Computes the square root of a number. There are separate functions for Q15, Q31, and floating-point data types. The square root function is computed using the Newton-Raphson algorithm. This is an iterative algorithm of the form:
x1 = x0 - f(x0)/f'(x0)
where x1
is the current estimate, x0
is the previous estimate, and f'(x0)
is the derivative of f()
evaluated at x0
. For the square root function, the algorithm reduces to:
x0 = in/2 [initial guess]
x1 = 1/2 * ( x0 + in / x0) [each iteration]
- Parameters
-
[in] | in | input value |
[out] | pOut | square root of input value |
- Returns
- execution status
- Parameters
-
[in] | in | input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF |
[out] | pOut | points to square root of input value |
- Returns
- execution status
- Parameters
-
[in] | in | input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF |
[out] | pOut | points to square root of input value |
- Returns
- execution status
- Parameters
-
[in] | pIn | input vector. |
[out] | pOut | vector of square roots of input elements. |
[in] | len | length of input vector. |
- Returns
- The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
in
is negative value and returns zero output for negative values.
void arm_vsqrt_q15 |
( |
q15_t * |
pIn, |
|
|
q15_t * |
pOut, |
|
|
uint16_t |
len |
|
) |
| |
void arm_vsqrt_q31 |
( |
q31_t * |
pIn, |
|
|
q31_t * |
pOut, |
|
|
uint16_t |
len |
|
) |
| |