is not the only means of failure, it is one significant
avenue that is closed off. Further protection would include backing
up the memory allocation table, but depending on the amount
of processes that have allocated data, this table could grow very
large. These issues have already been extensively researched in the
development of file systems, so the implementation of a true file
system would provide much better reliability. As a compromise,
there have been NVRAM specific file systems developed, such as
NOVA [44], which attempt to work optimally in NVRAM systems.

6.4.4 Implementation for Userspace Programs. The SD cardmodel
of NVRAM relies on SPI communications, and SPI is implemented
as a driver in the vmwOS operating system. This creates difficulties
in utilizing NVRAM for kernel memory, especially during boot, but
can be easily utilized for userspace programs. Anytime a userspace
program needs to read information from the NVRAM, 512 bytes
are read into a local buffer in SDRAM. This creates overhead vs
SDRAM, but if the use of the local buffer is ignored it is easy to see
how it is comparable to how NVRAM can eventually be utilized.

6.5 Other Potential Research Areas
6.5.1 Power and Energy. Power and energy are increasingly

important in modern CPU and memory designs. Unfortunately the
Pi does not provide an easy way to monitor the energy use, as this
would be a great addition to any of the studies proposed here. We
have conducted many power/energy studies of the Pi, but these
require manually instrumenting the incoming power connection
with a sense resistor and having an external device record the power
consumption.

The Pi does support dynamic voltage and frequency scaling. It
could be interesting to use this and see how it affects memory
hierarchy performance. Unfortunately the DVFS interface is not
well documented on the Pi hardware.

6.5.2 Hardware Performance Counters. The various Pi models
have support for hardware performance counters, including various
cache and TLB related events. It should be possible to read these
out during system operation, and behavior of the system can be
optimized on the fly based on live feedback of how the memory
system is behaving.

6.5.3 GPU. The Raspberry Pi has a powerful GPU. It shares
main memory with the CPU, and communication between the two
is done via a mailbox interface. The GPU is not documented well,
although Linux supports GPGPU-style programming via a “QPU”
interface as well as full accelerated 3D graphics support.

It would be interesting to see if the GPU/CPU combination could
be treated more like a heterogeneous system and design the oper-
ating system around this concept. One struggle is that unlike some
newer high-end GPU designs, the GPU can’t take part in cache
coherency. The other primary barrier is the lack of low-level GPU
documentation, as currently most of it is reverse engineered.

6.5.4 Virtualization/Hypervisor. The Cortex-A53 has full vir-
tualization support, and this can interact in complex ways with

the memory hierarchy. The system provides a low-cost base for
experimenting with virtual machines.

6.5.5 System Call Overhead. The CPUs currently found in all of
the Pi Models (ARM1176, Cortex-A7, Cortex-A53) are in-order and
thus not vulnerable to the recent Meltdown and Spectre vulnera-
bilities [23]. We can still investigate the overhead of the various
mitigation methods, especially those that involve changing the
cache behavior or moving the kernel into a separate address space.

Also, for meltdown-type fixes much of the overhead comes at
system call time. It would be interesting to experiment with other
methods of user/kernel communication that might have less over-
head than the traditional system call interface.

6.5.6 Older Pi Features. Various older Raspberry Pi models and
their ARM1176 CPUs have interesting features not found on the
newer systems. This can provide compelling areas of research, if
like us, you have large piles of the older models gathering dust.

One interesting feature is the availability of 16kB of Tightly-
coupled Memory (TCM) which acts as a fast scratchpad. This does
not seem to be supported by other operating systems available on
the Pi. Another feature found on the older CPUs is the ability to
disable the branch predictor, to configure the hardware prefetcher
behavior, and to change the TLB replacement policy.

6.6 Missing Opportunities
Modern high-end CPUs, especially x86 ones, have features that
would be fun to experiment with but support is just not in the ARM
cores on the Pi.

This includes things such as encrypted memory and hardware
bounds checking. It might still be possible to conduct experiments
in these areas by faking support via an emulation layer, as we do
with NVRAM support.

Another area is the addition of other memory types. We are
limited to the DRAM provided with the board. It would be nice if we
could somehow provide a custom memory controller, possibly via
FPGA, and experiment with new and novel DRAM configurations.
Currently though this is not within the capabilities of the board
without a major intrusive redesign.

7 CONCLUSION AND FUTUREWORK
We describe vmwOS, a simple teaching operating system that runs
on the low-cost Raspberry Pi series of embedded boards. We plan to
use this OS in an advanced operating system class to introduce the
many facets of the memory hierarchy found in modern computing
hardware. Most operating systems have extremely complicated in-
teractions with the memory management systems in modern CPUs,
we wish to keep our operating system simple so the underlying
interfaces can be more easily explored.

We plan to continue extending vmwOS so that it can become
as complete of an operating system as possible while still striving
to retain its simplicity. The most pressing needs are: full multi-
core support, 64-bit support, full read/write filesystem support, and
block-device support. Once we have all of this working the vm-
wOS will be an ideal platform for teaching students about modern
memory hierarchies.
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All of the code for vmwOS can be found in our git repository:
https://github.com/deater/vmwos.git
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